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HEMOPROTEIN-MEDIATED ACTIVATION OF NITROALKANES 

LING LI 

ABSTRACT 

 

Chemicals and drugs are known to be metabolized mostly by Cytochrome P450 

xenobiotic metabolizing enzymes. However, the detailed mechanism of nitro-compounds 

metabolism is still unclear. The activation of nitro-xenobiotics by heme-P450 enzymes is 

a potential explanation for the origin of nitro-compound carcinogenesis. Investigating the 

interaction of simple nitro-compounds with redox activity of heme enzymes is therefore 

critical to explore the mechanism and products of activation. 

In this study, multiple analytical methods and instrumentations are employed and 

graphic and simulation software such as Origin® and Digisim® are utilized to 

quantitatively derive parameters from experimental raw data. This study shows that 

myoglobin, iron-protoporphyrin-IX (hemin), and the oxygenase domain of inducible 

nitric oxide synthase (iNOSoxy) act as efficient electrocatalysts for nitroalkane 

reductions in the surfactant films on pyrolytic graphite electrodes. 

In the study using myoglobin as a model electrocatalyst for the electroreduction of 

nitromethane, the catalytic activity is evaluated using Michaelis-Menten kinetics. The 

apparent Km and the turnover number kcat are derived from non-linear regression of 

Michaelis-Menten plot using Origin software. The reductive products of catalytic 

electroreduction of nitromethane are identified by a mass spectrometric method. We also 

identified a ferrous heme-nitrosomethane as the intermediate in the catalytic process 

using UV-Vis spectroscopy and electrochemical techniques. We show the 

 iv



electrochemical signature of a nitrosoalkane-heme complex that is possibly involved in 

the mechanism of activation of aliphatic nitro-compounds xenobiotics. A possible heme-

mediated electroreductive pathway is proposed. 

In this work, we also explored the comparative study of the electroreduction of 

nitromethane using myoglobin, hemin, and iNOSoxy as the electrocatalysts. We 

discussed the role of the protein shell in the activation process. We also studied four 

different aliphatic nitroalkanes as substrates to study their electro activation using hemin 

and iNOSoxy as electrocatalysts, and used a mass spectrometric method to identify the 

reduction products. By comparing the catalysis of each nitroalkane substrate and by 

varying experimental conditions such as scan rate of cyclic voltametry, substrate 

concentration, and pH, we discussed the effects caused by the physical and chemical 

properties of the substrates on their electrocatalytic reductions.  
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GENERAL INTRODUCTION 
 

Due to their widespread use, the human body is frequently exposed to nitro-

compounds. Nitroalkanes are recognized as carcinogens1, 2, genotoxicant,2, 3 and are 

suspected as cardiovascular toxins and neurotoxins.4-6 The detailed mechanism of 

nitroalkane-induced carcinogenesis is still unclear. It is believed that nitro-compound 

activation may take place in the liver, catalyzed by xenobiotic enzymes under anaerobic 

conditions through catalytic electron transfer.7, 8 Research has shown that cytochrome 

P450 participates in the reductive metabolism of nitro-compounds.9 It also has been 

reported that 2-nitropropane reductive metabolite, N-isopropylhydroxylamine (IPHA), 

frequently causes DNA damage at thymine.2 The formation of 8-hydroxydeoxyguanosine 

(8-OHdG) induced by IPHA is speculated to be involved in oxidative stress-related 

carcinogenesis.10 To better comprehend the carcinogenesis of nitro-compounds, it is 

important to understand the fundamental reductive pathways catalyzed by heme-base 

proteins and enzymes.  

Chemicals (including drugs) involve two-phase reactions in the metabolism. Phase I 

reactions are nonsynthetic reactions, including reduction, oxidation, and hydrolysis. 

Phase II reactions are known as conjugation reactions, and usually involve the 

interactions of the metabolites from phase I. This process usually detoxicates the 

chemicals. These reactions are catalyzed by a family of enzymes called xenobiotic 

metabolizing Cytochrome P450s. The metabolizing process will result in toxication or 

detoxication, also called activation and deactivation. The mechanisms of cytochrome 

P450 catalysis and inhibition have been the subject of intense studies in recent years. 11-14 

Carcinogen and mutagen activations which occur in phase I are closely related to the 
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activity of Cytochrome P450s. Therefore, Cytochrome P450s became vital enzymes for 

the study of the mechanism of formation of carcinogenic metabolites. 

Traditional methods of enzyme activity study include assays on initial rate, progress 

curve and transient kinetics through varying techniques such as spectrophotometric 

methods, light scattering methods, fluorometric methods, chemiluminescent methods, 

calorimetric methods, chromatographic methods, and radiometric methods. These 

methods can resolve enzyme mechanisms in concentration and time domain by 

measuring concentration change of substrate or product versus time, but little information 

can be obtained on the mechanism of catalytic reaction at the molecular level. 

Most commonly used analytical techniques in recent investigations of P450 enzymes 

and their activation of xenobiotic compounds or their metabolites are HPLC, UV-Vis, 

Mass Spectrometry, and Electrochemical methods. Electrochemical methods show the 

advantages of being quantitative, sensitive and relatively uncomplicated. 

Since more than 30% of enzymes are oxidoreductases including P450 heme enzymes, 

their activities involve electron transfer coupled with substrate transformation at the 

catalytic site that can be monitored electrochemically. This dynamic voltammetric 

approach obtains not only the kinetic information of enzymatic reactivity, but also the 

electrochemical potential, which defines the oxidation states and the rate of catalytic 

reaction. 

The voltammetric electrochemical method on biomolecules such as proteins showed 

its potential first in the late 1970’s when the direct (unmediated) voltammetry of 

cytochromes was obtained at solid electrodes.15 This approach was enhanced when 

enzymes or other molecules of interest are attached or absorbed on the electrode surface. 
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The techniques of immobilization includes covalent attachment, self assembled 

monolayers (SAM), and bilayer thin film methods or layer-by-layer assembly. The 

commonly used materials used for these applications as solid electrodes are platinum, 

gold, silver, or even indium doped tin oxide transparent electrodes. 

In our study, we use mostly the lipid bilayer thin film method. The catalysts or 

enzymes under investigation are embedded in a biomembrane-like surfactant bilayer 

structure on the surface of pyrolytic graphite electrode. The electrochemical studies of the 

enzymatic activity are combined with other analytical chemical techniques, such as 

spectrophotometric methods and mass spectrometric methods, in effort to understand the 

underlying mechanism of enzymatic or heme-based catalytic nitroalkane electroreduction. 

 3



 

 

 

 

 

 

CHAPTER I 

CURRENT METHODS OF INVESTIGATING THE METABOLISMS OF 

NITROCOMPOUNDS 

 

1.1 Introduction 

 

Nitroalkanes are widely used as solvents, chemical intermediates or fuel in racing 

cars or rockets. Large amounts of nitroalkanes are released into the environment and 

result in environmental contamination. Chronic intake of these compounds may cause 

neuropathy,4 DNA damage,2, 3 and cancer.16, 17  

As other xenobiotics, the metabolism of nitroalkanes is catalyzed by a superfamily of 

enzymes called Cytochrome P450s (CYPs). Human CYPs are mostly membrane-

associated enzymes, located either in the endoplasmic reticulum or in the inner 

membrane of mitochondria of cells, and some CYPs exit in cytosol as well. CYPs are in 

charge of metabolizing thousands of exogenous and endogenous compounds. Most CYPs 

can metabolize multiple substrates, and many can catalyze multiple reactions, which 

enable them to catalyze the transformation and degradation a large variety of molecules. 
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Cytochromes are proteins that carry a heme protoporphyrin IX group as their 

prosthetic group, Figure 1.1. The heme group is a highly conjugated ring with an iron 

atom in the center. The oxidation states of iron readily interconverts between +2 and +3 

through electron transfer. It can perform as either an electron source or an electron sink. 

This characteristic makes it capable to catalyze either oxidations or reductions.  

Cytochromes P450 serve crucial functions in humans. The subfamily that act as 

xenobiotic-metabolizing enzymes is a prime target in pharmacology and drug 

development.18. The name P450 comes from its characteristic Soret peak at 450 nm of the 

reduced carbon monoxide-bound complex19, 20. P450 enzymes catalyze the activation of a 

variety of xenobiotics including almost all drugs and chemicals. For example, P450 

enzymes metabolize organic nitrates, 21, 22 lauric acid and ethanol. 23 Cytochrome P450 

belongs to a multi-gene family; so far more than 6,400 distinct Cytochrome P450 

sequences are known from all variants of life, including mammals, plants, and even 

bacteria. There are 57 genes and 59 pseudogenes recognized so far coded for different 

Cytochrome P450s in the human genome. 
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Figure 1.1 Crystal Structure of human cytochrome P450 46A1 

Image from PDB 2Q9G 
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There is a structural diversity among Cytochrome P450s. Nonetheless, they share 

many common features: 1) Cytochrome P450s have a heme group as the active site. 2) 

The iron in the heme is coordinated to a cysteine thiolate ligand at the proximal site. This 

cysteine and many other peptides in the enzyme are highly conserved over all known 

Cytochrome P450s. 3) The catalytic function of cytochrome P450 needs other partner 

proteins such as Cytochrome P450 reductase or ferredoxins to donate and shuttle 

reducing equivalents (electrons) to the heme Fe(III) center.  

The mechanisms of cytochrome P450 catalysis and inhibition have been the subject 

of intense studies in recent years. 11-14 Carcinogen and mutagen activations which occur 

in phase I are closely related to the activity of Cytochrome P450s. Therefore, 

Cytochrome P450s became vital enzymes for the study of the mechanism of formation of 

carcinogenic metabolites. 

The general mechanism of the cytochrome P450 aerobic catalytic cycle is well 

known (Scheme 1.1). 24 It involves heme activation (Fe3+ reduces to Fe2+), oxygen 

binding and activation, and then hydroxylation of the substrate. 
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Scheme 1.1 Mechanism of Cytochrome P450 aerobic catalysis24 
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However, not all xenobiotics take the oxidative metabolic pathway. Some nitro-

compounds can be reductively activated by Cytochrome P450s.25 Nitroalkanes can either 

be reduced or oxidized by different enzymes. They could be oxidized by P450 enzymes 

under aerobic conditions initiated by electron transfer, and oxygen activation 7. They 

could also be reduced by Cytochrome P450s under anaerobic conditions through catalytic 

electron transfer. 7-9 The primary product of nitroalkane reduction is alkyl hydroxylamine 

26. Fitzpatrick’s group reported their work on a FAD-containing enzyme called 

nitroalkane oxidase from fungus, and stated that the oxidation products of nitroalkanes 

are aldehydes or ketones with nitrite and hydrogen peroxide as side products 27.  

Cytochrome P450s are responsible for the metabolism of almost all kinds of 

chemicals including drugs. The activation of drugs by P450s can either lead to non-toxic 

metabolites or cytotoxicants, genotoxicants, and carcinogens; hence, CYPs are key 

enzymes for studying the metabolism and potential toxicity of drugs. A number of 

investigations have been carried out to study the effects of nitro-compounds on animal 

models or human samples, and there are also reports of cases showing health problems 

caused by the exposure to these chemicals. The techniques that have been commonly 

used in the studies are the following including spectroscopic methods such as UV-Vis 

spectroscopy, infrared spectroscopy, high performance liquid chromatography (HPLC) 

coupled UV-Vis or mass spectroscopy (MS), biological techniques such as gel 

electrophoresis, comet assay (single cell electrophoresis), Ames mutagenicity test, and 

electrochemical methods which are primarily used in our study. 

UV-Vis spectroscopy has been commonly used to determine the concentration of 

protein samples, quantitatively measure the change of the reactive species, and monitor 

 9



the formation of new species. Because of its capability, this technique is constantly 

applied to the studies of cytochrome P450s catalyzed nitro-compound metabolism. 

H.G. Jonen used UV-Vis spectroscopic method to study the nitrofurantoin 

metabolism in rat liver under aerobic and anaerobic conditions.28, 29  His results showed 

that nitrofurantoin can be rapidly eliminated under anaerobic condition through a 

reductive metabolism. Under aerobic condition, the hepatic clearance of this chemical is 

slow. 4-hydroxylation of nitrofurantoin is catalyzed by 3-methylcholanthrene-inducible 

cytochrome P450. 

Mansuy’s group studied the interaction between hemoproteins including P450 

enzyme and nitroalkanes and their metabolites under reducing conditions, and found out 

that nitroalkanes and hemoproteins form stable ferrous heme nitrosoalkane complexes 

under reducing condition using UV-Vis spectroscopic methods30, 31. Also N-

hydroxylamines can react with Cytochrome P450 under oxidative condition to form the 

same type of complexes.32 

Christopher Kohl et al reported on the toxicity of the genotoxicant and 

hepacarcinogen, 2-nitropropane.33 The results showed that the nitro-aci tautomerism of 2-

nitropropane catalyzed by rodent or human liver cytosol might be the reason for its 

toxicity. The study of 1-nitropyrene activation catalyzed by Human Hepatoblastoma Cell 

Line was also reported by Kimberley J. Silvers et al. 34 Their HPLC results showed that 

only nitroreduction pathway of 1-nitropyrene by HepG2 could form the DNA adduct, N-

(2'-deoxyguanosin-8-yl)-l-aminopyrene (dG-CS-AP), and the cytochrome P450-mediated 

C-oxidative pathways are detoxification pathways. 
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In a recent study of the hepatoxicity of an anti-tumor prodrug 5-(Aziridin-1-yl)-2,4-

dinitrobenzamide (CB 1954), HPLC coupled to mass spectrometry showed that the major 

metabolite, 4-hydroxylamine was formed,35 a potent DNA cross-linking cytotoxin. 2-

hydroxylamine and 2-amine metabolites were also detected and both of them exhibited 

high cytotoxicity. Another study reported on the metabolism of a nitro-containing drug, 

N1-phenyl-3,5-dinitro-N4,N4-di-n-butylsulfanilamide (GB-II-150),  and showed that the 

drug underwent nitroreduction when administered orally. 36 

Comet assay is useful to study the genotoxicant by monitoring the DNA damage. An 

investigation of 2-nitroproapne-induced DNA damage using animal model by Xin-Sheng 

Deng et al37 utilized this method and found out that DNA damage happened in bone 

marrow cells thus indicated that 2-ntiropropane could be leukemogenic. 

