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On the orders of  magnitude of  epigenic dynamics 
and monoclonal antibody production 

J. M. Savinell, G. M. Lee and B. O. Paisson, Ann Arbor

Abstract. The hybridoma cell's maximum capacity for monoclonal 
antibody (MAb) production is estimated to be 2300-8000 MAb 
molecules/cell/s, using measured rates of transcription and transla-
tion, and the limitations imposed by the size of the polymerase 
molecule and the ribosome. Nearly al! the production rates reported 
in the literature fall into or below this range of production rates. 
Data from batch cultures of hybridomas demonstrate a constant 
specific rate of MAb production until the time integral of the viable 
cell concentration reaches about 108 cells · h/cm3. At this point, 
some essential nutrients from the standard media are depleted, caus-
ing M Ab production to decline. 

1 Introduction 

Rapidly growing markets for monoclonal antibodies (MAbs) 
have brought about the large-scale cultivation of hybri-
domas and the development of optimal processing schemes. 
The preliminary analysis needed for process design requires 
us to seek order of magnitudes of key rates, capacities, and 
other necessary data for orientation and identification of 
factors that need quantitative analysis. Herein we attempt to 
establish how basic biochemical and cellular determinants 
set the order of magnitude of the rate of monoclonal anti-
body production. Our order of magnitude estimate is consis-
tent with experimental observations. 

2 Dynamics of antibody synthesis 

Antibody synthesis in hybridoma cells proceeds in a se-
quence of several well-known steps, shown in Fig. 1. These 
steps are transcription, processing of the heteronuclear RNA 
(hnRN A), translation, assembly of polypeptides and their 
glycosylation, and secretion of the antibody. Antibody ac-
counts for a large fraction of protein synthesized in Ab-pro-
ducing cells. For instance, in rapidly growing MOPC 21 and 
MPC 11 myeloma cells, a single gene for each of the heavy 
(H) and light (L) chains may provide enough mRN A that
leads to about 20-30% of the protein synthesized [1]. 

We will now estimate the theoretical maximum rate of 
antibody synthesis, which is the steady state flux through 

the Ab production system. 1 These order of magnitude calcu-
lations will give an upper bound on the specific productivity 
of hybridoma cells, and are based on the cell's capacity for 
transcription and translation. 2 The maximum capacity for 
the other stages of Ab synthesis, such as glycosylation and 
secretion, are more difficult to evaluate at present. However, 
these steps would only serve to reduce our estimate of the 
maximum Ab synthesis rate, ifthey would prove to be capac-
ity limiting. As will be shown below, the estimate based on 
the processes of transcription and translation agrees with 
experimental data. 

A dynamic mass balance on the cytoplasmic Ab mRN A 
concentration is: 

d[mRNA] vc - - - =  - ·D·E-k ·[mRNA]-µ-[mRNA], (1) 
dt Sc 

where [mRN A] is the number of mRN A per cell in the cyto-
plasm, D is the gene dosage, which for hybridomas is equal 
to one gene per cell; E is the fraction of nuclear mRN A which 
reaches the cytoplasm; v c is the velocity of the polymerase II 
molecule in nucleotides/s/gene; sc is the spacing of nu-
cleotides between polymerase molecules on the DNA, with 
units nucleotides/polymerase; k is the degradative rate con-
stant related to the half life of mRN A, in s - 1; µ is the growth 
rate, in s- 1. 

Assuming that in balanced growth, the amount of mRN A 
per cell is in a quasi-steady state, we obtain 

v ·D·E 1 
[mRNAJss = C k · - - .

s ·  µC 1+-
k

(2) 

Such an estimate should not be confused with the characteristic 
response times associated with the individual steps in the process. 
For example, the response time, defined as the approximate 
length of time for the process to occur, is 20-150 min for the 
glycosylation/secretion step [2, 3], and 40 min for nuclear pro-
cessing [4]. Although these may be the steps in the Ab synthesis 
pathway with the slowest response times, they do not necessarily 
limit the cell's capacity for Ab synthesis. 

