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Comprehensive Peroxidase-Based Hematologic Profiling for
the Prediction of 1-Year Myocardial Infarction and Death

Marie-Luise Brennan, MD, PhD; Anupama Reddy, PhD; W.H. Wilson Tang, MD;
Yuping Wu, PhD; Danielle M. Brennan, MS; Amy Hsu, MS; Shirley A. Mann, BS;

Peter L. Hammer, PhD†; Stanley L. Hazen, MD, PhD

Background—Recognition of biological patterns holds promise for improved identification of patients at risk for
myocardial infarction (MI) and death. We hypothesized that identifying high- and low-risk patterns from a broad
spectrum of hematologic phenotypic data related to leukocyte peroxidase-, erythrocyte- and platelet-related parameters
may better predict future cardiovascular risk in stable cardiac patients than traditional risk factors alone.

Methods and Results—Stable patients (n�7369) undergoing elective cardiac evaluation at a tertiary care center were
enrolled. A model (PEROX) that predicts incident 1-year death and MI was derived from standard clinical data
combined with information captured by a high-throughput peroxidase-based hematology analyzer during performance
of a complete blood count with differential. The PEROX model was developed using a random sampling of subjects in
a derivation cohort (n�5895) and then independently validated in a nonoverlapping validation cohort (n�1474).
Twenty-three high-risk (observed in �10% of subjects with events) and 24 low-risk (observed in �10% of subjects
without events) patterns were identified in the derivation cohort. Erythrocyte- and leukocyte (peroxidase)-derived
parameters dominated the variables predicting risk of death, whereas variables in MI risk patterns included traditional
cardiac risk factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model
demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with traditional risk factors
alone (67%). Furthermore, the PEROX model reclassified 23.5% (P�0.001) of patients to different risk categories for
death/MI when added to traditional risk factors.

Conclusion—Comprehensive pattern recognition of high- and low-risk clusters of clinical, biochemical, and hematologic
parameters provided incremental prognostic value in stable patients having elective diagnostic cardiac catheterization
for 1-year risks of death and MI.

Despite recent advances in both our understanding of the
pathophysiology of cardiovascular disease and our abil-

ity to image atherosclerotic plaque, accurate determination of
risk in stable cardiac patients remains a challenge. The
clinically unidentified high-risk patient who does not undergo
aggressive risk factor modification and experiences a major
adverse cardiac event is of great concern.1,2 Similarly, more
accurate identification of low-risk subjects is needed to
refocus finite healthcare resources on those who stand most to
benefit. Most current clinical risk assessment tools involve
algorithms developed from epidemiology-based studies of
untreated primary prevention populations and are limited in
their application to a higher-risk and medicated cardiology
outpatient setting.3 An area of active investigation is the

incorporation of combinations of novel biological markers,
genetic polymorphisms, or noninvasive imaging approaches
for additive prognostic value.4–7 Despite considerable inter-
est, efforts to incorporate more holistic array-based pheno-
typing technologies (eg, genomic, proteomic, metabolomic,
expression array) for improved cardiac risk stratification
remain in their infancy and have yet to be translated into
efficient and robust platforms amenable to the high-
throughput demands of clinical practice.

Blood is a complex but integrated sensor of physiological
homeostasis. Perturbations in blood composition and blood
cell function are seen in both acute and chronic inflammatory



conditions. Elevated leukocyte count (both neutrophils and
monocytes) has long been associated with cardiovascular
morbidity and mortality.8,9 Leukocyte adhesion, activation,
and degranulation and release of peroxidase-containing gran-
ules are key steps in the inflammatory process and have been
implicated in the development and progression of cardiovas-
cular atheroma.10 Myeloperoxidase, an abundant leukocyte
granule protein enriched within culprit lesions,11 is mecha-
nistically linked with multiple stages of cardiovascular dis-
ease,12 including modification of lipoproteins,13–15 creation of
proinflammatory lipid mediators,14,16 regulation of protease
cascades,17,18 and modulation of nitric oxide bioavailability
and vascular tone.19–21 Systemic myeloperoxidase levels are
increased in patients presenting with chest pain22 and sus-
pected acute coronary syndromes23 who subsequently expe-
rience near-term adverse cardiovascular events, and alter-
ations in leukocyte intracellular peroxidase activity are seen
in patients with cardiovascular disease.24,25 Similarly, eryth-
rocytes are critical mediators of both oxygen delivery to
tissues and regulation of nitric oxide delivery and bioavail-
ability within the vascular compartment,26 and platelets are
essential participants in atherothrombotic disease.27,28 Thus,
numerous mechanistic and epidemiological ties exist between
various components and activities of circulating leukocytes,
erythrocytes, and platelets with processes critical to both
vascular homeostasis and progression of cardiovascular dis-
ease.24,25,28–33 Here, we hypothesize that data derived from a
common, high-throughput, peroxidase-based hematology an-
alyzer (including leukocyte-, erythrocyte- and platelet-related
parameters beyond standard complete blood count and dif-
ferential) can provide a broad spectrum of novel data incre-
mental to existing clinical risk assessment in predicting future
cardiovascular risks.