Ames test was used in an investigation carried out by Peter P. Fu et al on the 

mutagenesis of nitrobenzo[a]pyrenes (NBaPs).38 The results indicate that isomeric NBaPs 

are activated to DNA adducts and mutagenic derivatives by nitroreduction, ring-

oxidation, or by a combination of these two pathways.  Another report using the same 

approach to study the mutagenicity of various nitrocompound was conducted by S. G. 

Salamanca-Pinzon et al.39 The results illustrated that the mutagenicity of the 

nitrocompound metabolites related to nitroreductase proficiency. All nitrocompound 

showed more mutagenic after metabolic activation by nitroreductase.  
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1.2 Electrochemical methods 

The metabolic mechanisms of chemicals catalyzed by cytochrome P450 (CYP) 

enzymes involve electron transfer. In biological systems, enzymes such as CYPs have to 

use electron donors such as NADPH or NADH to perform their enzymatic activity, and 

they are affected by electron transfer mediators such as flavin nucleotides. The advantage 

of direct electrochemical methods are that if enzymes such as CYP can be connected to a 

solid electrode surfaces by a bridge, and the active site of CYP, a heme group, can 

exchange electrons with the underlying electrode, there is no need to have the electron 

donors or mediators in the system. We can thus study the enzymatic reactions by 

providing electrons directly from the electrode. 

The current response on the electrode is directly related to the rate of the reaction and 

the amount substrate being processed. Hence it is a quantitative method. When using 

dynamic voltammetric technique, electrode potential can reflect thermodynamic 

information of the enzyme as well as enzymatic kinetics. High sensitivity is the nature of 

electrochemical method; therefore the amount of enzyme sample can be very small. 

There are numbers of electrochemical techniques available. Because of the 

advantages, electrochemical techniques of studing metalloeproteins especailly CYP heme 

enzymes have drawn more and more attention in the last couple of decads. In the 

appendix we describe the common methods that we used throughout this work.  

Cyclic voltammetry (CV) is probably the most versatile electrochemical technique for 

the mechanistic study of redox active systems. Direct electrochemistry of P450 enzyme 

was reported in the literature that have protein shows typically a reversible FeIII/FeII 

redox couple of the prosthetic heme group.40-43  
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1.3 Protein immobilization methods 

Before the development of biomolecule immobilization methodology, the 

electrochemical studies of proteins or enzymes were carried out in solution and the signal 

obtained directly at the working electrode was facilitated by small mediators. This 

approach not only requires large amount of enzyme or proteins, but the signal is also very 

weak. The protein immobilization method confines the protein on the surface of working 

electrodes instead of in solution. This approach not only saves lot of protein sample, but 

also enhanced the electrochemical current signal. Since direct (non-mediated) electron 

transfer through metalloprotein was achieved, the electrochemical study of 

metalloproteins began to attract the interest of investigators and became more and more 

popular. 

The techniques of immobilizing native proteins on working electrodes are critical in 

the research and various methods of immobilization are developed for different 

applications. 

1.3.1 Adsorption 

Proteins such as Cytochrome P450s can be directly deposited on the metal or 

graphite electrode. Purified CYP solution can be spread on a basal plane pyrolytic 

graphite surface, 44 and the film is formed simply by evaporating water naturely. Protein 

or peptide modification can also be done electrochemically by cycling a gold electrode at 

reducing potentials in the peptide solution as described by J. Kazlauskaite et al.45 

Besides direct adsorption, co-adsorbates such as polyamines,46 neomycin47-49, and 

polymyxin50-55 have been used for protein immobilization. These polyamines can bind to 
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negatively charged parts of protein under neutral pH and form salt bridges between 

protein and electrode surface.  

Other adsorption methods involves nano-particles56 such as titanate nanotubes,57 

carbon nanotubes,58-70, gold nanoparticles,71, 72 and silver nanoparticles.73 

1.3.2 Hydrogel or clay entrapment 

The electron transfer between the electrode and protein is usually low for a protein-

modified electrode by absorption. Therefore application of substances that facilitates 

electron transfer may enhance the intensity of the signal and the stability of the protein 

film. There are a numbers of choices of film-forming materials such as colloid size clay,74, 

75 hexagonal mesoporous silica (HMS),76 polyacrylamide (PAM) hydrogel films,77, 78 and 

carboxymethyl cellulose films,79 to cite a few. 

1.3.3 Lipid bilayer thin films 

Some amphiphilic compounds (surfactants) such as didodecyl dimethyl ammonium 

bromide (DDAB) can form a water-insoluble bilayered film structure that resembles bio-

membranes on solid electrode surfaces, Figure 1.2. Both hydrophilic and hydrophobic 

proteins or other molecules can be embedded into these surfactant thin films. This 

method of protein immobilization promotes the electron transfer between the protein and 

the electrode. Research had shown that the film is fairly stable in aqueous environment 

and the proteins could maintain their native structure in the lipid thin film.80-82 This 

method is suitable for applications such as biosensors and bioreactors, and also widely 

used in the electrochemical investigations of catalytic mechanisms of enzymes and other 

proteins.80, 81, 83-86 
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Figure 1.2 Protein immobilized in bio-membrane like lipid film on pyrolytic graphite 

(PG) electrode. (a) Lipid molecule (b) Protein moleclue (c) Pyrolytic graphite (PG) 

electrode 
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1.3.4 Covalent attachment 

Biomolecules such as proteins can form covalent bonds with specific chemical 

groups on the electrode surface. This usually involves a step called functionalization of 

the electrode surface. The desired chemical group(s) is covalently attached to the 

electrode surface usually through defined chemical reactions.  

Functionalized alkyl thiols can be spontaneously adsorbed onto Au, Pt, and Ag 

surface to generate self-assembled monolayers (SAM) with the functional groups 

pointing away from the electrode so that it can engage the protein molecules, Figure 1.3.  
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Figure 1.3 Immobilization via covalent attachment of proteins  
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1.3.5 Layer-by-layer polyion protein adsorption 

Electrostatic coupling can be used to deposit charged compounds onto a charged 

electrode surface. Layer-by-layer (LBL) deposition is a technique of thin film fabrication. 

The method consists of applying oppositely charged polyions respectively with washing 

step in between. Just like the name indicates, the resulting film has alternative layers of 

negatively charged and positively charged polyions. The number of layer and the 

thickness of the film can be well controlled, Figure 1.4. Proteins can bear different 

surface charge at different pHs. Therefore this method is used for protein immobilization. 

Some multi-charged matrices such as poly(diallyl dimethyl ammonium chloride) (PDDA) 

can be used to couple with negatively charged polyions or proteins to form protein-

containing LBL films. 
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Figure 1.4 Layer-by-layer polyion adsorption 
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1.4 The approach we took in our study 

The electrochemical technique using surface confined metalloprotein especially 

enzymes, may not only apply to substrate-specific biosensors and bioreactors, but can 

also be used commonly to study enzymatic activity of metalloenzymes. Since the 

majority of cytochrome P450 enzymes are located in hydrophobic environments such as 

the reticulum of cells or cell membranes, the study of such type of enzymes needs to 

mimic the physiological environments. In this work, we select well-known lipid thin film 

immobilization methods to retain our enzymes on the basal plane pyrolytic graphite 

working electrode surface. The lipid bilayer structure provides a biomembrane-like 

environment in which the protein molecule is embedded. We use electrochemical 

techniques as the major tools to characterize the redox activity of the heme group as well 

as electro activation of nitroalkane substrates. 

In addition to electrochemistry, UV-Vis spectroscopy is routinely used to monitor the 

concentration and integrity of hemoproteins. It is also employed to characterize possible 

reaction intermediates of heme-mediated catalytic nitroalkane electroreduction.  

    Final products of electroreductions mediated by immobilized hemoproteins, as well as 

their distribution are needed to shed light on the complex activation pathways, and to 

identify the plausible mechanism. To analyze the final electroreduction products, we used 

bulk electrolysis (i.e. exhaustive reduction at the potential of the catalytic wave on the 

heme or (protein)-modified electrode) and analyze the products at different times using 

mass spectrometry (MS). The setup that allows for bulk electrolysis and analysis of 

products been developed in the past87-90. The system is adapted to this work. 
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CHAPTER II 

STUDY OF MYOGLOBIN-MEDIATED NITROMETHANE ELECTRO-

REDUCTION AND THE CATALYTIC REACTION MECHANISM 

 

2.1 Introduction 
 

Nitromethane is the simplest aliphatic nitroalkane. It is recognized as a carcinogen, 

and is suspected to be a cardiovascular toxin and neurotoxin.1, 2 Nitromethane 

transformation in human body is believed to be catalyzed by P450-type xenobiotic 

enzymes under anaerobic conditions through catalytic electron transfer.3, 4 

Nitromethane is electroactive and can be electroreduced to methyl hydroxylamine at 

electrode surface. The process can be simplified as in Equation 1. This electrochemical 

reaction consists of 4 electrons and 4 protons uptake in addition to a break of N-O bond 

and involves a complex mechanism.5 

OHNHOHCHHNOCH e
23

4
23 4 +⎯→⎯+

−+

     (1) 

The active sites of cytochrome P450s (CYPs) are heme groups. Chemicals and drugs 

transformations are catalyzed by the heme groups in P450s. Electrons in CYP-catalyzed 

chemical metabolism come from cytochrome P450 reductases involves a subfamily of 
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flavoproteins designed to provide electrons to CYPs. Electrochemical study has the 

advantage that proteins can get electrons directly from the electrode, hence the electron 

provider CPR and the cofactor NADPH are not required. 

Although there are large varieties of CYPs, the active site of the enzyme is highly 

conservative. The iron in the heme group is tethered through a thiol ligand from a 

cysteine residue, this cysteine and some other amino acid residues around it are also 

highly conserved. We chose a simple hemoprotein (myoglobin) to start our study on the 

interaction between nitroalkane with heme group. Myoglobin is easily available and had 

been electrochemically studied extensively.6-15 Previously published work in this lab has 

shown that myoglobin is an efficient catalyst in electroreduction of nitromethane.16 

Myoglobin is a primary oxygen-carrying protein in muscle tissues, Figure 2.1. The 

crystal structure of myoglobin17 showed that the NЄ atom of the proximal histidine 

residue (His93 in horse heart myoglobin) acts as the fifth coordination of the iron atom of 

the porphyrin ring, and leave only the distal (or trans-axial) side of the porphyrin plane 

accessible to ligands such as oxygen. There is another histidine residue (His64 in horse 

heart myoglobin) at the distal side which helps stabilize the binding of the ligand through 

hydrogen bonding. 

Some electrochemical studies of surface confined myoglobin focused on the 

electrochemical characteristics of myoglobin,8, 15 and others also focused on the 

myoglobin catalyzed electroreductions.6, 11, 18, 19 In this work, we study the myoglobin-

mediated nitromethane reduction. 
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Figure 2.1 Structure of nitromethane modified horse heart myoglobin 

Image from: PDB 2NSR 
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Traditionally potentiometric titration 20-23 was the main approach to investigate the 

thermodynamics and sometimes the mechanisms of electron transfer of in enzymatic 

processes. This method is not suitable for studying kinetics of reactions. Another 

drawback is that this approach requires relatively large quantity of enzyme samples. 

More recently, direct electrochemistry 24-26 of metalloproteins became more popular 

because of the speed and wealth of inforamtion that it provides. This approach is much 

more versatile and powerful; if not only gives access to thermodynamic data, but it also 

provides information  on the kinetics of electron transfer. 

Direct electrochemical study of metalloproteins requires direct electron transfer 

between protein and electrode surface. The surfactant thin film methodology 27, 28 was 

developed to study a variety of metalloproteins. The film-forming surfactant employed in 

our work and widely used in other investigations 16, 28-31 is didodecyl dimethyl 

ammonium bromide (DDAB).  
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2.2 Experimental Design 

2.2.1 Materials 

Horse heart myoglobin is purchased from Sigma. Myoglobin is purified as in 

reference32 before use. Didodecyldimethyl-ammonium bromide (DDAB) and 

nitromethane are from Acros Organics.  

Nitrogen gas is purchased from PRAXAIR. Deionized water is obtained from a 

Barnstead Nanopure system with a resistivity greater than 18 MΩ·cm. Pyrolytic graphite 

(Advanced Ceramics) is the material for working electrodes. Homemade working 

electrodes are prepared as in reference,16 and the fabrication process is described below. 

2.2.2 Fabrication of the pyrolytic graphite (PG) working electrode 

A pyrolytic graphite block is cut perpendicularly to the basal plane using a diamond 

core drill bit to make a cylinder of the graphite with diameter of ~3.2mm. The cylinder 

lock is then cut into small cylinders with a scalpel blade along the basal plane to make 

each cylinder about 3 mm tall. A piece of copper wire (precut 15 cm) is connected to one 

end of the graphite cylinder using conductive epoxy, and allowed to dry. The graphite 

cylinder is then inserted in a glass tubing (ID=4mm) and set in place with non-conductive 

epoxy and allowed to dry, figure in appendix B. The non-conductive epoxy is also used 

to seal the gaps between graphite and glass. The finished electrode is then polished and 

cleaned.  

 37



2.2.3 Electrode modification 

 Myoglobin (Mb) is immobilized in DDAB surfactant film on a basal-plane pyrolytic 

graphite (PG) disc electrode28, 33 (surface area is ~0.08 cm2), (Mb/DDAB/PG). Before 

film casting, the PG electrode is polished using 400-grit sandpaper followed by 0.3μm 

alumina slurry. The polished electrode is then rinsed and sonicated in distilled water.  

