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A REMARK ON THE GLOBAL DYNAMICS OF COMPETITIVE

SYSTEMS ON ORDERED BANACH SPACES

KING-YEUNG LAM AND DANIEL MUNTHER

Abstract. A well-known result in [Hsu-Smith-Waltman, Trans. AMS (1996)]

states that in a competitive semiflow defined on X+ = X+
1 ×X+

2 , the product
of two cones in respective Banach spaces, if (u∗, 0) and (0, v∗) are the global

attractors in X+
1 × {0} and {0} ×X+

2 respectively, then one of the following

three outcomes is possible for the two competitors: either there is at least

one coexistence steady state, or one of (u∗, 0), (0, v∗) attracts all trajectories
initiating in the order interval I = [0, u∗] × [0, v∗]. However, it was demon-

strated by an example that in some cases neither (u∗, 0) nor (0, v∗) is globally

asymptotically stable if we broaden our scope to all of X+. In this paper,
we give two sufficient conditions that guarantee, in the absence of coexistence

steady states, the global asymptotic stability of one of (u∗, 0) or (0, v∗) among

all trajectories in X+. Namely, one of (u∗, 0) or (0, v∗) is (i) linearly unsta-
ble, or (ii) is linearly neutrally stable but zero is a simple eigenvalue. Our

results complement the counter example mentioned in the above paper as well

as applications that frequently arise in practice.

Introduction

It is well-known [6] that if there are two steady states wi (i = 1, 2) of a monotone
semiflow in a Banach space with an ordered cone, so that w1 < w2, and if there are
no other steady states lying within the order interval

[w1, w2] := {w : w1 ≤ w ≤ w2},

then one of the steady states wi is unstable, and the remaining one attracts all
trajectories initiating in [w1, w2]\{w1, w2}. The theorem is extended to competitive
systems in [8], where they generalized the result to allow the existence of a repelling
(trivial) equilibrium on the boundary of the order interval. We state their results
more precisely in the following setting. Let X = X1 × X2, X+ = X+

1 × X+
2 ,

and K = X+
1 × (−X+

2 ). X+ is a cone in X with nonempty interior given by
IntX+ = IntX+

1 × IntX+
2 . It generates the order relations ≤, <,� in the usual

way. In particular, if w = (u, v) and w̄ = (ū, v̄), then w ≤ w̄ if and only if u ≤ ū
and v ≤ v̄. For the study of competitive systems, the more important cone is K
which also has nonempty interior given by IntK = IntX+

1 × (−IntX+
2 ). The cone



K generates the partial order relations ≤K , <K ,�K . In this case

w ≤K w̄ ⇔ u ≤ ū and v̄ ≤ v.
A similar statement holds with �K replacing ≤K and � replacing ≤. Consider

(1.1)

{
du
dt = A1u+ f(u, v)
dv
dt = A2v + g(u, v)

where Ai are sectorial operators on Xi (i = 1, 2) respectively; f : X1×X2 → X1 and
g : X1 ×X2 → X2 are differentiable functions. We denote the continuous semiflow
generated by the above system by Tt. (See, e.g. [5, Ch. 3].) The semiflow properties
are (i) T0(u0, v0) = (u0, v0) for all (u0, v0) ∈ X+

1 ×X
+
2 , and (ii) Tt ◦ Ts = Tt+s for

t, s ≥ 0. Recall the following characterization of a competition system of two viable
species, i.e. ones which persist in the absence of competition, that was given in [8].

(H1): T is strictly order-preserving with respect to <K . That is, w <K w̄
implies Tt(w) <K Tt(w̄). For each t > 0, Tt : X+ → X+ is order compact.

(H2): Tt(0) = 0 for all t ≥ 0 and 0 is a repelling equilibrium, i.e. there
exists a neighborhood U of (0, 0) in X+ such that for each (u0, v0) ∈ U ,
(u0, v0) 6= 0, there is a t0 > 0 such that Tt0(u0, v0) 6∈ U .