Methods
Study Sample
GeneBank is an institutional review board–approved prospective
cohort study at the Cleveland Clinic with enrollment from 2002 to
2006. Patients were eligible for inclusion if they were undergoing
elective diagnostic cardiac catheterization, were �18 years of age,
and were both stable and without active chest pain at time of
enrollment. All subjects with a positive cardiac troponin T test
(�0.03 ng/mL) on enrollment blood draw immediately before
catheterization were excluded from the study. Indications for cathe-
terization included history of positive or equivocal stress test (46%),
to rule out significant coronary artery disease in the presence of
cardiac risk factors (63%), catheterization before surgery or inter-
vention (24%), recent but historical myocardial infarction (MI; 7%),
prior coronary artery bypass or percutaneous intervention with
recurrence of symptoms (37%), history of cardiomyopathy (3%), or
remote history of acute coronary syndrome (0.9%). All subjects gave
written informed consent approved by the institutional review board.

Collection of Specimens and Clinical Data
Patients were interviewed with the use of a standardized demograph-
ics and clinical history questionnaire. Blood samples were taken
from the femoral artery at the onset of the catheterization procedure
before the administration of heparin, collected into an EDTA tube,
and stored either on ice or at 4°C until transfer to laboratory
(typically within 2 hours) for immediate hematology analyzer
analysis and subsequent processing and storage of plasma at �80°C.
Basic metabolic panel, fasting lipid profile, and high-sensitivity
C-reactive protein levels were measured on the Abbott Architect

platform (Abbott Laboratories, Abbott Park, Ill) in a core laboratory.
Samples were identified by barcode only, and all laboratory person-
nel remained blinded to clinical data. Follow-up telephone inter-
views were performed by research personnel to track patient out-
comes at 1 year, with all events (death and MI) adjudicated and
confirmed by source documentation.

Comprehensive Hematology Analyses
Hematology analyses were performed with an Advia 120 hematol-
ogy analyzer (Siemens, New York, NY). This hematology analyzer
functions as a flow cytometer, using in situ peroxidase cytochemical
staining to generate a complete blood count and differential based on
flow cytometry analysis of whole anticoagulated blood. All hema-
tology measurements used in the present study were generated
automatically by the analyzer during routine performance of a
complete blood count and differential and did not require any
additional sample preparation or processing steps. However, addi-
tional steps must be taken to ensure that the data are saved and
extracted appropriately (as outlined in the Materials section in the
online-only Data Supplement) because not all measurements are
routinely reported. All leukocyte-, erythrocyte-, and platelet-related
parameters derived from both cytograms and absorbance data were
extracted from instrument data (DAT) files by blinded laboratory
technicians. All hematology parameters used demonstrated repro-
ducible results (with SD from mean �30%) on replicate intraday and
interday (�10 times) analyses. Examples of a leukocyte cytogram
and a table listing all hematology analyzer elements recovered and
used for analysis are included in the Materials section in the
online-only Data Supplement.

Statistical Analyses and Construction of the
PEROX Score
An initial 7466 subjects were consented for hematology analyses. Of
these, 7369 (98.7%) were included in statistical analyses. The 97
subjects not included in statistical analyses were excluded because
they were lost to follow-up, they subsequently asked to be withdrawn
from the study, or their hematology laboratory data failed to meet
quality control parameters (eg, platelet clumping or hemolyzed
sample). The initial data set was stratified on the basis of whether a
patient experienced an adjudicated event (nonfatal MI or death) by 1
year after enrollment. Randomization using a uniform distribution
method was performed to randomly select 80% of patients (deriva-
tion cohort) for model building, and the remaining 20% (validation
cohort) was set aside for model testing and validation before
statistical analyses. Mean and median differences were assessed with
the Student t test and Mann-Whitney U test, respectively. For the
purpose of ranking, univariate hazard ratios (HRs) were generated
for continuous variables or logarithmically transformed continuous
variables (if not normally distributed).