Mb/DDAB surfactant film is prepared by casting 10μl of 10mM DDAB in H2O followed 

by 10μl 0.4mM myoglobin solution. The modified PG electrode is then allowed to dry in 

air for more than 12 hours. DDAB emulsion is prepared by dissolving DDAB powder in 

deionized water. The emulsion is then sonicated for at least 2 hours or until the solution 

becomes clear. Myoglobin buffer solution is prepared by dissolving myoglobin in 0.1M 

acetate buffer (pH 5.5) or in other suitable buffers. 

2.2.4 Procedures and Apparatus 

2.2.4.1 Electrochemical Measurement 

Cyclic voltammetry (CV) is an excellent tool to study the heme iron redox activity 

through electron transfer. Another electrochemical technique that we use is rotating disk 

voltammetry (RDV). This hydrodynamic electrochemical method can provide steady 

state current needed to measure true values of the catalytic current. Therefore, it is 

routinely used in electrochemical study of enzyme catalysis.34-36 

All electrochemical experiments are conducted using a three-electrode system (Figure 

2.2) on a BAS 100B electrochemical workstation or CH Instrument. Ag/AgCl (3M KCl) 

is used as reference electrode and all potentials are reported versus this reference. A 

platinum wire is employed as the auxiliary electrode. Modified PG electrodes are used as 

working electrodes of course.  
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Figure 2.2 Electrochemical setup 
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All electrochemical experiments are performed in 0.1M acetate buffer (pH 5.5) 

containing 0.1M sodium bromide. The solution in the cell is purged with purified 

nitrogen for at least 15 min prior to experiments to remove oxygen from the solution. A 

nitrogen blanket is maintained to prevent contamination with oxygen from air.  

2.2.4.2 Bulk Electrolysis 

Bulk electrolysis is performed using a modified large area PG electrode as working 

electrodes. The electrode is poised at the potential where the electro catalysis occurs. 

Constant stirring is maintained to ensure mass transfer during electrolysis. The amount of 

substrate converted during the process is calculated using initial and final concentrations. 

2.2.4.3 Mass Spectrometry 

A sample of the solution after bulk electrolysis is infused into a Micromass Quattro II 

electro-spray triple quadrupole mass spectrometer (ESI-MS) to identify and quantify the 

products of the catalytic nitromethane electroreduction. The calibrations of the possible 

products are conducted using triethylamine as an internal standard. 
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2.3 Results and Discussion 

2.3.1 Electrochemistry of Mb/DDAB/PG  

A cyclic voltammogram of Mb/DDAB/PG in pH5.5 acetate buffer, Figure 2.3, shows 

a pair of well-defined reversible redox couples; the first couple, R1/O1 (Equation 2), is 

assigned to FeIII/FeII with a formal potential –0.180V vs. Ag/AgCl. The R2/O2 couple, 

(Equation 3) with formal potential –1.052V vs. Ag/AgCl is tentatively assigned to 

FeII/FeI.16, 29, 32 

       (2) −−+−−
⎯→⎯
⎯⎯←

− IIIII FeMbeFeMb
R

O

1

1

11

−−+−−
⎯→⎯
⎯⎯←

− III FeMbeFeMb
R

O

2

2

11       (3) 

As has been shown in a number of reports the heterogeneous electron transfer is 

greatly enhanced in the surfactant film. In fact, as shown in Figure 2.4, when peak 

splitting ΔEp for the FeIII/FeII is plotted as a function of scan rate, the ΔEp stays 

unchanged in the range of scan rates from 0.001V/s to 1V/s, and then increases as 

expected at higher scan rates (i.e. shorter time frame) where electron transfer is 

kinetically challenged. Simulation of this behavior provides an estimate of the electron 

transfer rate. We find a ks of 0.01 cm/s indicating a fast electron transfer for this large 

protein. 
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Figure 2.3 Cyclic voltammogram of Mb/DDAB/PG  

in pH5.5 acetate buffer at 0.15 V/s. 
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Figure 2.4 Plot of ΔEp as a function of scan rate using  

Mb/DDAB/PG electrode in pH 5.5 buffer 
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2.3.2 Electrocatalytic reduction of nitromethane 

 The cyclic voltammogram as described earlier dramatically changes after introducing 

nitromethane. Figure 2.5a shows the typical voltammogram of Mb/DDAB/PG electrode 

in pH5.5 buffer in absence of nitromethane. There are 2 pairs of redox couples assigned 

to FeIII/FeII (formal potential at -0.18V vs. Ag/AgCl) and FeII/FeI (formal potential at -

1.06V vs. Ag/AgCl), respectively. Upon addition of nitromethane, a new peak, Rc, 

appears at -1.0V vs. Ag/AgCl in parallel with the disappearance of the FeII/FeI (Figure 

2.5b). A control experiment (Figure 2.5c) is conducted with a DDAB/PG electrode 

without embedded Mb as working electrode under the same conditions. The Rc peak 

current is significantly higher than that of the control experiment and the Rc peak 

potential is more positive compared to the control voltammogram (-1.16V in Figure 2.5c). 

The new Rc peak appearing at potentials more positive than FeII/FeI redox couple and the 

disappearance of the later are both indicative of an electro catalytic process mediated by 

myoglobin. 
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Figure 2.5 Cyclic voltammograms of DDAB/PG and Mb/DDAB/PG electrode in pH 5.5 

acetate buffer solution at the scan rate 0.15V/s. (a) Mb/DDAB/PG without nitromethane, 

(b) Mb/DDAB/PG with 0.4 mM nitromethane, (c) DDAB/PG with 0.4 mM nitromethane. 
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Literatures showed that myoglobin maintains its native structure in a certain pH range 

when immobilized in the surfactant films such as DDAB.15, 32, 37 However, other 

investigations claimed different results. Some reports state that heme is released from 

myoglobin in DDAB surfactant film,38, 39 and the electrochemical signals of myoglobin 

arise actually from the free heme.  

 In our hands and under our conditions, myoglobin maintains a native-like structure 

and the redox activity observed comes from its intact form. In fact, cyclic voltammetry 

performed with chemically denatured (SDS treated) myoglobin on the electrode surface 

gives a different behavior. The voltammogram (Figure 2.6a) shows that the previously 

well defined 2 redox couples (Figure 2.5a) has drastically changed. Also in support of our 

results, the catalytic function of the denatured protein is lost in the presence of 

nitromethane substrate. The reductive wave at –1.1V (Figure 2.6b) is the direct 

electroreduction of nitromethane. Our results are in support of the fact that myoglobin 

retains its native-like structure in our surfactant films. 
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Figure 2.6 Cyclic voltammograms of SDS denatured* myoglobin electrode in pH5.5 

buffer. (a) 0 mM nitromethane (b) 0.4 mM nitromethane. 

*Myoglobin solution was treated with 1% SDS solution prior to electrode modification. 

10μl of the SDS treated myoglobin suspension after vortexing was used along with 10μl 

DDAB solution to modify a PG electrode (procedure refer to section 2.2.3). 
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2.3.3 Effect of nitromethane concentration 

The catalytic reduction current obtained from cyclic voltammetry can provide 

quantitative information of on turnover and other kinetic aspects in the thin film. Figure 

2.7A shows myoglobin-mediated nitromethane reduction catalytic currents at different 

substrate concentrations. Catalytic current Icat as a function of substrate concentration [S] 

is shown in Figure 2.7B. The plot exhibits linear relationship between Icat and [S] when 

[S] is smaller than 0.6 mM. The plot starts to curve down greater concentrations, which is 

typical for enzyme saturation kinetics. The plot can be fit to Michaelis-Menten kinetics, 

Equation 4.  

][
][max

SK
SV

V
m +

×
=  (Michaelis-Menten Equation)    (4) 

Equation 5 shows the scheme of enzyme-catalyzed substrate transformation. E 

symbolizes the enzyme, S the substrate, ES is enzyme-substrate complex, and P is 

product. 

E + S        (5) PEES k +⎯→⎯ 2
k1

k-1

1

21

k
kkKm +

= −         (6) 

Km, as defined in Equation 6, is an indication of the constant of the formation of 

enzyme-substrate complex. It also reflects the catalytic constant k2 or kcat, the turnover 

number.  
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Figure 2.7A Voltammograms of Mb/DDAB/PG electrode in pH 5.5 acetate buffer 

solution at a scan rate of 0.15V/s in the presence of (a) 0.3 mM, (b) 0.8 mM, (c) 1.3 mM, 

(d) 2.0 mM nitromethane.  

Figure 2.7B Catalytic current of nitromethane catalytic reduction by Mb/DDAB/PG as a 

function of nitromethane concentration. 
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 To quantify Km and kcat electrochemically, we need to use the electrochemical form 

of Michaelis-Menten equation can be expressed by Equation 7 40 under steady-state 

conditions: 

][
][

SK
SknFA

I
m

cat
cat +

×Γ
=         (7) 

where Г is the surface concentration of catalyst, F is Faraday’s constant, A is the surface 

area of the electrode, [S] is substrate concentration, Km and kcat are the usual Michaelis-

Menten parameters.  

To calculate the total amount of active catalyst on the electrode surface we typically 

use an electrochemical technique based on current integration (i.e. charge measurement) 

of voltammograms taken at very slow scans.15 The integration of the reductive peak of 

FeIII-heme/ FeII-heme from a linear potential scan at 5mV/s gives the amount of active 

heme proteins in the surfactant films, Figure 2.8. The average value for Mb/DDAB is 

around 21.2 picomoles; accordingly the surface concentration is 2.65 × 10-10 mole/cm2, 

which is in the same range of the value reported in the literature.15 
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Figure 2.8 Typical linear voltammogram of Mb/DDAB/PG electrode in pH5.5 

acetate buffer at scan rate 5mV/s; Integrated area under the voltammogram is shown as 

filled. 
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Figure 2.9 shows the plots of normalized catalytic current, Icat / , versus 

substrate concentration [S] plot of Mb/DDAB-catalyzed reaction. Non-linear fitting the 

plots (Figure 2.9) using Equation 7 gives the regression parameters k

ΓnFA

cat and Km. The 

parameters are shown in Table 2.1. 

Table 2.1 Regression parameters from Figure 2.9 

 
Km

(mM) 

kcat

(s-1) 

kcat / Km

(s-1 · mM-1) 

Myoglobin 1.9 ± 0.2 20.9 ± 1.8 11.2 ± 2.1 

 

The parameter Vmax / Km (or kcat / Km) is the rate of catalysis at the substrate 

concentration [s] close to 0, equation 7, and is usually used to define the catalytic ability 

or efficiency of an enzyme.  
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Figure 2.9 Catalytic current of Mb/DDAB/PG normalized by catalyst surface 

concentration as a function of nitromethane concentration. 
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 2.3.4 Effect of scan rate 

One can study the electron transfer and mass transfer kinetics using diffusion-

controlled technique such as cyclic voltammetry. Increasing scan rate shortens the 

timescale within which the catalytic reaction is monitored. As expected the catalytic 

efficiency, defined by the ratio Icat / I0 
29 is larger at small scan rate and gradually drops as 

the scan rate increase, Figure 2.10. This behavior is typical of electrocatalytic process and 

can be used to extract kinetic information. 

The peak potential of the catalytic wave is plotted as a function of scan rate, Figure 

2.11. The figure shows that the catalytic peak shifts negatively with increasing scan rate. 

Since the catalysis is triggered within the time scale defined by the scan rate, this shift is 

an indication that more energy is required for the catalysis to occur in a higher scan rate. 

A chemical and/or an electrochemical step(s) in the catalytic reaction could be rate 

determine during the catalysis. 
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Figure 2.10 Catalytic efficiency as a function of scan rate. 
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Figure 2.11 Catalytic peak potential as a function of scan rate 
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2.3.5 Effect of pH 

 The electroreduction of nitromethane involves protons uptake.5 The catalytic 

reduction is also a proton-coupled process, which we will discuss later in the mechanistic 

study. Therefore, the availability of protons will affect the catalytic process. We conduct 

cyclic voltammetry under a series of pH values to monitor the effect of proton availability 

on the myoglobin-mediated reduction of nitromethane. 

 Figure 2.12A shows that the catalytic current drops with increasing pH. Figure 2.12B 

shows that the catalytic current changes slowly from pH 5.5 to pH 9, and then sharply 

from pH 9 to pH 11. Studies have shown that nitromethane is polar and exists in different 

forms under different pHs.41 The aci-nitro tautomerism of nitroalkane shows the 

equilibria of nitronic acid, R1R2C=NO2H (aci form), nitroalkane, and the nitronate anion 

R1R2C=NO2
- in neutral or basic medium, Equation 8.41  

 

R1R2C=NO2H       R1R2C=NO2
- + H+        R1R2CH-NO2 (8) 

k2 

k-2 

k-1 

k1 

 

 Nitromethane stays in nitro-from under acidic pH and transforms to aci-form in basic 

media. The dissociation constant of the aci form of nitromethane to the nitronate anion.42 

It is known that the formation of the anion of the aci form of nitromethane in alkaline 

solution prevents the reduction.42 This can partially explain the sharp decrease of 

catalysis when pH is greater than 9, Figure 2.12B.  
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Figure 2.12A Cyclic Voltammograms of Mb/DDAB electrode in the presence of 0.1mM 

of nitromethane in different pH solution. 

Figure 2.12B Catalytic current, Icat, as a function of pH. 
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It is known that water is the heme ligand in acidic environments and hydroxide 

becomes the ligand under basic conditions.27 Thus the fast drop of catalysis is not only 

caused by the availability of proton, but also the competitively binding of nitromethane 

with hydroxide ion to the heme iron.27 At pH 11, the catalytic current is not observed, 

indicating that the proton concentration cannot support the catalysis. 

