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A mathematical model for pathogen cross-contamination dynamics 
during produce wash

Daniel Munther, Yaguang Luo, Jianhong Wu, Felicia M.G. Magpantay,
Parthasarathy Srinivasan

Introduction

Produce washing is an important step in the fresh produce 
supply chain that is designed to improve cosmetic appearance, 
remove unwanted materials such as dirt and plant exudates and 
reduce the incoming microbial load (Gil and et al., 2009). However, 
wash water can act as a secondary source of contamination, 
enabling pathogens on incoming produce to disperse to multiple 
lots if not adequately sanitized. While many studies have explored 
sanitization options ranging from ultrasound and ultraviolet radi 
ation to the synergistic effect of ozone and organic acids, in practice, 
chlorine remains the most widely used (Davidson and et al., 2013; 
Gil and et al., 2009; Luo and et al., 2012).

Despite its pervasive use, the underlying mechanisms that 
govern the concentration dynamics of hypochlorous acid and its 
role in preventing pathogen cross contamination during the wash 
process are not completely understood. Part of the problem is that 
many experiments are conducted at the lab scale under particular

conditions and therefore results from these studies are difficult to 
synthesize. In their review of fresh cut produce sanitation, Gil et al.
(Gil and et al., 2009) suggest that, “A standardized experimental 
approach to study the efficacy of different sanitizing treatments is 
needed considering as much as possible the commercial processing 
conditions.”

This is where mathematical modeling can play a fundamental 
role as it, along with relevant data, can be used to test mechanistic 
hypotheses as well as provide quantifiable links between specific 
processing parameters and resulting contamination levels with 
economy and scientific rigor. Furthermore, modeling can provide a 
well defined reference point from which to compare various 
sanitization strategies even among differing wash conditions and 
particular produce/pathogen combinations.

From this perspective we approach the study in (Luo and et al., 
2012), using the resulting time series data and experimental pro 
cedure to build and test a mechanistic model of the wash process. In 
particular, we construct a simple mathematical model, that cap 
tures the essential mechanism for chlorine decay in the wash tank 
as well as the cross contamination dynamics of pathogen transfer 
from the wash water to shredded lettuce.



Materials and methods

Pilot plant experiment

A brief description of the procedure in (Luo and et al., 2012) 
provides basic information for our model: baby spinach leaves, 
inoculated on average with 104.9 CFU/g of Escherichia coli O157:H7, 
and shredded lettuce were placed (adjacent to each other without 
mixing) on a conveyor belt and discharged simul taneously 
into  an immersion wash tank (volume  given by  V 3.2 
� 106 ml). The entry rate of the shredded lettuce was approximately 
45 kg/min and the spinach to lettuce ratio was 0.2%. The produce 
remained in the wash tank for an average of 26 s. In order to control 
pathogen build up in the wash water, sodium hypochlorite was 
added every t 12 minutes with increasing dose volumes over a 
continuous wash period of approximately 36 min. Water quality, free 
chlorine concentration, pathogen survival and cross contamination 
were monitored. The experiment was repeated three times. The 
data values used in this paper are the average of these 
measurements.

Chlorine dynamics in the wash tank

As the results in (Luo and et al., 2012) indicate, maintaining a 
stable level of free chlorine (FC) concentration in the process water is 
difficult. While this is due to a variety of factors, we considered the 
effects of the organic load on the chlorine concentration. Fresh cut 
produce, entering the wash tank, introduces a significant amount of 
organic material, increasing the chemical oxygen de mand (COD) in 
the water. Based on the data in (Luo and et al., 2012), the chemical 
oxygen demand increased linearly with the amount of lettuce 
entering the tank (on a time scale of about 36 min). Therefore, we 
modeled the rate of increase of COD by

O0 k0 (1)

where the 0 denotes the derivative with respect to time, O (mg/L) is 
the COD in the wash water and k0 is a constant with units (mg/(L 
min)).

