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A remark on estimating the mean of a normal distribution with
known coefficient of variation

Rasul A. Khan

Let X1, X2, . . . , Xn be iid N(μ, aμ2) (a > 0) random variables with an unknown mean μ > 0 and known
coefficient of variation (CV)

√
a. The estimation of μ is revisited and it is shown that a modified version

of an unbiased estimator of μ [cf. Khan RA. A note on estimating the mean of a normal distribution
with known CV. J Am Stat Assoc. 1968;63:1039–1041] is more efficient. A certain linear minimum mean
square estimator of Gleser and Healy [Estimating the mean of a normal distribution with known CV. J
Am Stat Assoc. 1976;71:977–981] is also modified and improved. These improved estimators are being
compared with the maximum likelihood estimator under squared-error loss function. Based on asymptotic
consideration, a large sample confidence interval is also mentioned.

Keywords: coefficient of variation; linear; maximum likelihood estimator; minimum squared-error;
normal; unbiased; efficiency

Introduction

Let X1, X2, . . . , Xn be iid N(μ, σ 2) random variables with an unknown mean μ and unknown
variance σ 2. There are several examples of practical problems in which the coefficient of variation
(CV) σ/μ has a known constant value (see [1–3]). The problem of estimating μ was discussed
by the author (cf. [4]) when the CV is known, and a certain linear unbiased (LU) estimator was
explored. But there is a lacuna in the given estimator by Khan or linear minimum mean square
(LMMS) estimator given by Gleser and Healy.[2] This will be clarified a bit more in the sequel.
Therefore, the main reason for revisiting this problem is to find some more efficient estimators,
and compare them with the maximum likelihood estimator (MLE).

Before pointing out the deficiencies in LU and LMMS estimators, and finding their improved
competitors, we make the following observation which is the main reason for revisiting this
problem. Since we are assuming that the CV (σ/μ) is known, this implies that the sign of μ is also
known. Therefore, there is no loss of generality in assuming that μ > 0 and σ = μ

√
a, where a is

a known positive constant. Thus X1, X2, . . . , Xn (n ≥ 2) are iid N(μ, aμ2) random variables, and
it is of interest to find an efficient estimator of μ. Let

T∗
1 = X̄ = X1 + · · · + Xn

n
, S2 = n−1

n∑
1

(Xi − X̄)2, T2 = cnS, (1)

where cn = √
n�((n − 1)/2)/

√
2a�(n/2).



For some discussions in the sequel it is useful to define the squared-error loss function for the
estimator μ̂ by

L(μ̂, μ) = (μ̂ − μ)2. (2)

It is known [4] that ET∗
1 = ET2 = μ. Moreover, it is also known that although (X̄, S) continues

to be minimal sufficient, but it is not complete. Hence a unique UMVU (uniformly minimum
variance unbiased) estimator of μ cannot be found (see [5]). However, still the problem remains
to find a good and efficient estimator of μ.

Khan [4] considered a class of unbiased estimators linear in T∗
1 and T2 (to be designated as

LU), and found the one with the minimum variance. That is, among all estimators of the form
αT∗

1 + (1 − α)T2, the best one was found, and was compared with the MLE for its asymptotic
efficiency. It was shown that both estimators are best asymptotically normal (BAN). Gleser and
Healy [2] considered the class C of estimators linear in T∗

1 and T2 of the form c1T∗
1 + c2T2

but not necessarily unbiased, and found the one with uniformly minimum mean squared-error
(LMMS). However, despite the fact that these have minimum risk and are BAN estimators, both
(LU and LMMS) have the flaw of being possibly negative with positive probability for estimating
a positive parameter. In fact, both are inadmissible under squared-error loss (2) (inadmissibility
of LMMS was pointed out by Gleser and Healy [2]) as is easily seen by comparing the risks of
these estimators with their positive parts. The use of the positive part does not really remedy the
situation. In case the positive part is zero, it cannot be used as an estimate of μ > 0.

Gleser and Healy [2] have noted that μ is a scale parameter, and all the estimators considered
(LU, LMMS and MLE) are scale equivariant. Motivated by this observation, they obtained the
minimum risk scale equivariant estimator. However, the estimator may be difficult to use due to
its inherent complexity. Besides the difficulty of using the estimator, it is not even known how
much reduction in risk is achieved in comparison to LU, LMMS or MLE. In fact, the associated
risk of the scale equivariant estimator is completely intractable, and the risk reduction in its use
cannot be determined. The Bayes estimator has similar drawback, and no favourable argument
can be made when its use has the same computational difficulty. Therefore, the best competing
estimators are LU, LMMS, and the MLE because of their known properties and the evaluation of
exact risks. Consequently, the purpose of this note is to modify the LU and LMMS estimators to
make them more efficient, and make numerical comparisons of their risks with the MLE. Based
on the modified LU estimator, a large sample confidence interval for μ is also described.