(H3): Tt(X
+
1 ×{0}) ⊂ X

+
1 ×{0} for all t ≥ 0. There exists u∗ � 0 such that

Tt((u
∗, 0)) = (u∗, 0) for all t ≥ 0, and Tt((u0, 0))→ (u∗, 0) as t→∞ for all

u0 6= 0. The symmetric conditions hold for T on {0}×X+
2 with equilibrium

point (0, v∗).
(H4): If (u0, v0) ∈ X+ satisfies u0 6= 0 and v0 6= 0, then Tt(u0, v0) � 0 for
t > 0. If w, w̄ ∈ X+ satisfy w <K w̄ and either w or w̄ belongs to IntX+,
then Tt(w)�K Tt(w̄) for t > 0.

Here we recall that order compactness means that for all u1 ∈ X+
1 and v1 ∈ X+

2 ,
Tt([0, u1]× [0, v1]) has compact closure. Also, as a consequence of (H3), we have

f(0, v) = 0 for all v ∈ X+
2 and g(u, 0) = 0 for all u ∈ X+

1 .

Theorem 1.1 ([8, Theorem B]). Let (H1)-(H4) hold. Then the omega limit set of
every orbit is contained in I, where

I = [(u∗, 0), (0, v∗)] = {(u0, v0) ∈ X : (u∗, 0) ≤K (u0, v0) ≤K (0, v∗)} .
If I has no other equilibrium than (u∗, 0) and (0, v∗), then exactly one of the of the
following holds.

(a): Tt(w)→ (u∗, 0) as t→∞ for every w = (u0, v0) ∈ I with u0, v0 6= 0.
(b): Tt(w)→ (0, v∗) as t→∞ for every w = (u0, v0) ∈ I with u0, v0 6= 0.

Finally, for all w = (u0, v0) ∈ X+ \ I and u0, v0 6= 0, either Tt(w) → (u∗, 0) or
Tt(w)→ (0, v∗) as t→∞.

As remarked in [8], the result may seem a bit unsatisfactory in the sense that one
do not conclude in case (a) (resp. (b)) that Tt(w)→ (u∗, 0) (resp. Tt(w)→ (0, v∗))
for all w = (u0, v0) ∈ X+ such that u0, v0 6= 0. In fact, the following example given
in [8] shows that neither (u∗, 0) nor (0, v∗) is globally asymptotically stable in X+,
i.e. case (a) of Theorem 1.1 may hold yet some open set of initial data outside I is
attracted to (0, v∗), instead of (u∗, 0). The example is the following planar system
in R2

+. {
u′ = u(1− u− v)
v′ = v(1− v − µu)3



where µ > 1. It is easy to verify that all positive solutions beginning in I =
[0, 1] × [0, 1] are attracted to (u∗, 0) = (1, 0) but that solutions starting at (u0, v0)
near (0, v∗) = (0, 1) and satisfying v0 > 1, 0 < u0 < (v0 − 1)2 are attracted to
(0, v∗) = (0, 1).

Actually, one can observe that in the above example, the unstable equilibrium
(0, v∗) = (0, 1) is linearly neutrally stable, and has a two-dimensional center man-
ifold. As we shall see, in a quite general setting, these are indeed crucial for the
unstable equilibrium to attract any trajectories starting in X+.

In this paper, we give two sufficient criteria for one of the semitrivial steady
states (u∗, 0), (0, v∗) to be globally asymptotically stable. We assume in addition
the following regularity of f and g:

(H5): For each t > 0, Tt : X+ → X+ is C1.

We define the linear operator L whose spectrum defines the linear stability of (0, v∗).

Definition 1.2. Define the linear operator L : D(A)×D(B)→ X by

(1.2) L

(
φ
ψ

)
:=

(
Aφ+ fu(0, v∗)[φ]

Bψ + gu(0, v∗)[φ] + gv(0, v
∗)[ψ]

)
We say that the semi-trivial steady state (0, v∗) is linearly unstable if L has a

positive eigenvalue λ which possesses an eigenvector (φ̂, ψ̂) ∈ IntK.