To model the FC dynamics in the process water, we built the 
following equation

C0
N

lcC bcOC þ 
X 
k 1

rkc½kt;ktþt0� (2)

where C0 indicates the change in FC in the wash water with respect 
to time and C is the concentration (mg/L) of FC available. As chlorine 
reacts with organic matter, there is a rapid depletion of FC in the 
system. For the majority of “chlorination reactions, the elementary 
reaction can be formulated as HOCl þ B / products, where B is an 
organic or inorganic compound” (Deborde and von Gunten, 2008). 
Using the COD in the wash water as a measure of the concentration 
of the organic material present and because the reactivity of HOCl 
with organics is usually second order (Deborde and von Gunten, 
2008), we modeled the loss of FC as the second term in (2) where 
bc is the second order rate constant.

While there are multiple types of organic (and inorganic) ma 
terial in the wash water: bacteria, plant juices, soil, etc. and bc most 
likely depends on the chlorine reaction with each of these, we as 
sume bc represents an average type rate (Deborde and von Gunten, 
2008). Also, bc is a function of pH, but we assumed the pH is con 
stant, maintained by citric acid (this is a typical procedure in the 
fresh processing industry) (Deborde and von Gunten, 2008; Luo 
and et al., 2012). Furthermore, referring to the first term in (2), lc is 
the natural decay rate of chlorine in tap water.

Usually, wash systems have some kind of dosing scheme to 
replenish the loss of FC. Following the study in (Luo and et al., 
2012), we considered a dosing strategy with a fixed period t 12 
min. Combining these ideas, we used the third term in (2) to 
account for the addition of FC to the process water. Here c is the 
indicator function, taking the value 1 on time interval [kt,kt þ t0] 
for some small time increment t0 and value zero elsewhere, N is the 
number of doses added, and rk > 0 reflects the rate increase of FC 
from each dose.

Cross contamination dynamics in the wash tank

In order to quantify the concentration of pathogen in the pro 
cess water, XW (MPN/ml), we constructed the following equation

X
W
0

bWS bLW XW 
L
V

aXWC (3)

The data (see Fig. 4 in (Luo and et al., 2012)), suggested that 
the level of E. coli remaining on the baby spinach during washing 
equilibrates quickly during the process, indicating that shed rate of 
E. coli from the baby spinach into the wash water is approxi mately 
constant. In terms of our model, we treated the spinach merely as a 
pathogen delivery vehicle, implying that there is a constant rate of 
E. coli being added to the wash water. Repre senting this rate by 
bWS (MPN/(ml min)), the rate of increase of pathogen in the wash 
water is described by the first term in equation (3).

On the other hand, we considered the binding rate and the 
inactivation rate via FC as the two mechanisms that describe how 
pathogens are removed from the wash water. For the binding rate, 
see the second term of (3), we assumed that the successful contact 
and attachment of the pathogen to the produce occurs at a rate that 
is proportional to product of XW and L/V where L is the amount of 
lettuce (kg) in the wash tank, V is the tank volume and bLW (ml/(g 
min)) is the proportionality constant (in other words, the produce 
and pathogen are thoroughly mixed in the process water). Again, 
working from a well mixing perspective, we modeled the inacti 
vation of suspended pathogen via free chlorine indicated in the 
third term of (3) where C is the concentration of FC and a has units 
(l/(mg min)).

Finally, the contamination dynamics for the lettuce depend on 
the binding rate (i.e. the rate at which pathogen in the water binds 
to the lettuce), the FC inactivation of pathogen attached to the 
lettuce as well as the average time the lettuce spends in the wash 
tank. We modeled this as

X0
L

bLW XW aXLC c1XL (4)

where XL (MPN/g) quantifies the amount of pathogen on the lettuce 
in the tank. The first term in (4) indicates the rate increase of 
pathogen transferring from the water to the lettuce, the second 
term reflects the inactivation of pathogen on the lettuce due to FC. 
For the third term, we assumed that the exit time of the lettuce 
from the wash tank is exponentially distributed with mean 1/c1. 
That is, 1/c1 (min) reflects the average dwell time for the lettuce in 
the wash tank. Note that we did not include produce to produce 
type transmission of the pathogen.