The catalytic peak potential is affected by the pH, Figure 2.13. The shift of reduction 

potential with pH may reflect the change of ligand binding properties to the heme as well 

as the change of proton availability that drives the catalysis. There is also a clear turning 

point at pH 9.5 in Figure 2.13, which shows a change of the slope of pH dependency. The 

sharp decrease of catalytic peak potentials can be partially due to the intrinsic 

dissociation of nitronic acid to nitronate anion, which is difficult to reduce. 
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Figure 2.13 Potential of the catalytic reduction of 0.1 mM nitromethane on 

Mb/DDAB/PG electrode as a function of pH.  
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2.3.6 Number electrons per nitromethane molecule in myoglobin-mediated catalysis 

We used the bulk electrolysis method to measure how many electrons pass through 

Mb/DDAB/PG and how much nitromethane is consumed. Bulk electrolysis is performed 

at the level of the catalytic peak at -1.0 V vs. Ag/AgCl under constant stirring. A large 

surface PG electrode modified with Mb/DDAB is used as a working electrode. The 

starting concentration of nitromethane is 1.96 mM in 5 mL of solution, and the 

concentration of nitromethane after the process is measured by an electrochemical 

calibration method. The consumption of nitromethane is then derived, and the total 

number of nitromethane molecules consumed can be calculated. The total charge passed 

during the electrolysis is recorded by the electrochemical station. The electrons per 

nitromethane molecule can therefore be acquired. 

 The stoichiometric study derived that the ratio of total charges to the reduced 

molecules is close to 4:1, implying 4 electrons per nitromethane molecule consumed, and 

implies that nitromethane electroreduction yields mainly methyl hydroxylamine. Table 

2.2 shows the results of the number of electrons per molecule after bulk electrolysis for 

various trials.  

 

Table 2.2 Calculation of number of electron per nitromethane molecule  

 Total electrons 
passed 

Total nitromethane 
molecules reduced 

Electrons per 
molecule 

Average 

(mean ± SD) 

Trial 1 7.20 × 1018 1.54 × 1018 4.68 

Trial 2 7.33 × 1018 1.65 × 1018 4.44 

Trial 3 7.62 × 1018 1.80 × 1018 4.23 

4.45 ± 0.23 
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2.3.7 The products of catalytic reduction of nitromethane 

 In order to identify the products of the catalytic reduction, which is critical for the 

understanding of the reaction mechanism, we used a mass spectrometric method. The 

mass spectrometric technique we used to analyze the products of electrolysis of 

nitromethane electroreduction is semi-quantitative. Calibration curves (Figure 2.14) of 

the possible products are prepared using authentic compounds with triethylamine as the 

internal standard. The mass spectrometry analysis of the solution after bulk electrolysis 

shows that methyl hydroxylamine is the dominant product; the other possible reductive 

product methylamine was not detectable by the MS technique used (the detection limit is 

below 1 μM for this compound, Figure 2.14b). 
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 Figure 2.14 Calibration curve of methyl hydroxylamine (a) and  

methylamine (b) using QQQ-ESI mass spectrometer 
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2.3.8 Characterization of the intermediate of the catalytic reaction 

2.3.8.1 UV-vis spectroscopy 

We resorted to UV-vis spectroscopy to investigate the reaction between nitromethane 

and heme group and characterize possible intermediates complexes during the catalytic 

reduction of nitromethane. Mb-FeIII (Soret at 409nm, data not shown) is reduced to Mb-

FeII (Soret at 434nm, Figure 2.15) by adding excess amount of sodium hydrosulfite. The 

addition of nitromethane causes an absorption decrease at 434nm with concurrent 

absorption increase at 424nm giving an isosbestic point at around 430nm. The species 

with 424nm absorption is identical to that of ferrous myoglobin-nitrosomethane complex 

characterized in solution.43-45  

The heme(FeII)-nitrosomethane complex was studied by Mansuy’s group in their 

investigation of the reaction of aliphatic nitro compounds with myoglobin and 

hemoglobin under reducing conditions.46 Other reports43, 47 also stated that ferrous 

hemoproteins bind to nitrosoalkanes to form stable complexes that were characterized by 

UV-vis spectroscopy. 
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Figure 2.15 Evolution of the absorption spectra of reduced 10μM of Mb solution after 

addition of 25 mM nitromethane. Spectra were taken every 10s. 
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Nitromethane itself bind neither to Heme(FeIII) and nor to Heme(FeII).45 Consistent 

with these results, UV-vis experiments show no reaction between nitromethane and 

Heme(FeIII) (Figure 2.16A) or Heme(FeII) (Figure 2.16B).  

To examine if the myoglobin ferrous nitrosomethane complex forms during our 

heme-mediated electroreduction process, we poised a DDAB/PG electrode at –0.8 V in 

pH5.5 acetate buffer in the presence of nitromethane and Mb(FeII). The direct 

electroreduction of nitromethane at PG electrode will transform nitromethane to 

potentially nitrosomethane under these conditions; the latter should bind to Mb(FeII) to 

form the complex if any. UV-vis spectrum is taken before the catalysis and every 2 

minutes during the electrolysis. A complex with UV-vis features similar to those assigned 

by Mb-nitrosomethane forms during our reduction process triggered electrochemically.  

The results confirm that the myoglobin ferrous nitrosomethane complex is formed after 

the electrolysis, Figure 2.17. 

 

 66



 

 

 

 

 

 

 

360 380 400 420 440 460 480 500
0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
ba

nc
e

Wavelength nm

........ (a)
_ _ _ (b)

A

360 380 400 420 440 460 480 500
0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

rb
an

ce

Wavelength nm

____ (a)
------  (b)

409

434

B

 
Figure 2.16A UV-vis spectra of myoglobin in pH 5.5 buffer. (a) 0 mM of nitromethane, 

(b) 2 mM of nitromethane. 

Figure 2.16B UV-vis spectra of reduced myoglobin in pH 5.5 buffer. (a) 0 mM of 

nitromethane, (b) 2 mM of nitromethane. 
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Figure 2.17 UV-vis spectra of Mb(FeII) with nitromethane in pH 5.5 buffer solution. (a) 

Mb(FeII) + nitromethane before electrolysis, (b) after 2 minutes of electrolysis, (c) after 4 

minutes of electrolysis, (d) after 6 minutes of electrolysis, and (e) after 15 minutes of 

electrolysis. 
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2.3.8.2 Electrochemical signature of the heme ferrous nitrosomethane complex 

Since the ferrous nitrosomethane complex of myoglobin forms under our 

experimental conditions, we asked whether we could characterize it electrochemically. 

Under anaerobic condition, we preformed the nitrosomethane-heme(FeII) by reacting 

myoglobin solution with nitromethane in the presence of excess amount of dithionite. 

The reaction product was then used to modify our PG electrode under N2. The 

modification procedure refers to section 2.2.3. We performed cyclic voltammetry in pH 6 

buffer in the range of –0.8 to –1.1 V at a scan rate of 0.8 V/s. The myoglobin and 

nitrosomethane is expected to separate if Mb-nitrosomethane complex is oxidized.16 

Hence, all our experiments are performed under N2, and potential scan starts at –0.8 V to 

avoid the chemical or electrochemical oxidation of the Mb-nitrosomethane complex. Fast 

scan prevents the electroreduction from completion, which will cause dissociation of the 

complex and irreversibility. We were able to observe a reversible redox couple at the 

potential of –0.924 V (Figure 2.18) for this complex inside a narrow electrochemical 

window.  The possible reaction of this reversible electrochemical reaction is showed in 

Equation 9.  

+e-H3C N

Hm(FeII)

O

H3C N

Hm(FeII)

O

     (9) 
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Figure 2.18 Baseline-subtracted cyclic voltammogram of Mb(FeII)-

nitrosomethane/DDAB/PG electrode in pH6 buffer solution at a scan rate of 0.8 V/s.
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2.3.9 Mechanistic insights on the heme-mediated catalytic electroreduction of 

nitromethane  

According to the fact that neither ferric myoglobin nor ferrous myoglobin can bind 

nitromethane, and the myoglobin as the catalyst in the process needs to interact with 

substrate, the nitromethane substrate should change its state before the catalysis can 

happen. It is known that the first step of direct electroreduction of nitromethane forms 

nitrosomethane, which is the substrate for Mb(FeII) to form the myoglobin-

nitrosomethane complex as we discussed before. Another evidence is that the myoglobin-

mediated electroreduction peak starts at -0.75 V as shown in Figure 2.5, and the direct 

reduction peak of nitromethane on a DDAB only electrode starts also at -0.75 V vs. 

Ag/AgCl, Figure 2.19. It is an indication that the catalytic process is also triggered by the 

direct electroreduction of nitromethane. The following step will be the formation of 

Mb(FeII)-nitrosomethane intermediate. The electroreduction of the intermediate will be 

the next step. Based on the voltammetric behavior observed, the proposed catalytic 

reduction pathway is as follow: 

(a) heme reduction:  

Heme(FeIII) + e-     Heme(FeII)     (10) 

(b) Heme-mediated nitromethane electroreduction: 

CH3NO2 + 2 e- + 2 H+    CH3N=O + H2O    (11) 
k1

k-1
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Figure 2.19 Cyclic voltammograms of DDAB/PG electrode in pH 5.5 acetate buffer 

solution at the scan rate 0.15V/s. (a) 0 mM nitromethane (b) 0.2 mM of nitromethane 
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H3C    N 

O 

Heme(FeII) 

kS1CH3N=O + Heme(FeII)  (12) 

 

 

   + 2 e- + 2 H+           CH3NHOH + Heme(FeII)        (13) 

 

 

 H

 

In step (a), Heme-Fe(III) gains electrons and reduces to Heme-Fe(II), Equation 10. 

Step (b) shows the catalytic reduction of nitromethane using Heme-Fe(II) as a catalyst. 

During the negative potential scan of the cyclic voltammetry, nitromethane gains 2 

electrons from the electrode coupled with 2 protons and forms an unstable 

nitrosomethane CH3N=O, Equation 11.  

Nitrosomethane binds to typical hemoproteins irreversibly.43 The lone pair electrons 

on the nitrogen of the nitrosomethane readily coordinate the ferrous heme to from a stable 

ferrous-nitrosomethane complex, Equation 12. It is this intermediate that was 

characterized spectroscopically and electrochemically in this work. A further 2-electron 

process coupled to two protons reduces this intermediate to regenerates the catalyst along 

with the reduced product, Equation 13. A dissociation step gives out the final product,  

methyl hydroxylamine, with the release of the catalyst at the FeII state, Equation 14. 

3C    N 

OH 

Heme(FeII) 

H 

k2
Heme(FeII) + CH3NHOH   (14)

H    3C N 

O 
kS2

Heme(FeII) 
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2.3.10 Heterogeneous and homogeneous reaction rates 

The proposed heme-mediated nitromethane electroreduction pathway involves 

chemical and electrochemical reactions; the determination of the kinetic parameters of 

the processes can be obtained by simulation of cyclic voltammograms using Digisim 

software package (BAS).  

One of the chemical reactions in the catalytic process is described in Equation 11 with 

the forward rate constant k1, and the backward rate constant k-1, and the other is described 

in Equation 14 with rate constant k2. The electrochemical reactions include direct 

electroreduction of nitromethane, displayed in Equation 11, with the heterogeneous 

electron transfer rate constant kS1 and the catalytic electrochemical process given in 

Equation 13 with an electron transfer rate constant kS2. The simulated parameters are 

shown in table 2.3 using our proposed mechanism. 

By definition, k2 is equal to kcat and Km is equal to (k-1 + k2) / k1. The parameters of 

simulation k1, k-1, and k2 shown in Table 2.3 are in agreement with the Michaelis-Menten 

parameters kcat and Km listed in Table 2.1. The simulated voltammograms fit the 

experimental data properly and are shown in Figure 2.20. Digisim simulations validate 

the kcat and Km values derived from catalytic current data and further confirm our 

proposed mechanism of the heme-mediated catalysis. 

 

Table 2.3 Digisim® simulation parameters of myoglobin-catalyzed nitromethane 

electroreduction 

 k1 (s-1· M-1) k-1 (s-1) k2  (s-1) kS1 (cm/s) kS2 (cm/s) 

Myoglobin 1 × 104 0.1 20 3.8 × 10-7 0.01 
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Figure 2.20 Digisim® simulation of cyclic voltammograms. ( □ ) simulated 

voltammograms, (—) experimental voltammograms using the proposed mechanism. 

Cyclic voltammogram of Mb/DDAB/PG is obtained in the presence of 0.4 mM 

nitromethane in pH5.5 buffer solution at (a) 200 mV/s, (b) 400 mV/s, and (c) 600 mV/s.
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2.4 Conclusion 

Myoglobin can be used to study the catalytic activation of xenobiotic carcinogens 

such as nitromethane. The DDAB surfactant thin film method is suitable for 

metalloprotein immobilization. Myoglobin and cytochrome P450s share some common 

characteristics that come from the iron center of the porphyrin. Our mechanistic 

investigation showed the existence of a ferrous nitroso complex as the intermediate 

during Mb-mediated catalytic reduction of nitromethane. The product of Mb-mediated 

electroreduction of nitromethane is methyl hydroxylamine, and the catalysis is a 4-

electron process. The catalytic reduction process is examined under the experimental 

conditions such as scan rate, substrate concentration and pH. The kinetic information of 

the catalysis was extracted from our electrochemical experimental data. The Digisim 

software can be used to obtain the heterogeneous and homogeneous reaction rate 

constants using the cyclic voltammograms from our experiments. 
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CHAPTER III 

CATALYTIC ACTIVATION OF NITROMETHANE USING VARIOUS 

HEMOPROTEINS AND HEMIN 

 

3.1  Introduction 

 

The study of myoglobin-catalyzed nitromethane electroreduction gave us a general 

understanding of how hemoprotein can facilitate the electro activation of nitromethane. 