Our first main result states that if one of the semitrivial steady states, (u∗, 0)
or (0, v∗), is linearly unstable, then the other one must be globally asymptotically
stable in {(u, v) ∈ X+ : u0 6= 0 and v0 6= 0}.

Theorem 1.3. Suppose (H1) - (H5) hold, and

(i) (1.1) does not have any steady states in IntX+, and

(ii) (Linear Instability of (0, v∗)) L has a positive eigenvalue λ̂ with positive

eigenvector (φ̂, ψ̂) ∈ IntK.

Then for any (u0, v0) ∈ X+ so that u0 6= 0 and v0 6= 0,

Tt(u0, v0)→ (u∗, 0) as t→∞.

Our second result deals with the case when (0, v∗) is linearly neutrally stable.

Theorem 1.4. Suppose (H1) - (H5) hold, and

(i) (1.1) has no steady states in IntX+,
(ii) (Linear Neutral Stability of (0, v∗)) There exists constant β > 0 such that

σ(L) ⊆ {0} ∪ {z ∈ C : Re z < −β} and 0 is a simple eigenvalue of L with

eigenvector (φ̂, ψ̂) ∈ IntK.
(iii) Some trajectory starting in Int I does not converge to (0, v∗), where

I = [0, u∗]× [0, v∗] = {(u, v) ∈ X : 0 ≤ u ≤ u∗ and 0 ≤ v ≤ v∗}.
Then for any (u0, v0) ∈ X+ so that u0 6= 0 and v0 6= 0,

Tt(u0, v0)→ (u∗, 0) as t→∞.

Remark 1.5. (i) If we define the linear operator L̃ : D(A)→ X1 by

(1.3) L̃φ := Aφ+ fu(0, v∗)[φ],

and assume in addition that (0, v∗) is linearly stable as a steady state of
the restricted flow in {0}×X+

2 , then we see that (0, v∗) is linearly unstable



if and only if L̃ has a positive eigenvalue λ which possess an eigenvector

φ̂ ∈ IntX+
1 .

(ii) If (0, v∗) is linearly unstsable with positive eigenvalue λ and eigenvector

(φ̂, ψ̂), then for each t > 0, D(u,v)(Tt)(0, v
∗)[φ̂, ψ̂] = eλt(φ̂, ψ̂).

In the case that Tt is strongly monotone, then the principal eigenvalue λ of L is
always simple, with sup{Reλ′ : λ′ ∈ σ(L) \ {λ}} < λ and the principal eigenvector
(φ, ψ) may be chosen so that (φ, ψ) ∈ IntK [11], i.e. Theorem 1.3 or Theorem 1.4
is applicable. See, for instance, [2] for patch models, [3] for nonlocal operators, and
[1, 4, 9, 10] for reaction-diffusion models. In particular, for the system considered in
[10], both of the semi-trivial steady states, (u∗, 0) and (0, v∗), are linearly neutrally
stable, but the principal eigenvalue zero is simple in both cases.

This article presents global dynamical results in the absence of coexistence steady
states, i.e. when there are exactly three steady states. In general, the set of
quasiconvergent points (i.e. points whose omega limiting sets belong to the set of
steady states) is dense in strongly monotone dynamical systems. See [6] and also [7]
for some recent results concerning existence of asymptotically stable steady states in
analytic semiflows. In contrast to their results, which proves local stability of steady
states, our main effort in this paper is to characterize the local stable manifold of
the unstable steady state in C1 semiflows.

Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. By the assumptions and Remark 1.5(ii), there exist (φ̂, ψ̂) ∈
IntK and λ̂ > 0 such that

DT (0, v∗)[φ̂, ψ̂] = eλ̂(φ̂, ψ̂),

where T = T1 is the time-one map. Fix positive constants 1 < c1 < c2 < eλ̂. By
(H5), there exists ε0 > 0 such that for all (ũ, ṽ) in a neighborhood N of (0, v∗),

(2.1) DT (ũ, ṽ)[φ̂, ψ̂] ≥K c2(φ̂, ψ̂).