To establish an individual subject’s risk, a score was developed
(PEROX) by initially identifying binary variable pairs that form
reproducible high-risk (observed in �10% of subjects with events)
and low-risk (observed in �10% of subjects without events) patterns
for death or MI at 1-year using the logical analysis of data
method.34–36 Using this combinatorics and optimization-based math-
ematical method, we derived a single calculated value for an
individual’s overall 1-year risk for death or MI from a weighted
integer sum of high- and low-risk patterns present. Briefly, logical
analysis of data was first used to identify binary variable pairs that
form reproducible positive and negative predictive patterns for risk
for death or MI at 1 year. Variables were included on the basis of
clinical significance, perceived potential informativeness, reproduc-
ibility (for hematology parameters) as monitored in interday and
intraday replicates, and nonredundancy as assessed by cluster anal-
ysis performed within leukocyte, erythrocyte, and platelet subgroups.
More details on logical analysis of data variable selection and
analyses are provided in the Materials section in the online-only Data
Supplement. Criteria for the development of the PEROX model
included 3 equal proportions for each hematology parameter, 2
variables per pattern, and a minimal prevalence of 10% of the events



for high-risk and 10% of nonevents for low-risk patterns. Patterns
were generated through the use of logical analysis of data software
(http://pit.kamick.free.fr/lemaire/software-lad.html)34–36 and tuned
for both homogeneity and prevalence to obtain best accuracy on
cross-validation experiments. The weights for each positive and
negative pattern were determined by the following: 1 divided by the
number of high-risk patterns and �1 divided by the number of
low-risk patterns, respectively. An overall risk score for a patient was
calculated by the sum of positive and negative pattern weights. A
maximum score of 1 would be calculated in a patient with only
positive patterns; a minimum score of �1 would be present in a
patient with only negative patterns. The original score range was
adjusted from �1 to a range of 0 to 100 by assuming 50 (rather than
0) as the midpoint of equal variance. The PEROX score was thus
calculated as follows: 50�[(1/23 possible high-risk patterns)�(No.
of actual high-risk patterns)�(1/24 possible low-risk patterns)�(No.
of low-risk patterns)]�50. The reproducibility of the PEROX score
was assessed by examining multiple replicate samples from multiple
subjects both within and between days, revealing intraday and
interday coefficients of variance of 5�0.4% and 10�2%
(mean�SD), respectively. A more detailed explanation of how the
PEROX score was built and a complete list of all hematology
analyzer variables used within the PEROX score (including an example
calculation using patient data) are provided in the Materials section in the
online-only Data Supplement.

Validation of PEROX Score and Comparisons
Kaplan-Meier survival curves for PEROX model tertiles were
generated within the validation cohort for the 1-year outcomes,
including death, nonfatal MI, or either outcome, and compared by
log-rank test. Cox proportional-hazards regression was used for
time-to-event analysis to calculate HRs and 95% confidence inter-
vals (CIs) for 1-year outcomes of death, MI, or either outcome.
Cubic splines (with 95% CIs) were generated to examine the
relationship between PEROX model and 1-year outcomes from the
derivation cohort, superimposed with absolute 1-year event rates
observed in the validation cohort.

Receiver-operating characteristic (ROC) curves were plotted and
area under the curve (AUC) was estimated for 1-year outcomes for
the validation cohort with the use of risk scores assigned by the
PEROX model along with traditional risk factors (including age,
gender, smoking, low-density lipoprotein [LDL] cholesterol, high-
density lipoprotein [HDL] cholesterol, systolic blood pressure, and
history of diabetes mellitus) and compared with risk models incor-
porating traditional risk factors alone. To obtain an unbiased estimate
of AUC, resampling (250 bootstrap samples from the validation
cohort) was performed. For each bootstrap sample, AUC values were
calculated for traditional risk factors with and without PEROX.
AUCs were compared by using a method of comparing correlated
ROC curves to calculate P values for each bootstrap sample.37 The
Friedman test blocked on replicate was also used to compare AUCs
of 250 bootstrap samples.38 In addition, the net reclassification
improvement (NRI) was determined by assessing net improvement
in risk classification (higher predicted risk in subjects with events at
1 year, lower predicted risk in subjects without events at 1 year)
using a ratio of 6:3:1 for low-, medium-, and high-risk categories.39

Consistency of risk stratification was also evaluated by applying
ROC analyses to models composed of traditional risk factors alone or
in combination with the PEROX risk score within the entire cohort,
as well as within primary prevention and secondary prevention
subgroups. Statistical analyses were performed with SAS 8.2 (SAS
Institute, Inc, Cary, NC) and R 2.8.0 (Vienna, Austria). Values of
P�0.05 were considered statistically significant.

Results
Clinical and laboratory parameters used in the development
of the PEROX model are shown in Table 1 and were similar
between the derivation and validation cohorts. One-year
event rates for incident nonfatal MI or death, individually and
as a composite, did not significantly differ between the

derivation and validation cohorts (P�0.37 for MI; P�0.50
for death; P�1.00 for MI or death). Many traditional cardiac
risk factors such as elevations in total cholesterol, LDL
cholesterol, and triglycerides predicted 1-year death or MI as
expected. Reduced diastolic blood pressure and body mass
index were associated with a decrease in risk, likely reflecting
confounding by indication bias whereby patients with a
higher prevalence of comorbidities are more likely to be
taking medication or undergoing aggressive interventions.
Multiple statistically significant HRs were observed between
various leukocyte, erythrocyte, and platelet parameters and
incident 1-year risks for nonfatal MI and death in univariate
analyses, consistent with multiple prior individual reported
associations with various hematologic parameters30–33 (see
the Materials section in the online-only Data Supplement).