But what is the function of the protein parts of myoglobin, and whether there are 

differences between using myoglobin and using a real P450 enzyme in this catalytic 

process are still open questions. In this part of study, we use heme group without protein 

(hemin) and nitric oxide synthase (NOS), an enzyme that has a proximal cysteine thiolate 

akin to P450 enzymes, to catalyze the electroactivation of nitromethane and compare the 

results of myoglobin-mediated processes. Through the comparison, we may evaluate the 

effect of the protein shell and the effects of different heme ligands in different 

hemoproteins. 
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Hemin is the bare heme group and the prosthetic group in all heme proteins. It may 

have the catalytic properties of heme proteins without a protein shell (Figure 3.1). 

Understanding the intrinsic catalytic activation of nitromethane by hemin is of critical 

importance in order to better understand the role of the protein part of P450s. 

In the absence of protein structure, iron in hemin does not have the fifth ligand, 

therefore the ligand binding to heme and its open structure may bring different electron 

transfer, mass transport, and overall kinetics. Some studies reveal its ability to electro-

catalyze hydrogen peroxide, nitrite, nitric oxide, nitrous oxide, other nitro-compounds, 

and organic halides reduction. 1-5 

We also chose the nitric oxide synthase oxygenase (NOSoxy, Figure 3.2) to catalyze 

the electro-activation of nitromethane. Compared to hemin molecule, NOSoxy has the 

protein shell, and the heme group is held by a cysteine thiolate coordination at the 

proximal site just like P450 enzymes. Those differences could affect substrate 

accessibility and substrate binding affinity to the heme, therefore change the catalytic 

process. Also, the catalytic activation of nitroalkane needs protons, hence we can observe 

the effect of protein structure on proton transfer.  
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Figure 3.1 Structure of Hemin 
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Figure 3.2 Murine inducible nitric oxide synthase oxygenase domain with inhibitor 

Image from: PDB 1DF1 
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NOS is a very important enzyme responsable for nitric oxide biological production. 

Three isoforms of nitric oxide synthase are currently known; the family includes 

inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS). We chose 

inducible NOS in our study, which is used by the immune system to produce NO to fight 

pathogens. 

 Full-length NOS enzymes are heme flavoproteins belonging to the P450 

superfamily 6. Their structure contains two domains on the same polypeptide: 1) an 

oxygenase domain, with specific binding sites for the heme active center, the 

tetrahydrobiopterin (BH4) cofactor, and arginine substrate 7, and  2) a reductase domain, 

which contains binding sites for nicotinamide adenine dinucleotide phosphate (NADPH), 

flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) 7. 

Cytochrome P450 Reductase (CPR) and the NOS reductase domain both have the 

same prosthetic group FAD and FMN and the NADPH binding site.8 The oxygenase 

domain of NOS is also a heme-containing protein like cytochrome P450s. The biological 

functions of these two proteins are different but the basic catalytic functions of the 

functional groups are similar. FAD and FMN in reductase domain shuttle electrons from 

NADPH to heme group in oxygenase domain to activate heme, and the activated heme 

will perform the transition of substrate to product. Under aerobic condition, similar to 

other monooxygenases, NOS catalytic NO production is initiated by activation of 

molecular oxygen by NOS-heme to form an oxyferroheme complex9 (Scheme 3.1), just 

like cytochrome P450 (Scheme 1.1). So this enzyme can closely mimic cytochrome P450 

catalytic activity. 
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Scheme 3.1 Monooxygenation step of biological NO production by NOS9 
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In this study, we chose only oxygenase domain of NOS to study P450 enzyme 

activity because the electrons needed to activate heme are provided by the electrode. 

NOS enzymes structurally resemble the nitroalkane-metabolizing P450 enzymes, and 

nitroalkanes could be potential substrates for NOS too. Evidence shows that nitroalkanes 

or their metabolites such as hydroxylamines could interact with NOS-heme 10. 

Nitroalkane can also be oxidized by oxygen catalyzed by a flavoprotein 11. In addition, 

hydroxylamines have shown to have vasodilatory properties 12, 13, possibly through a 

metabolic path leading to NO release.  

In this work, hemin and NOS are immobilized on PG electrodes in DDAB thin film 

as we did with myoglobin in the previous study. The electrocatalysis is characterized 

electrochemically and the differences of enzymatic activities are discussed.  
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3.2 Experimental design 

 

3.2.1 Materials 

Hemin is purchased from Sigma and used without further process. 

Didodecyldimethyl-ammonium bromide (DDAB) and nitromethane are from Acros 

Organics. Oxygenase domain of inducible nitric oxide synthase (iNOSoxy) is expressed 

and purified in our laboratory. 

Nitrogen, compressed from PRAXAIR. Deionized water is obtained from a Barnstead 

Nanopure system with a resistivity greater than 18 MΩ · cm. Pyrolytic graphite 

(Advanced Ceramic) is the material for the working electrodes. Homemade working 

electrodes are prepared as in reference.5 

3.2.1.1 Expression and Purification of Recombinant iNOSoxy 

The expression and purification of the oxygenase domain is conducted in house using 

classic Escherichia coli expression systems. 

The experimental protocol that we use is for iNOSoxy expression has been described 

in the literature 14; it was adopted as such but with minor modification. Briefly, 

recombinant wild-type iNOSoxy proteins with a His6 tag attached to their carboxyl 

terminus are overexpressed in Escherichia coli strain BL21 (DE3) using a modified 

pCWori vector. The expression of the protein is typically induced when the culture 

reaches an optical density of 0.6 at 600 nm. The cells are harvested   after (12-24) hours 

induction and then suspended in the lysis buffer. After sonication, the suspension is 

centrifuged and the crude extract is loaded into a Ni-nitrilotriacetate-Sepharose 4B 

column. Bound protein was eluted with elution buffer (160 mM Imidazole, 10μM 
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H4B/AA, 1mM L-Arginine, 1mM PMSF/ethanol). The collected fractions containing 

iNOSoxy are then pooled and concentrated. The final concentrated protein solution is 

then dialyzed at 4°C to desalt and stored in aliquots (10% glycerol added) at -80°C.  

 

3.2.2 Electrode modification 

Hemin (Hm) or iNOSoxy is immobilized in the surfactant film on a basal-plane 

pyrolytic graphite (PG) disc electrode4, 15 (surface area is 0.08 cm2), and the modified 

electrodes are referred to as Hm/DDAB/PG and iNOSoxy/DDAB/PG. Before coating, the 

PG electrode is polished using 400 grit sandpaper followed by 0.3μm alumina. The 

polished electrode is then rinsed and sonicated in distilled water. Hm/DDAB surfactant 

film is prepared by casting 10μl Hm/DDAB surfactant solution on the PG electrode and 

dried in air for more than 12 hours. Hm/DDAB surfactant solution is prepared by mixing 

0.4 mM hemin solution with 10mM DDAB H2O emulsion is a 1:1 volume ratio. DDAB 

solution is prepared by dissolving DDAB powder in deionized water and sonicating for 2 

hours. Hemin solution is prepared by sonicating hemin in 0.1M acetate buffer (pH 5.5, 

0.05 M NaBr is added) for 2 hours to make a homogeneous dispersion. The hemin 

dispersion is mixed with DDAB emulsion immediately after sonication. iNOSoxy/DDAB 

surfactant film is prepared by casting 5μl of 10mM DDAB H2O solution followed by 5μl 

of iNOSoxy buffer solution. iNOSoxy buffer solution is prepared using the protocol 

described above. 
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3.2.3 Electrochemistry 

The electrochemical techniques used in this work are the same as in the previous 

study. The apparatus keeps the same. 

 

3.2.4 UV-Vis spectroscopy 

UV-Vis spectroscopy is used in this work to determine the concentration and 

structure character of iNOSoxy protein.  
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3.3 Results and discussion 

3.3.1 Spectroscopic characterization of iNOSoxy/DDAB film 

Prior to electrochemical measurements, we first studied whether the native form of 

iNOSoxy is conserved in the surfactant environment. To this end, we used UV-Vis 

spectroscopic characterization using the typical Soret band (Figure 3.3), as well as 

Fourier Transform Infrared Spectroscopy (FTIR) using the amide I and amide II IR bands 

(results not shown). A mixture of equal volumes of a purified sample of enzyme (~60 μM) 

and DDAB suspension (10 mM) is cast on transparent indium tin oxide (ITO) glass slide 

to prepare the iNOSoxy/DDAB film. As with graphite electrode preparation, the cast film 

on ITO is typically left to dry slowly in a closed vessel overnight, and then in open air. 

For iNOS heme domain, the typical low-spin iron-heme Soret bands is at around 422 nm 

16. Our results show that both iNOSoxy/DDAB on ITO slide and the control iNOSoxy in pH 

7 phosphate buffer show the characteristic Soret absorption at 421 nm, Figure 3.4. These 

results show that the native form of iNOSoxy is mainly conserved in the DDAB 

surfactant film. Also, addition of arginine, which binds above the Fe-heme at the active 

site switches the spin state of the iron center from low to high spin. This process can be 

easily monitored through a typical shift of the Soret band to about 396 nm. We observe 

similar shift with iNOSoxy immobilized in the bilayered DDAB film. This indicates 

clearly that the substrate arginine specifically recognizes its binding site in the film 

environment. These spectroscopic results show that the native structure of the embedded 

iNOSoxy enzyme is still conserved.  
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Figure 3.3 UV-vis absorption spectra of (a) iNOSoxy in buffer solution and (b) 

iNOSoxy/DDAB film on a transparent ITO slides. 
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To further confirm the native form of NOS in the DDAB environment, we analyzed 

the effect of DDAB on the position and shape of the amide I and amide II, which 

typically reflect the state of the secondary structure of globular proteins. To this end, we 

used FTIR spectroscopy on films cast on a diamond crystal. Our results show that the 

shape and position amide I and II are not affected by the presence of DDAB (results not 

shown).  

Together, our spectroscopic characterizations of iNOSoxy/DDAB films, confirm that 

the native structure of iNOSoxy in the surfactant thin film is conserved, and that the 

immobilized enzyme can still interact and recognize analytes added in the solution bulk. 

 

3.3.2 Electrochemistry of Hm/DDAB/PG, iNOSoxy/DDAB/PG, and Mb/DDAB/PG 

Figure 3.4 shows the voltammograms of Hm/DDAB/PG, iNOSoxy/DDAB/PG, and 

Mb/DDAB/PG in buffer solution. The direct electrochemistry of each electrode shows 

two fast and reversible redox couples that are characteristics of the heme redox centers.  

The formal potentials of FeIII/FeII and FeII/FeI redox couples for Hm/DDAB are –0.195V 

and –1.038V vs. Ag/AgCl respectively, for iNOSoxy/DDAB these couples are at              

–0.184V and –1.055V, respectively, and for Mb/DDAB these are found at  –0.180V and 

–1.052V. The iNOSoxy/DDAB results are comparable with Udit’s work using a similar 

experimental approach17. The difference in redox potential can be only due to the 

different residues or ligands in the heme vicinity of hemoprotein or hemin. 

Although we try to use the same concentration of heme (or protein) solutions to 

modify the electrodes, the surface concentration of heme group for each type of electrode 

will be different. As can be seen the reductive or oxidative peak area of FeIII/FeII redox 
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couple of the Hm/DDAB electrode is bigger than that of iNOSoxy/DDAB or Mb/DDAB 

electrode. The peak area is proportional to the amount of electroactive species in the film. 

Therefore, the surface concentration of heme for Hm/DDAB electrode is higher than that 

of iNOSoxy/DDAB or Mb/DDAB electrode. iNOSoxy/DDAB and Mb/DDAB electrodes 

show similar surface concentration of heme group. The difference in surface 

concentrations can be a problem when comparing the catalytic currents for different 

catalysts because the amount of catalyst that participates in the catalysis is not the same. 

To eliminate the effect of concentration differences, the catalytic current is normalized by 

dividing the catalytic peak by the reductive or oxidative peak area (or peak height if the 

peak widths are similar) of FeIII/FeII redox couple of the same electrode. It also eliminates 

the deviation among the same type of electrodes. 

To quantify total amount of active catalyst on the electrode surface we use the method 

described in previous study. The results show that The average values for Hm/DDAB and 

iNOSoxy/DDAB film are around 38.1 picomoles and 19.0 picomoles, respectively; 

accordingly the surface concentrations are 4.76 × 10-10 mole/cm2 for Hm/DDAB/PG and 

2.37 × 10-10 mole/cm2 for iNOSoxy/DDAB/PG. The average surface concentration of 

active heme for Mb/DDAB/PG is 2.65 × 10-10 mole/cm2
 from previous research. 
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Figure 3.4 Cyclic voltammograms of heme(protein)-modified PG electrode in pH 5.5 

buffer at 0.15V/s.  (a) Hm/DDAB/PG, (b) Mb/DDAB/PG, and (c) iNOSoxy/DDAB/PG. 
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Not only the formal potentials and the amount of active heme are different for each 

heme (or protein), the electron transfer kinetics also differs between Hm/DDAB and 

Mb/DDAB. To compare the electron transfer kinetic of Hm/DDAB electrode within the 

film with that of Mb/DDAB electrode, cyclic voltammetry is conducted from 0.2V to –

0.6V for 2 continuous cycles, and only the second cycle of the voltammogram is used to 

obtain peak separation data (ΔEp) used in kinetic assessments. 

When we compare the 2 curves in Figure 3.5, we see that both ΔEp(Mb) and ΔEp(Hm) 

stay unchanged in the range of scan rate from 0.001V/s to 1V/s, indicating fast reversible 

electron transfer kinetics. The electron transfer tat is typically measured at the onset of 

the abrupt increase of ΔEps at high scan rates. Hemin shows higher ΔEp in every scan rate 

we tested. At the scan rate that is lower than 1V/s, the ΔEps of Hm/DDAB and 

Mb/DDAB are 50-60mV and 22-25mV, respectively. In the high scan rate (greater than 

1V/s) region, Hm/DDAB system displays increasing ΔEp with a relatively steeper 

increase than from Mb/DDAB electrode. These data suggest that Hm/DDAB have lower 

heterogeneous electron transfer rate than that of Mb/DDAB within the thin film.  