Complete model

Combining the dynamics of the water chemistry and pathogen 
transmission, our model is defined by the following system of 
equations:



O0 k0

C0
N

lcC bcOC þ 
X 
k 1

rkc½kt;ktþt0�

X
W
0

bWS bLW XW 
L
V

aXWC

X0
L

bLW XW aXLC c1XL

(5)

on the phase space where C, O, XW, and XL are all nonnegative. It is 
clear by inspection that the model is positively invariant on this 
space, indicating that the solutions make sense in an industrial 
context. See Table 1 for a complete list of the model parameters and 
their respective units.

2.5. Parameter fitting

All parameter values used in our model are reported in Table 1, 
and all simulations and optimization methods for fitting were 
implemented in MATLAB R2010a (The Mathworks, Inc.). We ob 
tained some of these values from the literature. However, other 
parameters like L, k0 and bWS were specific to our model, and the 
ones such as bC, a and bLW, were not readily available from the 
literature for the experimental conditions used. These parameter 
values were determined as follows:

The produce is discharged into the wash tank at a constant rate 
N1 g/min. Moreover, the average wash time is 1/c1 min, and the 
spinach to lettuce ratio is given by q, we deduced that the amount of 
lettuce (g) in the tank is a constant, given by

L ð1 qÞN1=c1 (6)

Next, the rate of change of COD from equation (5) is linear in 
time, and a fitting of the data from (Luo and et al., 2012) yielded a 
value for the slope k0 of this line as 32.3 mg/(L min).

Following the experiment in (Luo and et al., 2012), we let s 
(MPN/g) be the average amount of Escherichia coli on the incoming 
inoculated spinach. Also, we defined XS (MPN/g) to be the average 
level of pathogen remaining on the spinach during washing. Since 
the rate of spinach coming into the tank is qN1 (g/min) we calcu 
lated the rate of pathogen addition to the wash water, bWS (MPN/
(ml min)), as

bWS
ðs XSÞqN1

V
(7)

In equation (2) for the FC levels in the tank, C only depends on 
itself and COD levels, as we have assumed that it does not depend 
on the pathogen levels in the tank. From (Hua and et al., 1999), we 
obtained the natural decay rate lC of FC as 1.7 � 10�3/min at 5+ C. 
For the FC depletion rate, bC, due to the organic load, and the 
chlorine dosing parameters, r1, r2 and r3, we used the subroutine 
“fminsearch” in MATLAB, to fit equation (2) to the full 36 min of 
data from (Luo and et al., 2012). Parameter values for bC and r1, r2 
and r3 are listed in Table 1.

Following these parameter fits, we used the resulting FC levels 
in the rate equations in model (5) to determine the pathogen levels 
in the water and on the lettuce in order to optimize for the pa 
rameters a and bLW. Again, we used the full 36 min data set from 
(Luo and et al., 2012) and the subroutine “fminsearch” in MATLAB.

Results and discussion

Model fitting

Fig. 1(a) shows the amount of free chorine levels, and Fig. 1(b)

and (c) show the pathogen levels in the water and on the lettuce, 
respectively, using both the data in (Luo and et al., 2012) as well as 
our model described in equation (5) with parameter values coming 
from Table 1.

We observe from Fig. 1(a) that our model fits the FC levels very 
well, with a root mean square error (RSME) of about 0.48. Also, it 
captures most of the dynamics of the pathogen levels, with a scaled 
(in order to equally weight the residuals) RSME of about 1.8, for the 
model fitting in Fig. 1(b) and (c). However, the last two data points 
are not explained well by our model. This further has the effect of 
lowering the solution peaks obtained using our model in the 
respective figures for the pathogen levels, indicating why these 
peaks do not quite match the data there. If we remove the last two 
time points from the data for the pathogen levels in the water on 
the lettuce, and run an optimization to fit for the parameters a and 
bLW, we obtain the results shown in Fig. 2(a) and (b). In this case, a 
0.52 and bLW 0.47 (with a scaled RSME reduced to around 1.5), 
which are not very different from the values obtained from using 
the full data set. From an experimental view, it is not entirely clear 
what conditions affected these final data points.