The main result

Recall from Equation (1) the usual unbiased estimators X̄ and cnS of μ as

T∗
1 = X̄ , T2 = cnS, cn =

√
n�((n − 1)/2)√

2a�(n/2)
.

Also, define

V∗
1 = a

n
, V2 = a(n − 1)

n
c2

n − 1 = (n − 1)

2

�2((n − 1)/2)

�2(n/2)
− 1. (3)

It is known [4] that

ET∗
1 = ET2 = μ, σ 2

T∗
1

= μ2V∗
1 , σ 2

T2
= μ2V2.



Using the definitions in Equation (3), let

d = αT∗
1 + (1 − α)T2, α = V2

V∗
1 + V2

. (4)

It has been shown in [4] that d is the best LU estimator of μ, and its minimum variance is

σ 2
d = μ2V∗

1 V2

V∗
1 + V2

. (5)

Now we will modify this and the LMMS estimator to improve their efficiencies. Let T1 = β|X̄|
with a suitable β > 0. It is easy to verify that

E|X̄| = μ

(
2�

(√
n

a

)
− 1 +

√
2a

nπ
exp

(
− n

2a

))
,

where �(·) is the standard normal distribution function. Let the normal density function be
φ(x) = exp(−x2/2)/

√
2π and λ = λn = √

n/a (for notational simplicity we may suppress the
dependence of λ or β on n), and define

β = βn = β(λn) = 1

2�(λ) − 1 + (2/λ)φ(λ)
. (6)

This choice of β gives ET1 = μ. Moreover, it is easy to see that

σ 2
T1

= μ2V1, where V1 = (β2
n − 1) + aβ2

n

n
. (7)

For later use, we observe the asymptotic behaviour of βn and V1 as n → ∞. Recall the definition
of βn by Equation (6) where λn = √

n/a. It is obvious from Equation (6) that βn → 1 as n → ∞.
However, using the fact that n(1 − �(

√
n/a)) → 0 as n → ∞, it can be verified that n(β2

n − 1) →
0 as n → ∞. Consequently, it follows from Equation (7) that nV1 → a as n → ∞.

Now consider the class of unbiased estimators defined by

d∗ = cT1 + (1 − c)T2, 0 ≤ c ≤ 1.

Since σ 2
T2

= μ2V2, using Equations (3) and (7) we have

σ 2
d∗ = μ2(c2V1 + (1 − c)2V2),

and it is minimized by choosing c = V2/(V1 + V2), and the minimum variance is

σ 2
d∗ = μ2V1V2

V1 + V2
. (8)

Thus d∗ is the modified best unbiased estimator of μ which is linear in |X̄| and S. We will now
show that d∗ uniformly dominates d defined by Equation (4). To this end, we first show that
β(λ) < 1 for every λ > 0 and all n. Let

F(λ) = 2�(λ) − 1 + 2

λ
φ(λ), then β(λ) = 1

F(λ)
.

Clearly,

F ′(λ) = − 2

λ2
φ(λ) and β ′(λ) = 2φ(λ)

(λF(λ))2
> 0.



Thus β(λ) is increasing in λ > 0, and since limλ→∞ β(λ) = 1, hence β(λ) < 1 for every λ > 0.
Consequently, V1 < V∗

1 , where V∗
1 and V1 are defined by Equations (3) and (7). Now going back

to Equation (8) we see that

σ 2
d∗ = μ2g(V1), g(V1) = V1V2

V1 + V2
.

Since g′(V1) = (V2/(V1 + V2))
2 > 0, g(V1) is increasing in V1, and we conclude that g(V1) <

g(V∗
1 ). Thus, it follows from Equations (5) and (8) that σ 2

d∗ < σ 2
d uniformly in μ. It should also

be emphasized that d∗ continues to be BAN for the same reasons as given in [4] combined with
the earlier noted fact that nσ 2

T1
→ aμ2 as n → ∞.

Now we will provide a modified version of the minimum mean squared-error estimator of
Gleser and Healy.[2] Let T1 and T2 be as before and consider the class of estimators of the form
c1T1 + c2T2 (i.e. linear in T1 and T2 but not necessarily unbiased). It follows from Lemma 2.1 in
[2, p.978] that the best linear estimator being considered here is given by

T = c∗
1T1 + c∗

2T2, where c∗
1 = V2

V1 + V2 + V1V2
, c∗

2 = V1

V1 + V2 + V1V2
.

The associated minimum risk is given by

R(T , μ) = μ2g1(V1) = μ2

(
V1V2

V1 + V2 + V1V2

)
. (9)

Since g′
1(V1) = (V2/(V1 + V2 + V1V2))

2 > 0, hence g1(V1) is increasing and g1(V1) < g1(V∗
1 ),

where V∗
1 has been defined in Equation (3). Thus, it follows that T is uniformly better than μ̂LMMS

of Gleser and Healy [2, see Equation (2.6), p.978].