The same experiment with iNOSoxy/DDAB was performed. However, due to the 

poor stability of the protein film under the condition of extremely low scan rate, full set 

of data could not be obtained. Hence, the iNOSoxy/DDAB data was not included in the 

comparison above. 
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Figure 3.5 ΔEp as a function of scan rate. (a) Mb/DDAB/PG; (b) Hm/DDAB/PG 
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3.3.3 Comparison of iNOSoxy-mediated nitromethane electroactivation with 

myoglobin-mediated, and bare heme-mediated activations. 

3.3.3.1 Electroreduction of nitromethane by the different heme-based catalysts 

The Hm/DDAB and iNOSoxy/DDAB systems can also catalyze the electroreduction 

of nitromethane as Mb/DDAB did in the previous study. Figure 3.6A(b) shows the 

catalytic reduction peak Rc of Hm/DDAB at –0.964 V in the presence of 0.4 mM of 

nitromethane. As a bare hemin-mediated catalysis, the catalytic current of Hm/DDAB is 

the highest among the 3 catalysts. The high surface concentration of heme group is an 

obvious reason. However, once normalized with the amount of heme, Hm/DDAB still 

exhibits the highest turnover rate; this will be discussed later.  Figure 3.6B(b) shows the 

catalytic reduction peak Rc of iNOSoxy/DDAB at –1.060 V. It displays a notable higher 

catalytic current compared to the catalysis mediated by Mb/DDAB (Figure 3.6C) even 

with slightly lower amount of heme group in the film. The factor that contributes to this 

might be the protein structure difference; so the accessibility to heme for iNOSoxy may 

be easier than that of myoglobin. Therefore, the mass transport is faster in 

iNOSoxy/DDAB system than in Mb/DDAB.  
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Figure 3.6A Cyclic voltammograms of DDAB/PG and Hm/DDAB/PG electrode in pH 

5.5 acetate buffer solution at the scan rate 0.15V/s. (a) Hm/DDAB/PG without 

nitromethane, (b) Hm/DDAB/PG with 0.4 mM nitromethane, (c) DDAB/PG with 0.4 

mM nitromethane. 

Figure 3.6B Cyclic voltammograms of DDAB/PG and iNOSoxy/DDAB/PG electrode in 

pH 5.5 acetate buffer solution at the scan rate 0.15V/s. (a) iNOSoxy/DDAB/PG electrode 

without nitromethane, (b) iNOSoxy/DDAB/PG electrode with 0.4 mM nitromethane, and 

(c) DDAB/PG electrode with 0.4 mM nitromethane. 

 Figure 3.6C Cyclic voltammograms of DDAB/PG and Mb/DDAB/PG electrode in pH 

5.5 acetate buffer solution at the scan rate 0.15V/s. (a) Mb/DDAB/PG without 

nitromethane, (b) Mb/DDAB/PG with 0.4 mM nitromethane, (c) DDAB/PG with 0.4 mM 

nitromethane. 

 

 102



Some reports claim that the electronic signal from a hemoprotein modified electrode 

is from hemin that is released from hemoprotein. We already tested SDS denatured 

myoglobin electrode in the previous study, and here we apply the same treatment to a 

hemin-modified electrode, and the results are shown in Figure 3.7B. The electrochemical 

activity of Hm/DDAB (Figure 3.7A) is not changed with or without nitromethane 

substrate. Therefore, hemoproteins should be intact when being modified to PG electrode 

to perform catalysis. 

Some previous electrochemical investigations report on critical residues around the 

active site of hemoprotein.18 Also, a pH study of myoglobin-modified electrodes has 

shown that the electrochemical activity is closely related to the pkas of key residues of the 

protein.19-21 These results have showed that the protein and hydrogen-bonding network 

that it provides are involved in the electron transfer process. 
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Figure 3.7A Cyclic voltammograms of SDS denatured myoglobin electrode in pH5.5 

buffer. (a) 0 mM nitromethane (b) 0.4 mM nitromethane. 

Figure 3.7B Cyclic voltammograms of SDS treated hemin electrode in pH5.5 buffer. (a) 

0 mM nitromethane (b) 0.4 mM nitromethane. 
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3.3.3.2 The effect of nitromethane concentration 

We collected data from the experiments with iNOSoxy, hemin, and myoglobin, and 

plotted the normalized catalytic current as a function of substrate concentration 

(Michaelis-Menten plot, Figure 3.8) for these three different catalysts. The hyperbolic 

plot of each catalyst is then fitted into the electrochemical form of Michaelis-Menten 

equation (Equation 2.7) to obtain the parameters of kinetics. 

After data processing (Table 3.1), iNOSoxy shows the highest catalytic ability and the 

lowest catalyst-substrate dissociation constant Km for the catalytic reaction. On the 

contrary, hemin has the highest Km and highest turnover number Kcat (more than two 

times higher than that of iNOSoxy), but the overall catalytic ability is not better than 

iNOSoxy. iNOSoxy and myoglobin have similar catalyst-substrate stability, maybe 

because of the structural similarity of the substrate binding site of their heme centers. 

Hemin, on the other hand, lack the proximal fifth ligand and the protein shell, which may 

affect binding affinity and substrate accessibility to the heme iron. 

Table 3.1. Non-linear regression parameters from Figure 3.8 

 Km
(mM) 

kcat 
(s-1) 

kcat / Km
(s-1 · mM-1) 

Hemin 4.4 ± 0.5 68.3 ± 6.3 15.6 

iNOSoxy 1.7±0.2 28.1 ± 2.2 16.5 

Myoglobin 1.9 ± 0.2 20.9 ± 1.8 11 
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Figure 3.8 Normalized catalytic current as a function of substrate concentration. 

(Michaelis-Menten plot) (1) Hm/DDAB, (2) iNOSoxy/DDAB, and (3) Mb/DDAB. 

Icat’ is the catalytic current measured at the scan rat of 150 mV/s. 
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3.3.3.3 The effect of scan rate 

From the scan rate dependency studies of these three heme-based catalyst, one 

can see that NOS-mediated reaction has the steepest drop of catalytic efficiency 

compared to the hemin- and myoglobin-mediated ones in the scan rate range from 5mV/s 

to 1V/s, Figure 3.9. In the range from 1V/s to 20V/s, the catalytic efficiency of NOS or 

myoglobin-mediated reaction drops only slightly. The protein shell is iNOSoxy may play 

a role in the steep drop of catalytic efficiency in the 5 mV/s to 1 V/s range. In fact, 

protein shell controls substrate access to the active site, and thus directly affects mass 

transport. This is in line with the behavior of myoglobin, with relatively open active site 

compared to iNOSoxy, and which exhibits a moderate drop in catalytic current. At the 

other extreme, bare hemin, with a complete open access, exhibits only a gradual drop in 

catalytic current. 
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Figure 3.9 Catalytic efficiency as a function of scan rate. (1) Hm/DDAB/PG (2) 

iNOSoxy/DDAB/PG (3) Mb/DDAB/PG. 
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3.3.3.4 The effect of pH 

The pH dependency studies show clear proton dependency for hemin and heme-

protein-mediated catalysis, Figure 3.10. Hemin-mediated reaction exhibits the fastest 

dropping of catalytic efficiency with increasing pH, and NOS- or myoglobin-mediated 

reaction has a slower dropping rate. Literature suggests that the large number of hydrogen 

bonds within the protein molecule may provide extremely efficient means of proton 

transfer,22 and protonation and deprotonation of the amino acids surrounding the heme 

group of hemoprotein has been shown to affect proton coupled electron transfer 

process.19, 23-27 Also, the proton coupled electron transfer might be controlled by the 

protonation state of the amino acids23-25. The protein shell of iNOSoxy or myoglobin 

would also mediate proton transfers in this reaction, which could act as a local buffer 

counteracting the change in bulk pH and make the reaction relatively less dependent on 

pH, as observed. 
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Figure 3.10 Catalytic efficiency of nitromethane catalytic reduction as a function of pH 

in the presence of 0.1mM nitromethane mediated by (1) Hm/DDAB/PG, (2) 

iNOSoxy/DDAB/PG, and (3) Mb/DDAB/PG 
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3.3.4 Final products of hemin-mediated catalysis versus hemoprotein-mediated 

catalysis 

 Bulk electrolysis experiments coupled with mass spectrometric analysis as we used 

in the previous study show that the final product of hemin or myoglobin-mediated 

catalysis is methyl hydroxylamine. The number of electrons per nitromethane molecule in 

the electroreduction is close to 4 to 1 in both cases. The trials are shown in Table 3.2. 

We also did the experiment with iNOSoxy/DDAB electrode. Unfortunately, because 

of the vigorous convection applied in the bulk electrolysis, iNOSoxy/DDAB film was 

washed off quickly, and the experiment could not finish successfully. 

Table 3.2 The ratio of electron to nitromethane molecule 

  Total electrons 
passed 

Total nitromethane 
molecules reduced 

Electrons per 
molecule 

Trial 1 7.20 × 1018 1.54 × 1018 4.68 

Trial 2 7.33 × 1018 1.65 × 1018 4.44 Mb/DDAB 

Trial 3 7.62 × 1018 1.80 × 1018 4.23 

4.45 ± 
0.22 

Trial 1 7.12 × 1018 1.58 × 1018 4.51 

Trial 2 6.59 × 1018 1.41 × 1018 4.67 Hm/DDAB 

Trial 3 7.98 × 1018 1.81 × 1018 4.41 

4.53 ± 
0.13 

 

The results show that the final products of the electrocatalysis mediated by hemin or 

hemoprotein are the same. Therefore, the reaction mechanisms for these catalysts are 

likely the same as we proposed in last chapter with heme as the major player.  
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3.4 Conclusion 

iNOSoxy-mediated electroreduction of nitromethane shows highest catalytic ability 

close to the bare hemin-facilitated one. Low Km of iNOSoxy indicates a high heme 

binding affinity to a catalytically active form derived from the substrate. This is likely 

facilitated by the thiolate fifth ligand of heme and flanking residues around heme binding 

site. The scan rate dependency study shows that the protein shells of myoglobin and 

iNOSoxy control the mass transfer to the active site. Furthermore, the pH dependency 

study implies that the residues close to the heme binding site may mediate proton transfer 

or act as proton donors to assist the catalytic transformations.  

Comparing electroactivation of nitromethane catalyzed by two distinct hemoprotein 

and bare hemin illustrates the effects caused by the protein shell and iron ligation as well 

as the effects caused by residues around the heme site.  
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CHAPTER IV 

CATALYTIC ELECTROREDUCTION OF ALIPHATIC NITROALKANES 

MEDIATED: A COMPARATIVE STUDY OF INOSOXY AND HEMIN AS  

HEME-CATALYSTS 

 

4.1  Introduction 

Most nitroalkanes are toxic,1 and some are even found to be carcinogenic2-6 and 

genotoxic7. Nitromethane is an example of nitroalkanes that are potent carcinogens.8 Also, 

1-nitropropane has demonstrated mutagenic activity7, 9, 10 in cells though no link to 

carcinogenicity has been established even with chronic exposure.9 Some of the secondary 

nitroalkanes such as 2-nitrobutane and 3-nitropentane may cause significant incidence of 

hepatocarcinoma with metastasis in the lungs, and have also been found to be more 

carcinogenic than their corresponding primary nitroalkanes.11 2-nitropropane is another 

well-known hepatocarcinogen,12-14 and its mutagenicity has been studied widely using 

animal models.10, 15-18  

The types of cancer caused by nitroalkanes are different for, but the key step in each 

carcinogenic process always involves a biotransformation of the nitroalkane into a more 
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reactive compound. One possible metabolic pathway could be anaerobic nitro-reduction 

catalyzed by cytochrome P450 xenobiotic metabolizing enzymes through electron 

transfer producing alkyl hydroxylamines as the final product. This is in agreement with 

some research of the anaerobic metabolism of nitro compounds using biological 

samples.19, 20  

Previously we tested nitromethane anaerobic electroreduction mediated by myoglobin, 

hemin, and iNOSoxy. Our results indicate that electro-activation of nitromethane can be 

catalyzed by hemin or hemoproteins, and the catalytic function of the heme may reflect 

the metabolic pathway of nitromethane activation by P450 metabolizing enzymes under 

anaerobic conditions. Mass spectroscopy shows that the catalytic reduction of 

nitromethane under these conditions reduces the nitro group to hydroxylamine, possibly 

through our proposed pathway, Scheme 4.1. Hence, we propose that nitroalkanes with 

different alkyl groups may also be catalytically reduced to hydroxylamines through a 

similar catalytic mechanism. 
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CH3NO2
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CH3NHOH  
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CH3N=O  

- H2O  

- Heme(FeII)

 Scheme 4.1 Proposed heme-catalyzed electroreduction of nitromethane  

 
The size of the alkyl group might affect the mass transport in diffusion-controlled 

electrochemical techniques such as cyclic voltammetry. The different alkyl groups in 
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nitroalkanes may also affect the chemical properties of their nitro groups, therefore 

exhibiting effects on catalytic reduction. Because of these potential changes in chemical 

properties, we examined four different substrates in this study, nitromethane, nitroethane, 

1-nitropropane, and 2-nitropropane, Scheme 4.2.  
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Scheme 4.2 Structures of the nitroalkanes used in the study 

In this part, the various nitroalkanes are tested on Hm/DDAB/PG and 

iNOSoxy/DDAB/PG electrodes, and catalytic currents from cyclic voltammetry are used 

as the expressions of the catalysis. Mass spectrometry is used to identify the products of 

heme-mediated electroreduction of these 4 nitroalkanes. The catalytic efficiencies of 

different substrates are contrasted and effects of factors such as substrate concentration, 

scan rate of cyclic voltammetry, and pH, are discussed. 
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4.2  Experimental design 

4.2.1 Material 

Hemin, Nitromethane, Nitroethane, 1-Nitropropane, and 2-nitropropane are 

purchased from Sigma and used without further process. Didodecyldimethyl-ammonium 

bromide (DDAB) is from Acros Organics. Oxygenase domain of inducible nitric oxide 

synthase (iNOSoxy) is expressed and purified in our laboratory using the procedure 

described in chapter 3. 

