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APPROXIMATION FOR THE EXPECTATION OF A
FUNCTION OF THE SAMPLE MEAN

RASUL A. KHAN

Let X̄n be the mean of a random sample of size n from a distribution with mean µ and variance σ 2. Under some con-
ditions it is shown that E f (X̄n) = f (µ)+ (σ 2/2n) f ′′(µ)+ O(n−2), and var( f (X̄n)) = (σ 2/n)( f ′(µ))2 + O(n−2),
where f is a continuous function with a suitable growth condition. This complements a result of Lehmann [(1991).
Theory of Point Estimation. Wadsworth, California] and Cramér [(1946). Mathematical Methods of Statistics. Prince-
ton University Press, Princeton, N.J.] for wider application. An illustrative example is given to show an application
where the usual approximations do not apply.

INTRODUCTION

Let X1, X2, . . . , Xn be iid random variables with mean µ and variance σ 2, and set X̄n =
(X1 + · · · + Xn)/n. Let A ⊂ R be an interval such that P(X1 ∈ A) = 1, and let f be a real
function on A. Quite often one needs to find an approximation for E f (X̄n) and var( f (X̄n)).
Assuming the existence of some higher moments of X1, Cramér (1946) and Lehmann (1991)
(see also Bickel et al., 2001, pp. 306–308) do provide such approximations under suitable
conditions on f . However, as we point out, these approximations do not apply in certain cases.
The usual approximation is given by Lehmann’s Theorem 5.1 (cf. Lehmann, 1991, p. 106;
Bickel et al., 2001, p. 308). It requires that the derivatives f (i)(x), 1 ≤ i ≤ 4, exist for all
x ∈ A and | f (4)(x)| ≤ M for all x ∈ A where M is a constant. Then under the assumption of
fourth moment, the result is:

E f (X̄n) = f (µ)+ σ 2

2n
f ′′(µ)+ O(n−2). (1)

A similar result is given for var( f (X̄n)).A stronger approximation under a weaker condition
on f is given by Cramér (1946). The approximations are the best possible under the given



conditions. However, the boundedness of the fourth derivative is the main reason why the
above approximation may not be applicable in certain cases of interest.As an example, suppose
that Xi is N(µ, 1), and let f (x) = ex . Then EeX̄n = exp(µ+ 1/2n), and Eq. (1) obviously
holds although Theorem 5.1 (cf. Lehmann, 1991, p. 106) cannot be applied. The result due
to Cramér (1946, pp. 353–355) is much stronger but is not applicable to our example due to
his second condition. In fact, Cramér’s second condition (Cramér, 1946, p. 354) applied to
f (X̄n) becomes | f (X̄n)| ≤ Cn p for some constant C and p > 0 for all the values of Xi s.
This condition is somewhat restrictive although it works for many examples. Consider again
the preceding normal example with the same function f (x) = ex . Let the observed values
of Xi be xi = 2i , 1 ≤ i ≤ n. Clearly, X̄n = 2(2n − 1)/n, and eX̄n ≥ 2n+1/n if n ≥ 3. Thus
|eX̄n | �≤ C n p for all the values of Xi s even though Eq. (1) holds. So even Cramér’s result may
not apply in certain cases. The object of this note is to obtain the existing results for a suitable
class of functions under the stronger assumption of moment generating function (m.g.f.). The
assumption of m.g.f. allows a larger class of functions with weaker conditions on f for which
Eq. (1) holds. The given result merely complements the usual approximations such as Eq. (1).
The required conditions do not improve Lehmann’s Theorem 5.1 or Cramér’s result when
applied to f (X̄n). Similar results are possible for some order statistics.

MAIN RESULT

In what follows, let F denote a class of continuous functions on A such that

| f (x)| = O(eα|x|) as |x | −→ ∞, for some α > 0. (2)

Obviously, bounded functions belong toFwithα = 0. Moreover, ifA is a closed finite interval,
then f is bounded and such functions belong to F with α = 0, and ‘as |x | → ∞’ becomes
unnecessary. In fact, bounded functions are in F for α ≥ 0. The following two lemmas are
needed in the sequel. The first lemma is due to Chernoff (1952, p. 495). Throughout the article
we use I to denote the usual indicator function.