2 Similar calculations have been used to estima te the rate of zymo-
gen synthesis in cocoonase zymogen cells [5]. 
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Fig. 1. Pathway of antibody synthesis 

The various parameters appearing in this expression may 
be estimated from the available literature. Reported values 
for vc are 83 nucleotides/s for HeLa ribosomal RNA [6], 67 
in poliovirus [7], and 45 in E. coli [8]. The reported values for 
se are 75 nucleotides/polymerase in E. coli [9], and 79-92 in 
Triturus viridescens [10). Based on the physical size of the 
polymerase II molecule, the minimum spacing is about 38 
nucleotides [10], although it is unlikely that this spacing can 
be physically achieved. Approximately 70-90% of the hn-
R N  A produced in the nucleus is transported to the cyto-
plasm [11], so E falls in the range of 0.7-0.9. The average 
half-life of Ab mRN A has been measured to be 12 h [12], 
corresponding to a k value of 1.61 · 10- 5 s - 1. Minimum 
doubling times for hybridomas are on the order of 12-14 h 
and µ is therefore less than or equal to k. Consequently, the 

factor  1 - falls in the range 0.5-1.0. For doubling times of 
1+t':k

14-20 h, this factor takes values in the range of 0.54-0.63.
Using the parameter values most appropriate for myeloma
cells, we obtain the estimated range for [mRNAJss :
hnRNA] 

(83 nucleotides/s) · (0.7 to 0.9) 
. 5 1 ·(0.5to1.0)(80 nucleotldes/polymerase) (1.61 · 10- s - ) 

= 23,000 to 58,000 H or L mRN A molecules/cell.

The reported estimates of 54,000 LmRNA/cell [11], and 
40,000 LmRNA and 30,000 H mRNA [13] fall within this 
range. The upper limit for the [mRNA]ss can be extended to 
122,000 mRN A molecules/cell if the minimum polymerase 
spacing of 38 nucleotides/polymerase is used. 

The equation for translation of Ab mRN A, assuming that 
translation is a first order process [14], is: 

1 vs 
V A b  = - · - ·  [mRNA]ss ·2 SS 

(3) 

We assume that the ribosome concentration is not limiting 
and, therefore, the translation rate is independent of ribo-
some concentration. Reported values for the ribosome veloc-
ity, vs , are 20 nucleotides/s in myeloma [1], 25 in reticulo-
cytes [15], and 48-60 in Salmonella typhinurium [16]. The 
number of nucleotides between ribosomes, S8, is reported to 
be 90-100 in myeloma [1] and reticulocytes [15], and 88-99 
in somatotropes and mammotropes [17]. The factor of 0.5 
occurs because two H and two L polypeptide chains are 
needed for the assembly of one complete Ab molecule. To 
estimate the maximum Ab production rate, we have ne-
glected the turnover of either the H or L chains. The H 
chains are believed to be relatively stable, whîle the L chains 

can exhibit significant turnover - L chains are reported to be 
produced in excess of H chains [3]. The rate of H chain 
synthesis thus forms a suitable upper bound on the MAb 
excretion rate. 

The range of the maximum Ab synthesis rate can then be 
calculated using Eq. (3) with the parameter values appropri-
ate for the myeloma cell, and the mRN A concentrations that 
were calculated previously: 

1 20 to 25 nucleotides/s 
VAb = - . - - - - - - - - - - - -

2 90 to 100 nucleotides/ribosome 
· (23,000 to 58,000 mRN A/cell) = 2300 to 8000 Ab/cell/s.

Therefore, based on the physical constraints enumerated
above (the observed polymerase and ribosome packing den-
sity, and transcription and translation velocities), the theo-
retical maximum output of antibody from a myeloma cell is 
on the order of 2300-8000 Ab molecules/cell/s. If the maxi-
mum estimated value of 122,000 mRNA/cell is used, the up-
per limit for the A b  production rate becomes 17,000 Ab 
molecules/cell/s. 