Comparing experimental results from varying scales

Given that our model describes most of the underlying mech 
anisms involved in the produce wash, it is useful as a reference 
point to compare parameters obtained from experiments at 
different scales. For instance, using lab scale data from (Nou and et 
al., 2011) as well as from (Shen and et al., 2013), we calculated bC, 
the depletion rate of FC in process water due to the organic load. On 
the lab scale, these data indicated that bCz2 � 10�3 L/(mg min), 
whereas our model informed by data in (Luo and et al., 2012), 
reported that bC 5.38 � 10�4 L/(mg min). This suggested that lab 
scale experiments represent this mechanism relatively well.

However, when considering the inactivation rate of E. coli via FC, 
a L/(mg min), there was a larger discrepancy between the two 
experimental scales. Unpublished lab scale data for pathogen 
inactivation suggested that for suspended E. coli levels at 8 Log CFU, 
a was on the order of 300e500 L/(mg min), in comparison with our 
model prediction that a 0.75 L/(mg min). Part of this discrepancy 
may be linked with the fact that the incoming pathogen levels shed 
into the wash water are relatively low (� 5 Log CFU, as in (Luo and 
et al., 2012)). This difference in magnitude suggests the importance 
of future experiments, examining pathogen inactivation of FC, to 
use low pathogen concentrations in the wash water.

In terms of cross contamination, this discrepancy was also 
present when comparing lab and semi commercial experiments. 
For instance, following the experiment in (Luo and et al., 2011), 30 
g of lettuce inoculated with 104 CFU/g of E. coli O157:H7 was added 
to 3000 ml of water and 120 g of uninoculated lettuce was added 
immediately after. The mixture was then manually agitated for 30 s 
and then measurements for E. coli transfer were made. Using this 
data, we calculated the average transfer rate, bLW ml/(g min), to be 
approximately 30.6. The value obtained from our model fit from 
data in (Luo and et al., 2012) was bLW 0.38 ml/(g min), indicating 
that cross contamination occurs at a much lower rate on the 
commercial scale most likely due to multiple factors that cannot be 
readily controlled.

Quantifying residual FC

In order to keep the process water free of pathogens and hence 
minimize cross contamination during produce washing, there must 
be sufficient residual FC in the water. As pointed out in (G�omez 
L�opez and et al., 2014; Shen and et al., 2013), in experiments with 
increasing COD levels, this residual FC concentration is the essential 
factor for



controlling pathogen inactivation, as opposed relying on ORP, for 
instance. Furthermore, “understanding the dynamic interactions 
between organic load and FC concentration is critical to developing 
practical sanitization strategies for maintaining safety of fresh cut 
produce” (Shen and et al., 2013). Referring to Fig. 1(a), it is clear that 
the rise in the COD levels was the main cause for the FC levels to fall 
rapidly, and this subsequently caused the pathogen levels both in 
the water and the lettuce to rise. Because our model is informed by 
the direct quantification of these interactions, as opposed to merely a 
correlative description, it has predictive power and could be used, 
for instance, to deduce that any technique used to lower the 
reaction rate between the free chlorine and the COD, would have a 
considerable impact on controlling the pathogen levels. 
Furthermore, given such a technique, our model could directly 
predict the scope of this control, especially for extend wash times. 
That is, our model coupled together with streamlined experiments 
(as in Luo and et al., 2012) could be  used to test optimal chlorine 
sanitization strategies for lengthy wash times that would otherwise 
be costly and difficult to monitor. Fig. 3 uses the model to predict the 
dynamics of the chlorine and path ogen levels after two additional 
chlorine dosing cycles (i.e. up to 60 min), assuming a linear rise in 
COD levels and a similar chlorine dosing scheme as in (Luo and et al., 
2012).