LEMMA 1 (Chernoff) Let X1, X2, . . . , Xn be iid random variables with mean µ, and assume
that X1 has a finite m.g.f. φ(θ) for θ ∈ J containing zero. Then for any δ > 0 there exist
numbers ρ and ρ1(0 < ρ, ρ1 < 1) such that

P(X̄n − µ ≥ δ) ≤ ρn
1 and P(|X̄n − µ| ≥ δ) ≤ 2ρn .

LEMMA 2 Let f ∈ F , and let E | f (X̄n)| < ∞. Then under the conditions of Lemma 1:

E f (X̄n)I {|X̄n − µ| ≥ δ} = O(1)(ρn + ρn
1 ) = O(n−2).

Proof Since f ∈ F and Eq. (2) holds, there exists a large finite number N and a
constant C such that | f (x)| ≤ C exp(α|x |) ∀ |x | ≥ N . However, this implies that | f (x)| ≤
C exp(α|x |) ∀ |x − µ| ≥ N1 where N1 = N + |µ|. Let ω(y) = {y: δ ≤ |y − µ| ≤ N1} and
ω̄(y) = {y: |y − µ| > N1}. Clearly,

E f (X̄n)I {|X̄n − µ| ≥ δ} = E f (X̄n)I (ω(X̄n))+ E f (X̄n)I (ω̄(X̄n)). (3)

Since | f (X̄n)| ≤ M on ω(X̄n) for some constant M free of n, Lemma 1 implies

E | f (X̄n)|I (ω(X̄n)) ≤ MP(|X̄n − µ| ≥ δ) ≤ 2M ρn . (4)



Also, | f (X̄n)| ≤ C exp(α|X̄n |) on ω̄(X̄n), and we have

E | f (X̄n)|I (ω̄(X̄n)) ≤ CE exp(α|X̄n|)I (ω̄(X̄n)).

Moreover, Schwarz inequality gives

E exp(α|X̄n|)I (ω̄(X̄n)) ≤ (E exp(2α|X̄n |)P(|X̄n − µ| ≥ N1))
1/2. (5)

Since exp(2α|X̄n|) ≤ exp(2α X̄n)+ exp(−2α X̄n), and X1 has the m.g.f. φ(θ), we obtain

E exp(2α|X̄n|) ≤ φn

(
2α

n

)
+ φn

(−2α

n

)
.

It is easy to see that

φn

(
2α

n

)
+ φn

(−2α

n

)
→ exp(2αµ)+ exp(−2αµ) as n → ∞.

Hence E exp(2α|X̄n|) = O(1), and Eq. (5) gives

E exp(α|X̄n |)I (ω̄(X̄n)) ≤ √
O(1)ρn = O(1)ρn/2,

which, combined with Eqs. (3) and (4), proves the lemma. �

The main result is given by the following theorem.

THEOREM 1 Let X1, X2, . . . , Xn be iid random variables with mean µ and variance σ 2, and
assume that X1 has a finite m.g.f. Let f be a continuous function on A satisfying Eq. (2) (i.e.
f ∈ F ) whereA is an interval such that P(X1 ∈ A) = 1. Suppose that the first four derivatives
of f are continuous in (µ− δ, µ+ δ) for some δ > 0. Then

Ef (X̄n) = f (µ)+ σ 2

2n
f ′′(µ)+ O(n−2), (6)

and

var( f (X̄n)) = σ 2

n
( f ′(µ))2 + O(n−2). (7)

Proof We use primes for the first two derivatives, and use f (k)(µ) to denote the kth derivative
of f at µ with the convention that f (0)(µ) = f (µ). Let P(x) = ∑4

k=0((x − µ)k/k!) f (k)(µ)
be the Taylor polynomial, and consider the Taylor expansion of f in (µ+ δ, µ− δ) as

f (x) = P(x)+ (x − µ)4

4!
( f (4)(µ+ η(x − µ))− f (4)(µ)), 0 ≤ η ≤ 1,

= P(x)+ R(x).