3 Discussion 

The reported values of MAb production range from 17 to 
8000 Ab/cell/s for various hybridoma cell lines (Table 1), 
with most values falling in the range of 500-3000. Our esti-
mate of the maximum rate seems, therefore, reasonable. 
Fig. 2 shows the normalized MAb concentration plotted 
against the time integral of the viable cell concentration, for 
several sets ofbatch data reported in the literature. The slope 
of this curve, which gives the specific productivity, is nearly 
linear up to the point around 108 cells · h/cm3 for all the data 
used. At this point, one or more critical components seem to 
be depleted from the standard media, causing the MAb pro-
duction to decline [18]. It has been shown that when the 
essential amino acids were added to the media at this point, 
the cells continued to synthesize antibody at the same rate 
[18]. Figure 2 indicates that the specific productivity of MAb 
is nearly constant at the individual cell line's characteristic 
rate, as long as the necessary nutrients are available. All 
these data sets corne from experiments with 5-10% serum 
in the media. Data from our laboratory show that the 
specific MAb production rate is serum independent [19], 
except under long term adaptation to very low serum levels 
(unpublished results). 

The high MAb-producing hybridoma cell lines, shown in 
Table 1, secrete MAb at rates that are close to our estimated 
capacity of the epigenic system. If nutritional conditions are 
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Fig. 2. Antibody concentration plotted against the time integral of 
the cell concentration, for cells grown in batch cultures. The anti-
body concentrations are normalized against the maximum antibody 
concentration for that cell line. Sources of the data are: 111 [20]; 
e ,  0 [21]; A [22]; • [23]; Il [24]; .t. [25] 

Table 1. Reported antibody production rates 

Cell line Ab production rate Refer-
molecules/cell/s ence 

Batch 
mouse HB8178, IgG 1200-2700 [26] 
mouse VII H-8, IgG2a 580 [27] 
mouse VII H-8, IgG2a 530-4650 [28] 
mouse 65/26, IgG2b/x 480 [29] 
mouse 455, IgG2a 17-33 [30] 
mouse B103, IgG 6000 [31] 
mouse MRC Ox-19, IgG 470-790 [32] 
mouse N-527 IgG 8000 [33] 
mouse J4C2 IgG1 830 [20] 
mouse HB 32 IgG2aK 355-470 [18] 
mouse 9.2.27 IgG2a 2230 [22] 
mouse IgG 970 [25] 
mouse S3H5/ybA2, IgG2bA 210 [24] 

Semi-continuous 
mouse VII H-8, IgG2a 490-750 [28] 
human HF10B4, IgM 62 [34] 

Continuo us 
mouse VII H-8, IgG2a 460-1400 [28] 
mouse 65/26, IgG2b/x 80-2550 [29] 
mouse N-146, IgG 5800 [33] 
mouse N-226, IgG 615 [33] 
mouse N-527, IgG 7640 [33] 
mouse S-6, IgG 1210 [33] 
mouse S-84, IgM 380 [33] 
rat R33-18-12 2460 [33] 
rat R33-24-12 110 [33] 
rat R33-60 675 [33] 
rat IM/41 3400 [33] 
rat C2-23 2330 [33] 
mouse 143, IgG2a 330-670 [35] 
mouse NB1, IgM 60 [36] 

not limiting, improvements in the specific MAb production 
rate will not be achieved through improved processing tech-
nology but rather through modification of cellular compo-
nents. At present it is uncertain how successfully we can 
manipulate the cell's protein synthesis machinery. 

Our results, therefore, support the view that economically 
successful large-scale cultivation of hybridomas is likely to 
depend primarily on the selection of: 1) a high producer, and 
2) a processing scheme that supports high cell densities .
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