Comprehensive Hematologic Profile Patterns
Identify Patient Risk for MI or Death
In the derivation cohort, 23 high-risk patterns (Table 2) were
identified in patients who were more likely to experience death
(�3.6-fold risk) or MI (�1.4-fold risk) over the ensuing year.
Unique discriminating patterns in those who died included
variables derived from multiple erythrocyte- and leukocyte
(peroxidase)-related parameters, as well as plasma levels of
C-reactive protein. High-risk patterns for MI included multiple
erythrocyte, leukocyte (peroxidase), and platelet parameters;
traditional risk factors; and blood chemistries (Table 2). Vari-
ables common to both high-risk death and MI patterns included
age, hypertension, mean red blood cell hemoglobin concentra-
tion, hemoglobin concentration distribution width, hypochromic
erythrocyte cell count, and peroxidase y sigma (a peroxidase-
based measure of neutrophil size distribution).

An additional 24 low-risk patterns (Table 3) were observed
in patients less likely to experience death (�0.34-fold risk) or
MI (�0.57-fold risk). Variables that were shared between
low-risk patterns for both death and MI risk included
C-reactive protein levels, absolute neutrophil count, mean
platelet concentration (a flow cytometry determined index of
platelet granule content), and monocyte/polymorphonuclear
valley (a measure of separation among clusters of peroxidase-
containing cell populations). In general, the low-risk patterns
for incident 1-year death and MI risk are dominated by
multiple diverse hematology analyzer variables of all 3 blood
cell types (erythrocyte, leukocyte, and platelet) and age.

A composite PEROX model for prediction of incident 1-year
death or nonfatal MI risk was generated within the derivation
cohort by summing individual high- and low-risk patterns for
death and MI individually. The reproducibility of the PEROX
model was assessed by examining multiple replicate samples
from multiple subjects both within and between days, revealing
intraday and interday coefficients of variance of 5�0.4% and
10�2% (mean�SD), respectively. Stability of high- and low-
risk patterns used for construction of the PEROX score and
model validation analyses with the Somers D rank correlation40

and Hosmer-Lemeshow statistic41 are provided in the Materials
section in the online-only Data Supplement.

The PEROX Model Predicts Incident 1-Year Risks
for Nonfatal MI and Death
Within the derivation cohort, the PEROX model ROC curve
analyses for the 1-year end points of death, MI, and the



composite of death or MI demonstrated AUCs of 80%, 66%, and
75%, respectively. For the composite end point, an ROC curve
potential cut point was identified that was virtually identical to
the top tertile cut point within the derivation cohort.

Initial characterization of the performance of the PEROX
score within the validation cohort included time-to-event analy-
sis for death, MI, or the composite of either event using risk
score tertiles to stratify subjects into equivalently sized groups of
low, medium, and high risk (Figure 1A through 1C). For each
outcome monitored, increasing cumulative event rates were
noted over time within increasing tertiles (log-rank P�0.001 for
each outcome). Figure 1D through 1F demonstrates the relation-
ship between predicted (and 95% CI) absolute 1-year event rates
estimated by PEROX score within the validation cohort. Also
shown are actual event rates plotted in deciles of PEROX scores
for both the derivation and validation cohorts. Observed event
rates from the derivation cohort were similar to those observed
in the validation cohort (Figure 1D through 1F), and strong tight
positive associations were noted between increasing risk score
and risk for experiencing nonfatal MI, death, or the composite
adverse outcome.

Relative Performance of the PEROX Model for
Accurate Risk Assessment and Reclassification
of Patients
In additional analyses within the validation cohort, ROC curve
analyses were performed comparing the accuracy of traditional
cardiac risk factors alone and with PEROX for the prediction of
1-year death or MI. Traditional risk factors alone showed modest
accuracy (AUC�67%) for 1-year death or MI, whereas the
addition of the PEROX risk score to traditional risk factors
significantly increased prognostic accuracy (AUC�78%;
P�0.001). To further evaluate the validity of the PEROX score,
resampling (250 bootstrap samples from the validation cohort,
n�1474) was performed and ROC analyses for each bootstrap
sample was calculated for the prediction of 1-year death or MI
risk. Compared with traditional risk factors alone, the PEROX
score demonstrated superior prognostic accuracy among sub-
jects within the independent validation cohort (Figure 2). When
PEROX risk score categories were defined by tertiles (in which
approximately equal proportions of subjects within the entire
cohort are stratified into each risk bin), the 1-year event rate for
death/MI among subjects stratified within high– versus low–

Table 1. Clinical and Laboratory Parameters

Derivation Cohort
(n�5895)

Validation Cohort
(n�1474)