Nitrogen, compressed from PRAXAIR. Deionized water is obtained from a Barnstead 

Nanopure system with a resistivity greater than 18 MΩ · cm. Pyrolytic graphite 

(Advanced Ceramics) is the material for the working electrodes. Homemade working 

electrodes are prepared as in reference.21 

4.2.2 Methods 

The hemin and iNOSoxy modification of electrodes have been described in chapter 3. 

Electrochemical techniques employed and the apparatus are the same as chapter 2. 

Bulk electrolysis is performed at -1.0 V vs. Ag/AgCl under constant stirring for 1 

hour. A large surface PG electrode modified with Hm/DDAB or iNOSoxy/DDAB is used 

as a working electrode. The starting concentration of nitroalkane is 1.96 mM in 5 mL of 

solution, and the concentration of nitroalkane after the electrolysis is estimated using an 

electrochemical method. The consumption of nitroalkane is derived from the difference 

between the initial amount and final amount. The total charge passed during the 

electrolysis is recorded. The total number of electrons per nitroalkane molecule can 

therefore be calculated. 
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A mass spectrometric method is employed to identify the product after the bulk 

electrolysis. The solution after electrolysis is infused into an electro spray ionization 

triple quadrupole (ESI-QQQ) mass spectrometer (Micromass Quattro II). The product is 

identified by the m/z ratio on the mass spectrum. 
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4.3  Results and discussion 

4.3.1 Direct electroreduction of nitroalkanes on a DDAB/PG and catalytic 

electroreduction of nitroalkanes mediated by Hm/DDAB/PG and 

iNOSoxy/DDAB/PG  

Figure 4.1 shows the electroreduction of nitroalkanes on DDAB/PG electrodes. Since 

there is no catalyst involved, we label these processes as direct reductions or non-

mediated reductions. The reduction current response for the various nitroalkanes are in 

the order of nitromethane > nitroethane > 1-nitropropane > 2- nitropropane, and the 

reductive potentials from positive to negative are 1-nitropropane (-1.133 V), 

nitromethane (-1.195 V), nitroethane (-1.217 V), and 2- nitropropane (-1.221 V). The 

hemin-mediated catalytic reductions (Figure 4.2) show that the current intensities are in 

the same order of that of direct reduction, and the potential from positive to negative 

follows the order 1-nitropropane (-0.972 V), 2-nitropropane (-0.979 V), nitromethane (-

1.001 V), and nitroethane (-1.042 V). The reduction currents of iNOSoxy-mediated 

reactions (Figure 4.3) follow the same order as the direct reductions, and the reduction 

potentials also show the same order as for the direct reductions but at much positive 

potentials: 1-nitropropane (-1.024 V), nitromethane (-1.049 V), nitroethane (-1.056 V), 

and 2-nitropropane (-1.058 V). In addition, the potentials of iNOSoxy-mediated 

electroreductions are very close to each other. 
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Figure 4.1 Cyclic Voltammograms of DDAB/PG electrode in pH 5.5 buffer at 150 mV/s 

in the presence of nitroalkanes. (a) 0.2 mM nitromethane, (b) 0.2 mM nitroethane, (c) 0.2 

mM 1-nitropropane, and (d) 0.2 mM 2-nitropropane. 
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Figure 4.2 Cyclic Voltammograms of Hm/DDAB/PG electrode in pH 5.5 buffer at 150 

mV/s in the presence of nitroalkanes. (a) 0.2 mM nitromethane, (b) 0.2 mM nitroethane, 

(c) 0.2 mM 1-nitropropane, and (d) 0.2 mM 2-nitropropane. 
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Figure 4.3 Cyclic Voltammograms of iNOSoxy/DDAB/PG electrode in pH 5.5 buffer at 

150 mV/s in the presence of nitroalkanes. (a) 0.2 mM nitromethane, (b) 0.2 mM 

nitroethane, (c) 0.2 mM 1-nitropropane, and (d) 0.2 mM 2-nitropropane. 
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The current intensities of direct electroreductions on the DDAB/PG and the heme-

facilitated electroreduction (Figure 4.2 and Figure 4.3) exhibit the same trend in that 

smaller nitroalkanes have higher catalytic currents. An obvious reason is that the 

diffusion that controls mass transport plays to the advantage of small molecules, Table 

4.1. To see the effect of molecular size of the nitroalkane substrate, we examined and 

compared the effect of scan rate of catalytic reduction of the various nitroalkanes.  

Table 4.1 Hydrodynamic radiuses of the alkyl groups22 

 methyl ethyl propyl isopropyl 

r (nm) 0.20 0.225 0.25 0.30 

 

For heme-mediated reduction of the four nitroalkane substrates, the reduction peaks 

in the voltammograms all shift to positive potentials compared to the direct reductions. 

The same is true for hemin-mediated catalysis but the current intensities are relatively 

larger. The shift of the reductions to positive potentials and the increase of reaction rate 

are typical features for electrocatalytic process. Therefore, hemin and iNOSoxy are 

efficient electrocatalysis for the electroreductions of the 4 nitroalkane substrates.  

The direct reduction potentials follow the order of nitromethane, nitroethane, and 2- 

nitropropane. This trend may be explained by the inductive and hyperconjugative effects 

of alkyl groups.23 Alkyl groups are considered as electron-donating to the nitro group, 

and the inductive effect (+I) follows the order -CH3 < -CH2CH2CH3 < -CH2CH3 < -

CH(CH3)2. The effect increases the negative charge on the nitro group therefore make the 

reduction more difficult. However, 1-nitropropane is unique among the 4 substrates. It 

shows the most positive potential in both direct electroreduction and heme-mediated ones. 
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A possible reason is that the reduction of 1-nitropropane, with the smallest dielectric 

constant among the 4 nitroalkanes, is favorable on our electrodes modified with 

hydrophobic DDAB films. Stabilized intermediates derived from this nitroalkane relative 

to the other 3 substrates may also play a role in these reductions at positive potentials. 

One may notice that the hemin-mediated 2-nitropropane displays the largest shift of 

reduction potential from –1.221 V to –0.979 V among all the nitroalkane substrates. The 

hemin catalyst in the reaction lowers the activation energy of 2-nitropropane reduction 

more than those of the other 3 substrates. It is possible that in the heme-mediated 

reduction, 2-nitropropane forms the hemin ferrous 2-nitrosopropane complex that can be 

reduced at low potential, and the mediation by hemin may also compensate for the 

inductive effects that makes 2-nitropropane hard to reduce. 

4.3.2 Identification of the products of the hemin-mediated electroreduction of 

nitroalkanes 

It is critical to know the products of the catalytic electroreduction and number of 

electrons consumed per substrate molecule so that the mechanism of the catalysis can be 

derived. To find out the ratio of electron to nitroalkane molecules, we perform bulk 

electrolysis using each of the 4 nitroalkane substrates.  From the total electrons passed 

and total amount of nitroalkane consumed, one can calculate the electrons per molecule. 

The results of this work are listed in Table 4.2. The products of catalytic electroreduction 

of nitroalkanes are identified by mass spectrometry (Figure 4.4) using the solution after 

bulk electrolysis (Table 4.3).  
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Table 4.2 The ratio of electron to nitroalkane molecule 

 Total electrons 

passed 

Total molecules 

reduced 

Electrons per 

molecule 

nitromethane 8.45 × 1018 1.93 × 1018 4.38 

nitroethane 7.15 × 1018 1.69 × 1018 4.23 

1-nitropropane 7.54 × 1018 1.81 × 1018 4.17 

2-nitropropane 7.07 × 1018 1.63 × 1018 4.34 

 

Table 4.3 The products of catalytic electroreduction of nitroalkanes 

 The products of catalytic electroreduction 

nitromethane methyl hydroxylamine (CH3-NHOH) 

nitroethane ethyl hydroxylamine (C2H5-NHOH) 

1-nitropropane propyl hydroxylamine (C3H7-NHOH) 

2-nitropropane isopropyl hydroxylamine ((CH3)2C-NHOH) 
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Figure 4.4A Mass spectra of 2 mM nitromethane in the buffer solution (a) before and (b) 

after the bulk electrolysis. 
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Figure 4.4B Mass spectra of 2 mM nitroethane in the buffer solution (a) before and (b) 

after the bulk electrolysis. 
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Figure 4.4C Mass spectra of 2 mM 1-nitropropane in the buffer solution (a) before and 

(b) after the bulk electrolysis. 
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Figure 4.4D Mass spectra of 2 mM 2-nitropropane in the buffer solution (a) before and 

(b) after the bulk electrolysis. 
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Since the mass spectrometric results show that the reduction products of nitroalkanes 

are exclusively the corresponding alkyl hydroxylamine, and the ratio of electrons to 

nitroalkane molecules is close to 4 for each substrate, the possible mechanism of the 

catalysis may be similar to Scheme 4.1. We can therefore describe the electroreductions 

by the following generalized scheme (Scheme 4.3). 
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 Scheme 4.3 Heme-catalyzed electroreduction of nitroalkanes 

 

 
4.3.3 The effect of substrate concentration  

The catalytic current increases as the concentration of substrate increases, Figure 4.5. 

One can see that the first redox couple FeIII/FeII, which is caused by the surface confined 

hemin is not affected by the addition of nitroalkanes. Therefore, we can use the reductive 

wave of I0 as an indication of the amount of hemin in the film. To eliminate the effect 

that is caused by the slight difference among electrodes, we use the ratio of Icat / I0 and 

referred it as catalytic efficiency. This way we can compare the catalysis of different 

nitroalkanes with different electrodes. From the plot of catalytic efficiencies as functions 

of substrate concentration, Figure 4.6 and Figure 4.7, one can see that the catalytic 

efficiencies increase steadily at low concentrations and tend to reach maximum at high 
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concentrations. This catalysis saturation behavior fits Michaelis-Menten enzyme kinetics, 

Equation 4.1. 

][
][max

SK
SV

V
m +
×

=   (Michaelis-Menten Equation)   (4.1) 

Since we use the normalized catalytic current, Icat / I0, as the measurement of the 

velocity of the reaction, Figure 4.6 and 4.7 can be treated as Michaelis-Menten plot. To 

obtain the kinetic parameters of the catalyst, we perform the non-linear regression using 

Michaelis-Menten equation and we can estimate the Km values for each substrate and 

each catalyst system, Table 4.4. 

Table 4.4 Km values of hemin and iNOSoxy for different nitroalkane substrates from the 

non-linear regression of the Mechaelis-Menten plots 

  nitromethane nitroethane 1-nitropropane 2-nitropropane 

Km (mM) 4.4 ±0.50 4.04 ±0.25 6.03 ±0.39 6.11 ±0.69 

kcat (s-1) 68.3 ± 6.3 55.6 ± 4.8 45.8 ± 3.7 39.5 ± 4.1 Hemin 

kcat/Km  
(s-1·mM-1) 15.6 13.8 7.6 6.5 

Km (mM) 1.81±0.17 2.14±0.31 2.06±0.12 2.76±0.29 

kcat (s-1) 28.1±2.2 26.3±1.9 23.1±1.7 20.7±1.6 iNOSoxy 

kcat/Km  
(s-1·mM-1) 16.5 12.3 11.2 7.5 
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Figure 4.5 Cyclic voltammograms (a) 0 mM, (b) 0.3 mM, (c) 0.8 mM, (d) 1.3 mM, and 

(e) 2.0 mM of nitromethane electroreduction mediated by Hm/DDAB/PG in pH 5.5 

buffer at 0.15 V/s. 
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Figure 4.6 Catalytic efficiency as a function of nitroalkane concentration for 

Hm/DDAB/PG electrode. (a) nitromethane (b) nitroethane (c) 1-nitropropane (d) 2-

nitropropane 
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Figure 4.7 Catalytic efficiency as a function of nitroalkane concentration for 

iNOSoxy/DDAB/PG electrode. (a) nitromethane (b) nitroethane (c) 1-nitropropane (d) 2-

nitropropane 
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Comparing the Km of nitroalkane substrates in hemin-catalyzed reduction, 

nitromethane and nitroethane have similar smaller values, whereas 1-nitropropane and 2-

nitropropane both have relatively larger values. Steric effects may contribute to this trend. 

Therefore, the larger Km can be rationalized by the steric hindrance caused by the larger 

alkyl groups in the substrate-catalyst interaction process. This effect may cause a 

difference between smaller and larger nitroalkanes or between straight versus branched 

nitroalkanes because of their different geometric arrangements. This observation is 

consistent with previous reports that indicate the formation rate of the heme ferrous 

nitrosoalkane in solution is slower for larger nitroalkanes such as 2-nitropropane.24 

The other Michaelis-Menten parameter kcat can be obtained by non-linear regression 

of the Michaelis-Menten plot using the electrochemical format of Michaelis-Menten 

equation, as described in Chapter 2. The kcat and the kcat/Km of each substrate indicate that 

hemin can catalyzed the electroreduction of smaller nitroalkane more efficiently than 

larger ones, and linear nitroalkane 1-nitropropane has higher turnover rate than the 

branched one. 

In both case of hemin and iNOSoxy-mediated activation of different nitroalkanes, the 

catalytic efficiency follows the order: nitromethane > nitroethane > 1-nitropropane > 2-

nitropropane, Figure 4.6 and 4.7, Our results suggest that the smaller the nitroalkane, the 

higher the catalytic efficiency. In addition, branched nitroalkanes show slightly lower 

rates of catalysis than their linear counterparts.  

The Km constants of nitroalkanes electroreduction for hemin as a catalyst are 

significantly larger than that for iNOSoxy. The proximal thiolate ligand of the iNOSoxy 

heme group help stabilize the trans-ligand, and the flanking residues around the binding 
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site also facilitate the binding of intermediates during turnover. These conditions are not 

met for bare hemin and thus large Km value results. 