By Theorem 1.1 and the fact that (1.1) has no steady states in IntX+, any trajec-
tory starting in IntX+ converges either to (u∗, 0) or (0, v∗). Therefore, it suffices
to show that no trajectory starting in IntX+ converges to (0, v∗). Suppose to the
contrary that for some (u0, v0) ∈ IntX+, Tt(u0, v0)→ (0, v∗) as t→∞. Denote

(un, vn) = Tn(u0, v0),

and define, for each n ≥ 0,

εn = sup{ε > 0 : εφ̂ ≤ un},
then εn > 0 as un ∈ IntX+

1 for all n. Moreover, εn → 0 since (un, vn)→ (0, v∗).
We claim that

(2.2) εn+1 ≥ c1εn for all n sufficiently large.

Since c1 > 1, this contradicts the fact that un → 0. To prove (2.2), denote P1 :
X → X1 to be the projector operator, i.e. P1(u, v) = u for all (u, v) ∈ X. Then

un+1 = P1(T (un, vn)) ≥ P1(T (εnφ̂, vn))

= P1(T (εnφ̂, vn)− T (0, vn − εnψ̂)) by (H3),

= P1(DT (0, vn − εnψ̂)[εnφ̂, εnψ̂] + o(εn))



Since (0, vn − εnψ̂) → (0, v∗) as n → ∞, we conclude from (2.1) that for all n
sufficiently large,

un+1 ≥ c2εnφ̂+ o(εn) ≥ c1εnφ̂.
But this proves (2.2), from which we obtain εn →∞, which is a contradiction. �

Proof of Theorem 1.4. Again, by Theorem 1.1, it suffices to show that no tra-
jectory starting in IntX+ converges to (0, v∗). By (ii), there exists β > 0 such that
σ(L) ⊆ {0} ∪ {z ∈ C : Re z < −β}.

Claim 2.1. There exists ε3 > 0 such that if ‖(u0, v0)− (0, v∗)‖ < ε3, then

(2.3) ‖Tt(u0, v0)− (0, v∗)‖ ≤ O(e−βt/3)

implies u0 = 0. In which case Tt(u0, v0) ∈ {0} ×X+
2 for all t ≥ 0.

To see the claim, consider for δ ∈ [0, β/3) the semigroup T δt generated by the
following slightly more general problem

(2.4)

{
du
dt = Au+ f(u, v) + δu,
dv
dt = Bv + g(u, v).

We claim that the linear operator Lδ : D(A)×D(B)→ X defined by

Lδ
(
φ
ψ

)
:=

(
Aφ+ fu(0, v∗)[φ] + δφ

Bψ + gu(0, v∗)[φ] + gv(0, v
∗)[ψ]

)
whose spectrum (which determines the linear stability of (0, v∗)) satisfies

(2.5) σ(L̃δ) ⊆ {δ} ∪ {z ∈ C : Re z < −2β/3},

with δ being a simple eigenvalue of Lδ with positive eigenvector (φ̂,
ˆ̂
ψ) ∈ IntK,

where
ˆ̂
ψ is the unique solution of Bψ + gv(0, v

∗)[ψ]− δψ = gu(0, v∗)[φ̂]. Note that
ˆ̂
ψ is well-defined since (0, v∗) is stable with respect to the restricted flow in {0}×X+

2

by (H3), i.e. σ(B + gv(0, v
∗)) ⊂ {z ∈ C : Re z ≤ 0}. In other words, the simple

eigenvalue 0 of L becomes a simple eigenvalue δ of Lδ while the rest of the spectrum
is shifted in C at most by δ ∈ (0, β/3). Define the (β/3)−stable manifold of (0, v∗)
by

Sδβ/3 :=
{

(u0, v0) ∈ X+ : lim
t→∞

eβt/3‖T δt (u0, v0)− (0, v∗)‖ = 0
}
.