Death at 1 y,
HR (95% CI)

MI at 1 y,
HR (95% CI)

Traditional risk factors

Age, y* 64.1�11.3 64.1�10.9 1.88 (1.65–2.14)† 1.14 (0.99–1.32)

Male, n (%)* 4021 (68) 1024 (69) 0.93 (0.73–1.18) 1.21 (0.88–1.66)

History of hypertension, n (%)* 4335 (74) 1075 (73) 1.67 (1.24–2.25)† 1.53 (1.07–2.19)†

Current smoking, n (%)* 770 (13) 162 (11)† 0.90 (0.63–1.29) 1.28 (0.87–1.89)

History of smoking, n (%) 3869 (66) 995 (68) 1.35 (1.04–1.74)† 0.90 (0.67–1.20)

Diabetes mellitus, n (%)* 2054 (35) 544 (37) 2.09 (1.66–2.62)† 1.55 (1.17–2.06)†

History of CVD, n (%) 4056 (71) 1017 (71) 2.95 (1.85, 4.70)† 2.41 (1.39–4.19)†

Laboratory measurements

Fasting blood glucose, mg/dL* 111�47 112�43 1.23 (1.13–1.33)† 1.27 (1.16–1.39)†

Creatinine, mg/dL* 1.1 (0.8–1.1) 1.1 (0.8–1.1) 1.57 (1.48–1.67)† 1.22 (1.09–1.37)†

Potassium, mmol/L* 4.2 (4.0–4.5) 4.2 (4.0–4.5) 1.10 (1.04–1.17)† 0.97 (0.84–1.12)

C-reactive protein, mg/dL* 3.0 (1.7–5.9) 3.0 (1.6–5.5) 1.92 (1.71–2.16)† 1.21 (1.05–1.40)†

Total cholesterol, mg/dL 176�43 178�43 0.71 (0.62–0.81)† 0.93 (0.80–1.07)

LDL cholesterol, mg/dL 100�36 101�36 0.78 (0.69–0.89)† 0.97 (0.84–1.13)

HDL cholesterol, mg/dL* 46�14 46�14 0.84 (0.74–0.95)† 0.71 (0.60–0.84)†

Triglycerides, mg/dL* 160�119 163�120 0.82 (0.71–0.96)† 1.07 (0.96–1.19)

Clinical characteristics

Systolic blood pressure, mm Hg* 135�21 136�22† 0.96 (0.85–1.07) 1.17 (1.02–1.34)†

Diastolic blood pressure, mm Hg 75�12 75�13 0.81 (0.73–0.90)† 0.97 (0.85–1.12)

Body mass index, kg/m2* 30�6 30�6 0.78 (0.68–0.89)† 0.90 (0.78–1.05)

Aspirin use, n (%) 4270 (72) 1087 (73) 0.64 (0.51–0.81)† 0.93 (0.68–1.27)

Statin use, n (%) 3450 (59) 869 (59) 0.82 (0.65–1.03) 0.70 (0.53–0.92)†

Events

Death at 1 y, n (%) 242 (4) 54 (4)

MI at 1 y, n (%) 148 (3) 44 (3)

CVD indicates cardiovascular disease. Data are shown as mean�SD for normally distributed continuous variables, median
(interquartile range) for nonnormally distributed continuous variables, or number in category (percent of total in category) for
categorical variables. HRs were calculated per SD (for normally distributed variables). For variables with nonnormal distribution
(creatinine, potassium, C-reactive protein), values were log transformed, and HRs were calculated per log of SD.

*Variables ultimately included in the PEROX model.
†P�0.05.



PEROX-risk groups was 14% versus 2%, a 7-fold risk gradient.
Results of Cox proportional-hazards regression for time-to-event
analyses within the validation cohort (n�1434) are shown in
Table 4 and reveal that the PEROX risk score significantly
predicts the major adverse cardiac end points of death, MI, or the
composite end point even after adjustment for traditional risk
factors. Subjects with a high (top tertile) PEROX risk category
relative to low (bottom tertile) PEROX risk show an HR of
6.5 (95% CI, 4.9 to 8.6) for 1-year death/MI. The potential

clinical utility of the PEROX risk score was further compared
with traditional risk factors in reclassifying patients into risk
groups. As shown in Table 5, adding the PEROX score
significantly improves risk classification at the 1-year
follow-up for death (NRI�19.4%; P�0.001), MI
(NRI�15.6; P�0.002), or both events (NRI�23.5; P�0.001)
compared with traditional risk factors alone. These findings
are consistent among either primary or secondary prevention
subjects (Table 6).