Remark The estimators d∗ and T are scale equivariant, and like d∗, T is also BAN estimator.

Now we will compare the modified best unbiased estimator d∗, the modified best LMMS T
and the MLE estimator in terms of their risks under squared-error loss for some values of (a, n).
For the sake of completeness, we will describe the associated risk of the MLE. To this end, we
note that the MLE as given in [4, p.1041] or [2, p.978] is

μ̂ = −X̄ +
√

4aS2 + (1 + 4a)X̄2

2a
.

To describe the associated risk let m = n − 1 and define

f (u, v) = 1√
2π2m/2�(m/2)

vm/2−1 exp

(
−u2 + v

2

)
.

It should be noted that f (u, v) is the product of the standard normal density and the gamma density
functions. Clearly, the associated risk is R(μ̂) = R(μ̂, μ) = E(μ̂ − μ)2. Now write the expecta-
tion with respect to the distributions of X̄ as normal N(μ, aμ2/n) and nS2/aμ2 as χ2(n − 1), it
can be simplified as follows. Let σ 2 = aμ2, v = (nS2/σ 2) and K = √

n/2πσ 2(1/2m/2�(m/2)).



Table 1. Risks of d∗, T and μ̂.

a = 1 a = 2

n R1(d∗) R2(T) R3(μ̂) R1(d∗) R2(T) R3(μ̂)

4 0.1001 0.0910 0.0843 0.1191 0.1064 0.0994
9 0.0406 0.0391 0.0373 0.0492 0.0469 0.0444
16 0.0219 0.0215 0.0209 0.0266 0.0259 0.0250
25 0.0138 0.0136 0.0134 0.0167 0.0164 0.0160

Also, let

Q(x, v) =
(

−x + √
(4aσ 2v/n) + (1 + 4a)x2

2a
− μ

)2

.

Then, it follows that

R(μ̂) = K
∫ ∞

0

∫ ∞

−∞
Q(x, v)vm/2−1 exp

(
− n

2σ 2
(x − μ)2 + v

2

)
dx dv.

Making the substitution u = √
n/σ 2(x − μ) one verifies that

R(μ̂) = μ2

4a2

∫ ∞

0

∫ ∞

−∞
g(u, v)f (u, v) du dv, (10)

where f (u, v) has been defined above and

g(u, v) =
⎛
⎝

√(
4a2

n

)
v + (1 + 4a)

(
1 + u

√(a

n

))
−

(
1 + u

√(a

n

))
− 2a

⎞
⎠

2

.

Unfortunately, R(μ̂) in Equation (10) cannot be evaluated explicitly. Therefore, its numerical
computation uses Maple software. Now we will compare these competing estimators numerically
in terms of their risks for certain values of (n, a). However, since μ2 is a multiplying factor in all
three risks, we simply compare the risks divided by μ2. Thus we use the following abbreviated
notations. Let R1(d∗

1 ) = μ−2σ 2
d∗ , R2(T) = μ−2R(T , μ) and R3(μ̂) = μ−2R(μ̂) (defined by (10))

be the risks of the modified best LU, the modified best LMMS and the MLE, respectively. Table 1
gives the values of these risks for certain values of n and a = 1, 2.

Conclusions

The calculations show that the differences in the three risks are very minor. All the risks are practi-
cally the same for almost all n. All three estimators enjoy the same asymptotic properties although
d∗ has the advantage of being unbiased. As far as scale equivariant estimator or Bayes estimator
in [2, p.979] is concerned, both have the drawback of computational difficulty. These cannot be
implemented easily even with the aid of a computer. Moreover, it is practically impossible to find
the associated risk, and the ensuing reduction cannot be assessed. The suspicion is that neither will
have any significant reduction in risk. An infinitesimal risk reduction will certainly undermine the
complex task of using any of these estimators. As far as the modified LU, LMMS and the MLE
are concerned, one can use any of these depending on one’s preference. Thus d∗, T or the MLE
are all the best alternatives.



We conclude by a brief discussion of a confidence interval for μ. It can be easily verified that the
distribution of d∗/μ is independent of μ. However, an exact distribution of d∗/μ in a closed and
numerically useable form is not possible for obvious reasons. The best one can do is an infinite
series distribution involving incomplete gamma functions. Therefore, we only consider a large
sample approximate confidence interval based on d∗. In what follows we let �(k) = 1 − 1

2γ ,
0 < γ < 1. Since d∗ is BAN, we have

√
n(1 + 2a)(d∗ − μ)

μ
√

a
D→ N(0, 1) as n → ∞.

Hence, a large sample approximate (1 − γ )100% confidence interval for μ has its lower and
upper bounds as

L = d∗

1 + k
√

a/n(1 + 2a)
, U = d∗

1 − k
√

a/n(1 + 2a)
.

Finally, we close the discussion by a remark that one can use either LMMS (T ) or the MLE in
the above bounds as these estimators have exactly the same asymptotic distribution.
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