Model validation and predictability

In order to validate our model described in equation (5), we 
used the first 12 min of data from (Luo and et al., 2012) to deter 
mine our model parameters and then compared the model pre 
dictions with the remaining 24 min of FC and pathogen 
concentration data from (Luo and et al., 2012). To determine the 
parameters bC, r1, a, and bLW, we used data from the first 12 min of 
the experiment in (Luo and et al., 2012). In particular, we used the 
subroutine ‘fminsearch’ in MATLAB to minimize the least square 
error for the parameter fits. This procedure yielded the follow 
values: first using equations (1) and (2), we calculated bC 5.26 � 10�4 

and r1 13.08, RSME of 2.6 and then using the resulting FC levels, we 
ran the optimization with equations (3) and
(4) to obtain bLW 0.74 and a 0.50, with weighted root mean 
square error (RMSE) of 0.63.

To use our model against the remaining 24 min of data coming 
from (Luo and et al., 2012), we needed values for r2 and r3, the 
effective addition rates of FC following doses 2 and 3 respectively. 
Since these values are dependent on the physical addition of 
chlorine to the process water, we used equation (2) and only the FC 
data at 12 and 14 min as well as 24 and 26 min coming from (Luo 
and et al., 2012) (i.e. data from the dosing periods). We found

that r2 7.18 and r3 5.01 (calculations not shown).
Fig. 4 shows the model predictions against the data for the 

remaining 24 min (note that the model fit and data from the first 12 
min are included as the model was run for the full 36 min). The 
scaled RSME (in order to equally weight the residuals) for predicted 
vs observed C, XW and XL was approximately 3.3. Fig. 4(a) shows that 
the model nicely captures the mechanisms for FC dynamics. 
However, two points are worth noting. First, the depletion of FC 
from 2 to 10 min of data indicates a variation from exponential 
decay, as assumed by the model. This may have to do with the fact 
that the FC was not yet thoroughly mixed throughout the process 
water. Our model fit overmatched the data from about 7 to 12 min 
and this translated into the under matching of the model fit in  Fig. 
4(b). That is, the E. coli level in the water at 12 min was pre dicted to 
be slightly lower than observed.

The second aspect concerns the FC level during the 34e36 min 
time span. Fig. 4(a) shows that the predicted FC level was lower than 
the corresponding data. This is curious as the data indicated that the 
FC level increased even though there was no external dosing. 
Although our model described the rest of the dynamics of the 
pathogen levels quite well (Fig. 4(b) and (c)), the model pre diction 
under matched the observed FC level during the 34e36 min 
interval, which was a major contributor to the RSME. From an 
experimental view, it is not entirely clear what conditions affected 
these final two data points.

Table 2 offers a comparison between parameters fit from the  first 
12 min of data from (Luo and et al., 2012) and parameters fit from the 
full data set. Notice that the two sets of values are very similar, 
indicating that model has predictive value and describes the main 
mechanisms quite well. The largest discrepancies concern a and bLW. 
Table 2 shows that a is lower when fit to the first 12 min of data. As 
above, this is most likely due to the fact that thorough mixing of the 
FC had not yet occurred in the wash water. In terms of 
bLW, data for XL (the pathogen level on the lettuce) at time 24 min as 
well as 34e36 min are lower than might be expected (Fig. 4(c)). 
These points have the effect of lowering the value of bLW when using 
the full data set for fitting. As the values of the parameters did not 
significantly differ when we used data points up to the first 12min, 
we did  not try  to fit the data using more time values, say up to the 
first 24 min, and then try to make predictions with our model.