Table 2. High-Risk Patterns in PEROX Model for 1-Year Death or MI

Pattern n Rate, % HR (95% CI)

Death, high risk

1 Hgb content distribution width �3.93 and RBC hgb
concentration mean �35.07

815 13* 4.94 (3.88–6.30)

2 Hypochromic RBC count �189 and Hgb content
distribution width �3.93

658 13* 4.47 (3.48–5.73)

3 Mean corpuscular Hgb concentration �34.38 and
perox d/D �0.89

466 14* 4.46 (3.42–5.81)

4 Hypochromic RBC count �189 and macrocytic RBC
count �192

588 13* 4.37 (3.39–5.64)

5 Mean corpuscular Hgb concentration �33.00 and
mononuclear central x channel �14.38

422 14* 4.37 (3.33–5.74)

6 Age �67 and hematocrit �36.45 515 13* 4.08 (3.13–5.32)

7 Mononuclear polymorphonuclear valley �18.50 and
peroxidase y sigma �9.48

474 13* 3.85 (2.93–5.07)

8 Mononuclear central x channel �14.38 and
peroxidase y mean �19.02

494 12* 3.68 (2.80–4.85)

9 C-reactive protein �13.75 and history of
hypertension

531 12* 3.63 (2.77–4.76)

MI, high risk

1 Mean platelet concentration �27.89
and potassium �3.85

332 5† 2.17 (1.33–3.56)

2 Triglycerides �130 and age �76 464 5† 1.94 (1.23–3.04)

3 RBC distribution width �13.83 and lymphocyte
count �1.75

371 5† 1.93 (1.18–3.17)

4 Hypochromic RBC count �56 and diabetes mellitus 1212 4† 1.91 (1.37–2.68)

5 Body mass index �24.7 and neutrophil count �3.58 446 4† 1.91 (1.20–3.03)

6 Systolic blood pressure �150 and history
of hypertension

1163 4† 1.89 (1.35–2.66)

7 Polymorphonuclear cluster x axis mode �29.87 and
RBC distribution width �13.22

729 4† 1.80 (1.22–2.67)

8 Hgb distribution width �2.69 and peroxidase y
sigma �8.59

842 4† 1.79 (1.23–2.61)

9 Platelet concentration distribution width �5.39 and
RBC hgb concentration mean �34.69

870 4† 1.79 (1.23–2.60)

10 Mean corpuscular hemoglobin �32.60 and male 500 4† 1.78 (1.13–2.81)

11 Lymphocyte count �0.96 and potassium �4.4 387 4† 1.73 (1.04–2.87)

12 Platelet concentration distribution width �6.04 and
monocyte count �0.46

119 4† 1.7 (0.71–4.06)

13 Neutrophil cluster mean y �71.19 and current
smoker

447 4† 1.69 (1.04–2.74)

14 Mean platelet concentration �23.19 and basophil
count �0.12

178 3† 1.36 (0.61–3.03)

Hgb indicated hemoglobin; RBC, red blood cell. Shown above are high-risk patterns present in the population, with n representing
the number of patients in the derivation cohort in each pattern. The event rate within each pattern and HR (95% CI) are shown for
each pattern based on univariate Cox models for ranking purposes. Units for each variable are shown in Table 1.

*Death rate.
†MI rate.



Discussion
Studies by our group25 and Buffon et al24 previously implicated
intracellular peroxidase content of leukocytes in cardiovascular
risk stratification of patients. From these preceding observations
and the numerous mechanistic links between myeloperoxi-
dase,12,42 monocytes,43,44 and neutrophils45 for atherosclerosis
and acute coronary syndromes, we hypothesized that data

derived from a peroxidase-based hematology analyzer would
harbor clinically useful information related to cardiovascular
disease prognosis. As the analyses unfolded, it became clear that
patterns generated by a combination of clinical information and
alternative hematology measures could provide significant in-
cremental value. In particular, review of the components con-
tributing to the high- and low-risk patterns that contribute to the

Table 3. Low-Risk Patterns in PEROX Model for 1-Year Death or MI

Pattern n Rate, % HR (95% CI)

Death, low risk

1 RBC hgb concentration mean �35.07 and
hematocrit �42.25

1443 1* 0.18 (0.10–0.31)

2 Macrocytic RBC count �192 and age �67 2283 1* 0.22 (0.15–0.32)

3 RBC Hgb concentration mean �35.07 and RBC
count �4.42

1494 1* 0.24 (0.15–0.38)

4 Mean platelet concentration �27.52 and age �67 1651 1* 0.24 (0.16–0.38)

5 Peroxidase y sigma �8.10 and age �67 1982 1* 0.26 (0.17–0.38)

6 C-reactive protein �4.0 and hematocrit �42.25 1688 1* 0.26 (0.17–0.40)

7 Hematocrit �42.25 and perox d/D �0.89 1972 1* 0.27 (0.18–0.40)

8 Mononuclear polymorphonuclear valley �18.50
and age �67

1750 1* 0.27 (0.18–0.41)

9 RBC Hgb concentration mean �35.07 and white
blood cell count �5.86

1436 1* 0.30 (0.19–0.46)