Then by the proof of Theorem 1.3, for any δ ∈ (0, β/3), Sδβ/3 ⊂ {(0, v0) : v0 ∈
X+

2 \ {0}.}. Moreover, Sδβ/3 depends continuously in δ ∈ [0, β/3) by the arguments

in the proof of [5, Theorem 5.2.1]. Precisely, write (u, v) = (0, v∗) + z, and (2.4) as

(2.6) zt = Lδz + F (z)

where F ′(0) = 0. By the arguments in the proof of [5, Theorem 5.2.1], for each
z0 ∈ Sδβ/3, the solution z(t) with initial condition z0 satisfies

(2.7) z(t) = eL
δ
2ta+

∫ t

0

eL
δ
2(t−s)E2F (z(s)) ds−

∫ ∞
t

eL
δ
1(t−s)E1F (z(s)) ds,

where a = E2z0, E1, E2 are the projections associated with the bounded spectral
set {δ} and σ(Lδ) \ {δ} respectively, and Lδi = EiL

δ (i = 1, 2) are the restriction of
Lδ to the invariant subspaces EiX (i = 1, 2). In fact, for each a ∈ E2X, ‖a‖ � 1,
the right-hand side of (2.7) defines a contraction map of the space of continuous
z : [0,∞) → X with supt>0 e

βt/3‖z(t)‖ ≤ ρ, for some small ρ. Therefore, locally



near (0, v∗), Sδβ/3 is in one-one correspondence with an open set in E2X containing

the origin i.e. for each such a ∈ E2X, there exists a unique z(t; a) satisfying (2.7)
such that E2z(0; a) = a. Since all the expressions depend on the parameter δ
continuously, we obtain the continuous dependence of Sδβ/3 on δ ∈ [0, β/3). Finally,

Claim 2.1 follows by letting δ → 0.
It is easy to see that S0β/3 is a subset of the stable manifold of {(0, v∗)}, which

we shall denote by S. We shall show now that actually S = S0β/3. Suppose to the

contrary that S0β/3 is a proper subset of S, then there exists (u0, v0) ∈ X+ such

that u0 6= 0 and Tt(u0, v0) → (0, v∗). We may assume without loss of generality
that ‖(u0, v0) − (0, v∗)‖ < ε3. Then by Claim 2.1, (2.3) must not hold. That is,
there exists ti →∞ such that

(2.8) ‖Tti(u0, v0)− (0, v∗)‖ ≥ e−βti/3.

On the other hand, by [5, Theorem 1.5.2], we may decompose

Tt(u0, v0)− (0, v∗) = ξ1(t)(φ̂, ψ̂) + ξ2(t),

where ξ1(t) ∈ R and ξ2(t) ∈ E2(X) (E2 being the spectral projection onto the
part of σ(L) ∩ {z ∈ C : Re z < −β}). By the proof of [5, Theorem 5.1.1], there
exists δ1 > 0 such that if |ξ1(t)| < δ1 for all t > 0, (which we may assume as
Tt(u0, v0)→ (0, v∗)) then

‖ξ2(t)‖ ≤ Ce−2βt/3 for all t.

Then (2.8) implies that for all large ti,

|ξ1(ti)| ≥
1

2
e−βti/3.

Hence along ti →∞, we have

‖ξ2(ti)‖
|ξ1(ti)|

→ 0,

whence

Tti(u0, v0)− (0, v∗) = ξ1(ti)

[
(φ̂, ψ̂) +

ξ2(ti)

ξ1(ti)

]
= ξ1(ti)

[
(φ̂, ψ̂) + o(1)

]
∈ IntK

for all large i. i.e. Tti(u0, v0) ∈ Int I for all large i. Now, the assumption (iii)
and Theorem 1.1 imply that (u∗, 0) attracts all trajectories in IntX+. Hence
Tt(u0, v0)→ (u∗, 0) as t→∞, a contradiction to the assumption that Tt(u0, v0)→
(0, v∗) as t→∞. �
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