It is well known that

E(X̄n − µ)3 = O(n−2) and E(X̄n − µ)4 = O(n−2),



and hence

EP(X̄n) = f (µ)+ σ 2

2n
f ′′(µ)+ O(n−2). (8)

Let 0 < δ1 < δ and set Tn = Ef (X̄n)I {|X̄n − µ| < δ1}. By Lemma 2 we have

Ef (X̄n) = Tn + Ef (X̄n)I {|X̄n − µ| ≥ δ1} = Tn + O(n−2). (9)

Clearly,

Tn = EP(X̄n)I {|X̄n − µ| < δ1} + ER(X̄n)I {|X̄n − µ| < δ1}
= EP(X̄n)− EP(X̄n)I {|X̄n − µ| ≥ δ1} + ER(X̄n)I {|X̄n − µ| < δ1}.

Since P(x) ∈ F , by Lemma 2 we have

Tn = EP(X̄n)+ O(n−2)+ ER(X̄n)I {|X̄n − µ| < δ1}. (10)

We now consider the remainder term. Let Zn = µ+ η(X̄n − µ), 0 ≤ η = ηn ≤ 1. Obvi-
ously, |X̄n − µ| < δ1 implies |X̄n − µ| ≤ δ1, and Zn is in the closed interval [µ− δ1, µ+ δ1].
Since f (4)(x) is continuous in [µ− δ1, µ+ δ1], hence φ(X̄n) = (1/4!)| f (4)(Zn)− f (4)(µ)|
remains bounded by some constant K . Thus we obtain

E |R(X̄n)|I {|X̄n − µ| < δ1} ≤ K E(X̄n − µ)4 = O(n−2).

This, combined with Eqs. (8)–(10), proves Eq. (6). Moreover, since var( f (X̄n)) = E f 2(X̄n)−
(E f (X̄n))

2, Eq. (6) applied to ψ(x) = f 2(x) leads to Eq. (7). �

Remark 1 In Theorem 1 it is not necessary to assume the existence and continuity of the first
four derivatives if one is content with a slightly weaker result. Suppose we assume that the
first two derivatives of f are continuous in (µ− δ, µ+ δ) for some δ > 0. Then repeating the
same proof with a second-order polynomial one can show that Eqs. (6) and (7) in Theorem 1
hold except that O(n−2) is to be replaced by o(n−1) which is implied by a refinement of the
preceding argument.

Remark 2 In general, the growth condition in the class F cannot be improved. To see this, let
X1, . . . , Xn be iidχ2 random variables with two degrees of freedom. Clearly, Sn = X1 + · · · +
Xn has an χ2-distribution with 2n degrees of freedom having density gn(x) = K xn−1e−x/2,
x ≥ 0, where K = 1/2n�(n). If f (x) = exα (α > 1), then

E f (X̄n) = K
∫ ∞

0
xn−1 exp

(
x(xα−1 − (1/2)nα)

nα

)
dx = +∞ ∀n ≥ 1.

Remark 3 Theorem 1 is complementary to the existing result of the type (1) under local
conditions but stronger assumption of the m.g.f. to gain a larger class of functionsF . However,
such an advantage would be lacking without it. For example, let X be a continuous random
variable with density f (x) = (8/(3π(1 + (x − µ)2)3),−∞ < x < ∞. It can be verified that
EX = µ, σ 2 = 1/3. In this case Theorem 1 does not apply due to lack of m.g.f. while the
approximation (1) still remains valid.

The following is an illustrative example where neither Lehmann’s nor Cramér’s theorem
applies.



Example 1 Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with mean
µ > 0. Let f (x) = √

x, x > 0, and X̄n = (X1 + · · · + Xn)/n. Since Lemmas 1 and 2 are
applicable to the Poisson distribution, and f = √

x ∈ F , Theorem 1 applies. It is easily verified
that

E
√

X̄n = √
µ− 1

8n
√
µ

+ O(n−2),

and

var(
√

X̄n) = 1

4n
+ O(n−2).