10 Neutrophil count �3.96 and age �67 1697 2* 0.34 (0.23–0.49)

MI, low risk

1 No history of cardiovascular disease and RBC
distribution width �13.22

919 1† 0.31 (0.15–0.63)

2 Lymphocyte/large unstained cell threshold �44.50
and blasts �0.51%

946 1† 0.34 (0.17–0.66)

3 Systolic blood pressure �134 and basophil count
�0.03

743 1† 0.34 (0.16–0.73)

4 Platelet clumps �41 and fasting blood glucose
�92.5

782 1† 0.37 (0.18–0.76)

5 Hemoglobin distribution width �2.69 and
hypochromic RBC count �14

891 1† 0.41 (0.22–0.77)

6 Hypochromic RBC count �14 and Neutrophil count
�5.83

1159 1† 0.43 (0.25–0.74)

7 Mononuclear central x channel �12.70 and
neutrophil y cluster mean �69.30

841 1† 0.44 (0.23–0.82)

8 Mononuclear polymorphonuclear valley �14.50
and creatinine �0.75

910 1† 0.44 (0.24–0.81)

9 No history of cardiovascular disease and systolic
blood pressure �134

756 1† 0.44 (0.23–0.86)

10 No. of peroxidase-saturated cells �0.01 and
neutrophil count �4.69

781 1† 0.47 (0.25–0.90)

11 HDL cholesterol �59 and mean platelet
concentration �28.56

830 1† 0.49 (0.27–0.90)

12 Mononuclear central x channel �12.70 and
C-reactive protein �5.31

896 1† 0.49 (0.27–0.88)

13 Mononuclear central x channel �12.70 and
basophil count �0.07

961 1† 0.54 (0.31–0.93)

14 No history of cardiovascular disease and
neutrophil cluster mean x �66.07

1261 2† 0.57 (0.36–0.92)

RBC indicates red blood cell; Hgb, hemoglobin. Shown are low-risk patterns present in the population, with n representing the
number of patients in derivation cohort in each pattern. The event rate within each pattern and HR (95% CI) are shown for each pattern
based on univariate Cox models for ranking purposes. Units for each variable are shown in Table 1.

*Death rate.
†MI rate.



PEROX model reveals that a number of erythrocyte- and
leukocyte-related phenotypes, as well as a smaller number of
platelet-related parameters, provided prognostic value in identi-
fying individuals in this population at both increased and
decreased risk for near-term adverse cardiac events. The present
studies show that alterations in multiple subtle phenotypes
within leukocyte, erythrocyte, and platelet lineages can provide
prognostic information relevant to cardiovascular health and
atherothrombotic risk, consistent with the numerous mechanistic
links to cardiovascular disease pathogenesis for each of these
hematopoietic lineages. Hematology analyzers are some of the
most commonly used instruments within hospital laboratories.
Our studies show that information already captured by these
instruments during routine use (but not typically reported) can
aid in the clinical assessment of a stable cardiology patient,
dramatically improving the accuracy with which subjects can be
risk classified at both the high- and low-risk ends of the
spectrum. Blood is a dynamic integrated sensor of the physio-
logical state. A hematology analyzer profile serves as a holistic
assessment of a broad spectrum of phenotypes related to multi-
ple diverse and mechanistically relevant cell types from which
we can recognize patterns, like fingerprints, that provide clini-
cally useful information in the evaluation of cardiovascular risk
in subjects.

Another intriguing finding in the present studies is how
much hematology parameters, especially from erythrocyte
and leukocyte lineages, contribute to the prognostic value of
the PEROX model. This observation strongly underscores the
growing appreciation that atherosclerosis is a systemic dis-
ease, with parameters in the blood combined with biochem-
ical profiles of systemic inflammation being strongly linked
to disease pathogenesis. Although many of the patterns
identified as low-and high-risk traits within subjects are of
unclear biological meaning, a large number are made up of
elements with recognizable mechanistic connections to dis-
ease pathogenesis. As a group, all patterns reported appear to
be robust, reproducible, and present in multiple independent
samplings of the independent validation cohort. The identifica-
tion of reproducible high- and low-risk patterns among the
clinical, laboratory, and hematologic parameters monitored fur-
ther indicates the presence of underlying complex relationships
between multiple hematologic parameters, clinical and met-
abolic parameters, and cardiovascular disease pathogenesis.