Quantitative microbial risk assessment (QMRA)

In terms of controlling cross contamination during processing 
of fresh produce, intervention strategies ideally need to be 
informed by both pathogen prevalence and concentration at

Table 1
List of parameters and their values. All the values were obtained using data from (Luo and et al., 2012) except lc, which was obtained from (Hua and et al., 
1999).
Type Parameter Description Values & units

From (Luo and et al., 2012) c1
s

V
N1

t

t0
q

Calculated L
lc
bWS

k0
Model fit bc

Reciprocal of average wash time 
Pathogen level on spinach
Volume of wash tank
Incoming rate of produce
Chlorine dosing period
Duration of dose
Ratio of spinach to lettuce
Amount of lettuce in wash tank 
Natural decay rate of FC
Effective pathogen rate entering water 
COD increase rate
Depletion rate of FC in wash water

r1
r2
r3

Add. rate of FC at dose 1 
Add. rate of FC at dose 2 
Add. rate of FC at dose 3

А
bLW

Inactivation rate of pathogen via FC 
Pathogen binding rate: water to lettuce

2.3/min
104.9 MPN/g
3.2 � 106 ml
45,000 g/min
12 min
2 min
0.2%
19,526 g
1.7 � 10 3/min
1.95 MPN/(ml min) 
32.3 mg/(L min)
5.38 � 10 4 L/(mg min) 
12.75 mg/(ml (min)2) 
7.47 mg/(ml (min)2) 
5.56 mg/(ml (min)2) 
0.75 L/(mg min)
0.38 ml/(g min)
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various stages. Typically, stochastic/agent based models have been 
employed to address these concerns, quantifying risk over a variety 
of factors. For instance, the FDA has developed models such as FDA 
iRisk and QPRAM (Quantitative Produce Risk Assessment Model) 
(https://irisk.foodrisk.or and Febr 19, 2015). iRisk is a freely avail 
able, web based, risk modeling tool that can address local 
risk questions at the farm level as well as larger scale issues at 
the supply chain level, tracing risk from farm to fork. QPRAM is 
an agent based model that focuses on the risk levels at a 
particular farm or processing facility. 

While these models are promising, parameters at some key 
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Fig. 2. Time plots of (a) E. coli levels in the water, and (b) E. roli levels in the lettuce, 
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model described in equation ( s i  and the x values are the data points from {Luo and 
et al, 2012). There is no chang,e in the free chlorine when we remove the last two 
data points . 

steps are either unknown or loosely estimated. Therefore, the risk 
outputs from these models may lack sufficient confidence. This is 
where mechanistic modeling can provide significant information. 
By elucidating the mechanisms of cross contamination dynamics at 
focused spatial/temporal hubs in the supply chain, these models 
can narrow specific parameters of the larger scale risk models. For 
instance, in (Rodriguez and et al., 2011), a stochastic model for 
cross contamination of Escherichia coli 0157:H7 during lettuce 
processing was developed to understand the prevalence and con 
centration of £ coli in bags of post processed fresh cut lettuce. 
Transfer coefficients describing the pathogen transfer for various 
scenarios involving produce, equipment and process water were 
estimated by fitting probability distributions to relevant data, 
providing the backbone of the model. 

At the decontamination step, however, the chlorine concentra 
tion was assumed constant during a full day of production 
(Rodriguez and et al., 2011). In light of the aforementioned dis 
cussion concerning the depletion of FC via the organic load, it 
seems important to use pathogen transfer coefficients during the 
produce wash that reflect these dynamics. This is where our model 
could play a vital role. By using data from (Buchholz and et al., 
2012a; Buchholz and et al., 2012b), for instance, f:Jw s  could be 
adjusted to reflect various levels of pathogen entering the wash 
tank. Then, tuning the parameters of our model to fit the details of 
the particular wash procedure (such as wash time, produce wash 
rate, volume of the wash tank, etc.) our model outputs could be 



20 i ,., 15 
.§ 
a 10 

£ 5 

(a) 
10 

10 

(b) 
10 

20 30 40 
Time (minutes) 