Cramér (1946, p. 358) considers s/x̄ as an estimator of σ/µ, the coefficient of variation
(CV) and he notes that his theorem does not apply for the normal distribution. Thus his
approximations for the mean and the variance of the estimator of the CV are based on the
positively truncated normal distribution with the added condition that σ/µ be fairly small. The
next example discusses this problem in the normal case.

Example 2 Let X1, X2, . . . , Xn be iid N(µ, σ 2) random variables, and let X̄n = (
∑n

1 Xi )/n
and s2

n = ∑n
1(Xi − X̄n)

2/(n − 1) be the respective unbiased estimates of µ and σ 2. Consider
estimation of the CV λ = σ/µ. It is natural to use sn/X̄n as an estimator of λ. Unfortunately,
E(sn/X̄n) does not exist even when µ �= 0. However, it is possible to modify the estimator
to overcome this deficiency. Suppose that the sign of µ is known, and therefore there is
no loss of generality in assuming that µ > 0. To modify the estimator, let αn = 1/n2 and

define λ̂ = sn/

√
(αn + X̄2

n). Let fn(x) = 1/
√
(αn + x2). Clearly, E λ̂ = Esn E fn(X̄n). It is well

known that

Esn = �(n/2)

�((n − 1)/2)

√
2

(n − 1)
σ.

Using the asymptotic expansion of gamma function it is easy to see that

Esn =
(

1 − 1

4n
+ O(n−2)

)
σ. (11)

Even though f depends on n through αn = 1/n2, it is easily seen that Theorem 1 is still
applicable, and

E fn(X̄n) = fn(µ)+ σ 2

2n
f ′′
n (µ)+ O(n−2).

Moreover, it can be verified that

E fn(X̄n) = 1

µ
+ σ 2

nµ3
+ O(n−2), (12)

and hence it follows from Eqs. (11) and (12) that

E λ̂ = σ

µ
+ n−1

(
σ 3

µ3
− σ

4µ

)
+ O(n−2).

Similarly, we have

E f 2
n (X̄n) = 1

µ2
+ 3σ 2

nµ4
+ O(n−2).



Since var(λ̂) = Es2
n E f 2

n (X̄n)− (E λ̂)2 = σ 2 E f 2
n (X̄n)− (E λ̂)2, we obtain

var(λ̂) = σ 4

nµ4
+ σ 2

2nµ2
+ O(n−2) = σ 2

2nµ2

(
1 + 2σ 2

µ2

)
+ O(n−2).

Thus

E λ̂
·= σ

µ
and var(λ̂)

·= σ 2

2nµ2

(
1 + 2σ 2

µ2

)
,

as noted by Cramér (1946, p. 358) for positively truncated normal sample under the condition
that σ/µ be fairly small. Of course, we have shown it for a normal distribution without the
restriction that σ/µ be fairly small.

Similar techniques can be used to obtain improved asymptotic approximations for functions
of order statistics as long as the exponential rates for tail probabilities are valid.This is illustrated
by the following example.

Example 3 Let X1, X2, . . . , Xn be iid random variables with uniform distribution on
(0, θ)(θ > 0), and let X(n) = max(X1, . . . , Xn). Then the probability density function of X(n)

is gn(x) = (n/θ)(x/θ)n−1, 0 < x < θ , and = 0, otherwise. If 0 < δ < θ , it is easy to see that
P(|X(n) − θ | ≥ δ) = (1 − (δ/θ))n = γ n . One can easily verify that

E(X(n) − θ) = − θ

n + 1
= −θ

n
+ θ

n2
+ O(n−3),

and

E(X(n) − θ)2 = 2θ2

(n + 1)(n + 2)
= 2θ2

n2
+ O(n−3).

Then using the above tail probability and under the same conditions on f as in Theorem 1, it
can be shown that

E f (X(n)) = f (θ)− θ

n
f ′(θ)+ 1

n2
(θ f ′(θ)+ θ2 f ′′(θ))+ O(n−3).

Similarly, var( f (X(n))) = (θ2/n2)( f ′(θ))2 + O(n−3).
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