 

4.3.4 The effect of scan rate  

Scan rate of cyclic voltammetry defines the timescale within which the catalytic 

reaction is observed as well as substrate and product transports by diffusion. Increase of 

scan rate shortens the timescale and the catalysis is monitored very early in the process 

(less catalytic turnovers). As we seen in Figure 4.8, Ica /I0 decreases with logarithm of 

scan rate. Catalytic efficiencies of hemin-mediated electroreduction as a function of scan 

rate (Figure 4.8) shows the same trend for all the substrates, and within the same range of 

scan rate, the catalytic efficiencies of the 4 substrates follows the order nitromethane > 

nitroethane > 1-nitropropane > 2-nitropropane. Therefore, the size of the substrate 

molecule plays an important role in the catalysis. More of this will be discussed when we 

present our results of digital simulation of the catalytic process. 

The catalytic efficiencies of iNOSoxy-mediated reduction of nitroalkane substrates 

show the expected decreasing trend with increasing scan rate, Figure 4.9. At low scan 

rate region (<1 V/s), the catalytic efficiencies of iNOSoxy-mediated reductions decrease 

faster than the efficiencies of the same reaction catalyzed by hemin. From scan rate 1V/s 

to 20V/s, the catalytic efficiency only exhibits only a slight decrease for all 4 substrates.  

 

 

 

 

 137



 

 

 

 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Log v

C
at

al
yt

ic
 E

ffi
ci

en
cy

(d)

(c)

(b)

(a)

20

 

Figure 4.8 Catalytic efficiency as a logarithmic function of scan rate for Hm/DDAB/PG 

in pH5.5 buffer in the presence of 0.2 mM nitromethane. (a) nitromethane (b) nitroethane 

(c) 1-nitropropane (d) 2-nitropropane 
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Figure 4.9 Catalytic efficiency as a logarithmic function of scan rate for 

iNOSoxy/DDAB/PG in pH5.5 buffer in the presence of 0.2 mM nitromethane. (a) 

nitromethane (b) nitroethane (c) 1-nitropropane (d) 2-nitropropane 
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4.3.5 The effect of pH  

The catalytic electroreduction of nitroalkane is a 4-electron 4-proton process. The 

proton availability will obviously affect the efficiency of the catalysis. As seen in Figure 

4.10 and Figure 4.11, catalytic efficiencies decrease with increasing pH. However, the 

trend of decrease for each substrate is irregular and unique, pointing to other factors that 

affect the catalytic reduction at different pHs other than proton availability. 

Nitroalkanes are polar and slightly acidic in aqueous medium. Primary and secondary 

nitroalkanes can dissociate into nitronate anions and protons, Equation 4.2. The aci-nitro 

tautomerism of nitroalkane shows the equilibria of nitronic acid, R1R2C=NO2H (aci form), 

nitroalkane, and the nitronate anion R1R2C=NO2
- in neutral or basic medium, Equation 

4.3.25  

 

R1R2CH-NO2 + H2O   R1R2C=NO2
- + H3O+   (4.2) 

k1 

k-1 
 

R1R2C=NO2H       R1R2C=NO2
- + H+        R1R2CH-NO2 (4.3) 

k-1 

k1 

k2 

k-2 
 

Because of the intramolecular proton transfer, the nitro group can transform into 

several other functional groups. These unique chemical properties may play a role in the 

catalytic electroreduction of nitroalkanes. As shown in Nielsen’s work,25 pH is closely 

related to the tautomerization (equation 2) of nitroalkanes. Since the nitronate anion of 

nitroalkane is not electro reducible,25 the ionization of nitroalkane should have an effect 

on the electroreduction. The ionization constant pKa
nitro (Ka= k1/k-1) and pKa

Aci (Ka= k2/k-2) 

for different nitroalkanes reported by Nielsen25 are in Table 4.5. 
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Table 4.5 Ionization constant of nitroalkanes and nitronic acids in water25 

nitroalkane pKa
nitro pKa

Aci

nitromethane 10.21 3.25 

nitroethane 8.5 4.4 

1-nitropropane 8.98 4.6 

2-nitropropane 7.68 5.1 

 

Since the ionization is much weaker for the nitro form of nitroalkane than the aci 

form, the catalytic efficiency in acidic and neutral media would not be affected too much 

by the ionization of nitroalkanes. However, in basic media, nitroalkanes will transform to 

nitronic acids and make the electroreduction process difficult. For hemin-mediated 

reductions, Figure 4.10a shows nitromethane having the sharpest decrease from pH 9 to 

pH 10.5, and the catalytic efficiency declining slopes (pH >9) follow the order 

nitromethane > nitroethane > 1-nitropropane > 2-nitropropane. This order fits the pKa
Aci 

values of the aci form nitroalkanes. 

We also tested the iNOSoxy-mediated catalytic reduction in the pH range from 5.35 

to 10.00. The trends of the catalytic electroreduction for all the nitroalkane substrates 

were similar. Results show that while iNOSoxy-mediated catalytic reductions are 

dependent on protons, the dependence is less pronounced compared to hemin-mediated 

catalysis. The protein shell of iNOSoxy very likely plays a role in mediating proton 

transfers, which could act as a local buffer counteracting the change in bulk pH.  
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Figure 4.10 Catalytic efficiency as a function of pH for the nitroalkane electroreduction 

on Hm/DDAB/PG electrodes. (1) 0.2 mM nitromethane, (2) 0.2 mM nitroethane, (3) 0.2 

mM 1-nitropropane, and (4) 0.2 mM 2-nitropropane. 
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Figure 4.11 Catalytic efficiency as a function of pH for the nitroalkane electroreduction 

on iNOSoxy/DDAB/PG electrodes. (1) 0.2 mM nitromethane, (2) 0.2 mM nitroethane, (3) 

0.2 mM 1-nitropropane, and (4) 0.2 mM 2-nitropropane. 
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4.3.6 Estimation of heterogeneous and homogeneous reaction rates 

To further shed light on the mechanism and to assess the kinetics of catalytically 

initiated steps, we decided to carry out digital simulation of the voltammetric response of 

each substrate and catalytic system.  

 To test our working mechanism of heme-mediated nitroalkane electroreduction for 

all four substrates, we used digital simulation to calculate voltammetric response and fit 

our experimental data. We only show the results of hemin-mediated reduction. 

The heme-mediated electroreduction of nitroalkanes involves multiple steps of 

chemical and electrochemical reactions as proposed in our previous study, and can be 

generalized as shown in Equation 4.4 to 4.7. The rate constant of each step can be 

adjusted in the program until a satisfactory fit to experimental data is achieved. The 

results from the simulations are tabulated in Table 4.6. The detailed simulation procedure 

is showed in Chapter 2. The simulated voltammograms are shown in Figure 4.12. 

 

R-NO2 + 2 e- + 2 H+    R-N=O + H2O    (direct reduction)  (4.4) 
kS1

 

  

 

   + 2 e- + 2 H+        (4.6) 

 

 

 

 

kS2N R    

O 

Heme(FeII) 

R    N 

OH 

Heme(FeII) 

H 

R    N 

OH 

Heme(FeII) 

H 

k2f
Heme(FeII) + R-NHOH   (4.7) 

(4.5) R    N 

O 
k1f

k1b
R-N=O + Heme(FeII) 

Heme(FeII) 
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Figure 4.12 Digisim® simulation of cyclic voltammograms. (∎) simulated 

voltammogram, (―) experimental voltammogram 

(a) Cyclic voltammogram of Hm/DDAB/PG in the presence of 0.4 mM nitromethane at 

(1) 200 mV/s, (2) 400 mV/s, and (3) 600 mV/s. 

(b) Cyclic voltammogram of Hm/DDAB/PG in the presence of 0.4 mM nitroethane at (1) 

200 mV/s, (2) 400 mV/s, and (3) 800 mV/s. 

(c) Cyclic voltammogram of Hm/DDAB/PG in the presence of 0.4 mM 1-nitropropane at 

(1) 200 mV/s, (2) 400 mV/s, and (3) 800 mV/s. 

(d) Cyclic voltammogram of Hm/DDAB/PG in the presence of 0.4 mM 2-nitropropane at 

(1) 200 mV/s, (2) 400 mV/s, and (3) 800 mV/s. 
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Table 4.6 Digisim® simulation parameters of hemin-catalyzed nitroalkane 

electroreductions. 

 k1f (s-1· M-1) k1b (s-1) k2f  (s-1) kS1 (cm/s) kS2 (cm/s) 

nitromethane 2 × 104 20 70 3.8 × 10-7 0.01 
nitroethane 2 × 104 25 55 3.3 × 10-7 0.01 

1-nitropropane 1.5 × 104 44 46 2.5 × 10-7 0.01 
2-nitropropane 1.5 × 104 50 40 2.1 × 10-7 0.01 

 

For all the substrates, the direct electroreduction of nitroalkane is sluggish (kS1 is in 

10-7 range), whereas the hemin-mediated electroreduction is fast (the rate constant kS2 is 

0.01).  It is common for a catalyzed reaction. The catalyst-substrate complex formation 

rate k1f for smaller nitroalkanes (CH3NO2 and CH3CH2NO2) is faster and slower for the 

larger ones. The catalyst-substrate complex dissociation rate k1b follows the order 

nitromethane<nitroethane<1-nitropropane<2-nitropropane. The simulation results nicely 

agreed with the arguments that in our previous discussion. 

In addition, the results showed that the reaction rate of each step can fit perfectly to 

the Michaelis-Menten parameters (Table 4.4) as we know that by definition, k2f is equal 

to kcat and Km is equal to (k1b + k2f) / k1f.  To show the relationship between Mechaelis-

Menten parameters and reaction rate constants, we put the results from digital simulation 

and the results from Mechaelis-Menten analysis side by side in Table 4.7.  
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Table 4.7 The parameters derived from digital simulation and non-linear regression of 

Mechaelis-Menten plots. 

 Digital simulation Mechaelis-Menten analysis 

 k1f (s-1· M-1) k1b (s-1) k2f  (s-1) Km (mM) kcat (s-1) 

nitromethane 2 × 104 20 70 4.4 ±0.50 68.3 ± 6.3 

nitroethane 2 × 104 25 55 4.04 ±0.25 55.6 ± 4.8 

1-nitropropane 1.5 × 104 44 46 6.03 ±0.39 45.8 ± 3.7 

2-nitropropane 1.5 × 104 50 40 6.11 ±0.69 39.5 ± 4.1 

 

Digital simulation of heme-mediated electroreduction of nitroalkanes confirms our 

generalized mechanism of electrocatalysis. In addition, the rate constants of elementary 

steps of the electroreduction as derived from digital simulations over a range of scan rate 

agree very well with the numbers found for kcat and Km derived from simple Mechaelis-

Menten analysis. 

Simulated catalytic efficiency is obtained by dividing the simulated catalytic current 

(using a proposed mechanism scheme) by the simulated hemin(FeII) current without 

substrate. The simulated catalytic efficiency as a function of scan rate result is shown in 

Figure 4.13. The simulated curve fits our experimental data well as shown in Figure 4.13. 

This great fit of simulated curve to experimental data over a range of scan rates is an 

indication of the validity of the proposed mechanism as reported in the previous section. 
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Figure 4.13 Simulated scan rate dependency curve with experimental data (a) 

nitromethane (b) nitroethane (c) 1-nitropropane (d) 2-nitropropane 
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 4.4 Conclusion 

Mass spectrometry shows that heme-mediated electroreductions of nitromethane, 

nitroethane, 1-nitropropane and 2-nitropropane produce the corresponding alkyl 

hydroxylamines as the final product. The intrinsic properties of aliphatic nitroalkanes 

affect their electroreduction process. The potential of catalytic peak differences among 

the various nitroalkanes seem to match inductive effect of alkyl groups connected to the 

nitro group. The size and shape of the substrate have a clear effect on the turnover rate. 

Smaller nitroalkanes exhibit higher turnover rates as compared to the larger ones. The Km 

value of hemin catalyst for each nitroalkane substrate indicates the stability of the 

catalyst-substrate intermediate complex, which is likely, a heme-nitrosoalkane complex; 

smaller nitroalkanes such as nitromethane and nitroethane exhibit higher stability. The 

study of pH catalysis dependency shows that the catalytic reduction is affected by the 

intrinsic ionization of the nitronic acid. Digisim simulations of cyclic voltammograms not 

only estimate the reaction rate of each elementary step of our proposed mechanism of the 

electrocatalysis, but also reinforce and validate the parameters derived from non-linear 

regression fitting of Michaelis-Menten plots. 
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Appendix A 
 
 
Cyclic Voltammetry 

Cyclic voltammetry (CV) is a potentiodynamic electrochemical technique. In a 

cyclic voltammetry experiment the working electrode potential is scanned linearly versus 

time as shown in the potential waveform plot. When the scan reaches a set point of 

potential, the potential scan is inverted. This inversion can be set multiple times during 

one single experiment. The current passing through the working electrode is recorded 

versus the potential applied to give the cyclic voltammogram. The waveform and 

resulting voltammogram is shown in Figure A1. 
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Figure A1 Waveform and resulting voltammogram of cyclic voltammetry (CV) 
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 Appendix B 
 
 
Demonstration of fabricating PG working electrodes 
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Figure B Fabrication of the PG working electrode. 
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Appendix C 
 
 
DigiSim® simulation 

DigiSim is a simulation software developed by BASi for cyclic voltammetry. 

DigiSim can be used to simulate any electrochemical mechanism that can be expressed in 

terms of single or multiple electron transfer reactions and first- and second-order 

homogenous reactions. In addition, DigiSim can generate dynamic concentration profiles 

and can fit simulated data to imported experimental data.1 

 

Mechanism used to fit our cyclic voltammogram: 

CH3NO2 + 2e = CH3NO 

FeII + CH3NO = FeIICH3NO 

FeIICH3NO + 2e = FeIICH3NHOH 

FeIICH3NHOH = FeII + CH3NHOH 

FeII + e = FeI

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1) Copyright © Bioanalytical Systems, Inc. 
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