20 30 40 
Time (minutes) 

50 60 

50 60 

2 . 5 - - - - - - - - - - - - - - - - -   

2 

0.5 

(c) 
10 20 30 40 

Time (minutes) 
50 60 

Fig. 3.  Simulations over time of(a) free chlorine levels, (b) E. roli levels in the water, 
and (c) E.coli levels in the lettuce b y  numerically solving for the variables described in 
equation (5 i after two additional chlorine dosing  les. 

used to calculate pathogen transfer. As an example of this, Fig. 5( a) 
and (b) compares our model predictions for E. coli levels in the 
water and on the lettuce exiting the wash tank, linked to two 
different shed rates of  say, for example, 0.25 MPN/(ml min) of 
pathogens into the water and 2.5 MPN/(ml min) of pathogens into 
the water. We have chosen values for Pws which differ by an order 
of magnitude in order to illustrate the sensitivity of the model to 
this shed rate. Note that all other parameters are fixed with values 
listed in Table 2. The advantage here is two fold: first, the transfer 
coefficients associated to the wash step would have a mechanistic 
basis and second, our model could allow for easy and economic 
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Fig. 4.  Time plots of (a) Free chlorine levels, (b) E.coli levels in the water, and (c) E.coli 
levels on the lettuce. The solid tine is the model, described in equation (5), fit (for the 
first 12 min) and then the model prediction (for the last 24 min) and the x values are 
the data points from (Luo and et al, 2012). 

testing (as opposed to extensive experiments) to determine how 
significantly the organic load affects the contamination results 
within the larger stochastic model. 

Conclusions 

This study is an initial step towards understanding and quan 
tifying the underlying mechanisms involved in commercial scale 
washing of fresh cut produce. We constructed a mathematical 
model that is able to continuously describe the dynamics of  water 



lllble 2 
Comparison of the parameters of the model from fits using the first 12 min of data(column 2), and the full data set(column 3) from (Luo and et al., 2012). Units for the 
various parameters are the same as in Table 1. 

Parameter 

·-·-·Pws = 0.25  
15 -  P w s  =2.5

5 

00 10 

Description 

Depletion rate of FC in wash water 
Add. rate of R: at dose 1 
Add. rate of R: at dose 2 
Add. rate of R: at dose 3 
Inactivation rate of pathogen via R: 
Pathogen binding rate: water to lettuce 
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Fig. 5. Simulations of (a) E. roli levels in the water, and (b) E. roli levels in the lettuce 
after numerically solving the rates described in equation ( 5) using Pws 025 MPN/( mL 
min) (dashed lines) and Pws 2.5 MPN/(mL min) (solid lines). All other parameter 
values are as in Table 2. The free chlorine levels are the same as in Fig. 1. 

chemistry and pathogen cross contamination during the wash 
procedure outlined in (Luo and et al., 2012). The highlights of our 
model are its simplicity, its ability to capture most of the mecha 
nisms that account for FC fluctuation and pathogen transfer during 
fresh produce washing, and as discussed in Section 3.4, its ability to 
predict the dynamics of the FC and pathogen levels. We also have 
shown that our model can serve as a benchmark to help compare 
decontamination experiments at different scales as well as identify 

Fit to first 12 min data set 

526 X 10 4 
13.08 

7.18 
5.01 
0.50 
0.74 

Fit to 36 min data set 

5.38 X 10 4 
12.75 

7.47 
5.56 
0.75 
0.38 

particular assumptions that can inform streamlined future experi 
ments. In addition, coupled with stochastic QMRA models, our 
mechanistic modeling regime can provide a foothold toward a 
more standardized approach for food safety and the evaluation of 
intervention strategies. Finally, we expect that our model frame 
work, that is, our mechanistic description of FC depletion and 
pathogen transfer, can be used to understand cross contamination 
during wash procedures that involve other produce/pathogen pairs. 
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