Much interest focuses on the idea that array-based pheno-
typing will play an ever-increasing role in the future of
preventive medicine, serving as a powerful method to im-
prove risk classification of subjects and ultimately individu-
alize tailored therapies. Rather than use research-based arrays

Figure 1. Kaplan-Meier curves and com-
posite risk for 1-year outcomes based
on tertiles of PEROX risk score in the
validation cohort. Kaplan-Meier curves
for cumulative probability of death (A),
MI (B), or either event (C) according to
low, medium, and high tertiles of PEROX
score. Spline curves (solid line) with 95%
CIs (dashed line) showing association
between cumulative event (y axis) for
death (D), MI (E), and death or MI (F) for
PEROX score (x axis) are shown. Also
illustrated are the absolute event rates
per decile of PEROX score within the
derivation (red solid circle) and validation
(blue solid circle) cohorts. Vertical dotted
lines indicate the tertile cut points sepa-
rating low (�40), medium (�40 to �48),
and high (�48) PEROX scores.



(genomic, proteomic, metabolomic, expression array) that are
no doubt powerful and extremely useful, we decided to use a
robust, high-throughput workhorse of clinical laboratory
medicine that is already in broad clinical use: the hematology

analyzer. The hematology analyzer selected is commonly
available worldwide and has the added advantage of being a
flow cytometer that uses in situ peroxidase cytochemical
staining for identifying and quantifying leukocytes, an added
phenotypic dimension relevant to disease pathogenesis. Al-
though the precise risk score developed here should be
considered only proof of concept, the holistic approach taken

Figure 2. Validation analysis of PEROX risk score. Models were
assessed for their association with 1-year incident risk of MI or
death. Models were made up of traditional risk factors alone
(including age, gender, smoking, LDL cholesterol, HDL choles-
terol, systolic blood pressure, and history of diabetes mellitus)
vs traditional risk factors plus PEROX score. Resampling (250
bootstrap samples from the validation cohort, n�1474) was per-
formed. All data analyses, including ROC analyses and AUC
determinations, were separately recalculated at each resampling
for models with/without PEROX score. The AUCs calculated
from the bootstrap samples are compared by the use of side-
by-side box plots in which boxes represent interquartile ranges
(defined as the difference between the first and third quartiles)
and whiskers represent the 5th and 95th percentile values.

Table 4. Unadjusted and Adjusted HR of PEROX Risk Scores
for Adverse Cardiac Events at the 1-Year Follow-Up

HR (95% CI) P

Death

Unadjusted 3.68 (2.72–4.96) �0.001

Adjusted 3.74 (2.61–5.36) �0.001

MI

Unadjusted 1.77 (1.31–2.38) �0.001

Adjusted 2.00 (1.40–2.87) �0.001

Death/MI

Unadjusted 2.57 (2.06–3.21) �0.001

Adjusted 2.76 (2.14–3.57) �0.001

Multivariate Cox models were constructed within the validation cohort
(n�1434) for the end points of death, MI, or the composite of death or MI using
either the PEROX risk score alone or the PEROX risk score adjusted for
traditional risk factors including age, gender, smoking, LDL cholesterol, HDL
cholesterol, systolic blood pressure, and history of diabetes mellitus. The HRs
shown correspond to 1-SD increment.

Table 5. Reclassification Among Subjects Who Experienced
Versus Did Not Experience Adverse Clinical Event at the
1-Year Follow-Up

IDI
Event-Specific

Reclassification

% P NRI, % P

Death

Without PEROX … … … …

With PEROX 0.316 �0.001 0.194 �0.001

MI

Without PEROX … … … …

With PEROX 0.140 �0.001 0.156 0.002

Death/MI

Without PEROX … … … …

With PEROX 0.220 �0.001 0.235 �0.001

Both NRI and integrated discrimination improvement (IDI) were used to
quantify improvement in model performance. P values compare models with
and without PEROX risk scores. Both models were adjusted for traditional risk
factors including age, gender, smoking, LDL cholesterol, HDL cholesterol,
systolic blood pressure, and history of diabetes mellitus. Cutoff values for NRI
estimation used a ratio of 6:3:1 for low-, medium-, and high-risk categories.
The risk of adverse cardiac events was estimated with the Cox model.

Table 6. AUC Values of Models With/Without PEROX Risk Scores
for Adverse Cardiac Events at the 1-Year Follow-Up Stratified
According to Primary Versus Secondary Prevention Status

Primary Prevention
(n�1859)

Secondary Prevention
(n�5510)

Death events, n 40 256

Without PEROX 69 70

With PEROX 81 80

P 0.009 �0.001

MI events, n 23 169

Without PEROX 58 62

With PEROX 71 68

P 0.072 0.007

Death/MI events, n 63 416

Without PEROX 64 65

With PEROX 78 75

P �0.001 �0.001

ROC curves and AUCs were calculated for 1-year death, MI, and combined death
or MI end points. ROC curves for the models with/without PEROX were constructed,
and the corresponding AUC values were compared. One-year predicted probabil-
ities of an adverse cardiac event were estimated from the Cox model. P values
shown represent a comparison of AUC values estimated from models with and
without PEROX risk score among primary prevention or secondary prevention
subjects within the whole cohort (n�7369). Both models were adjusted for
traditional risk factors including age, gender, smoking, LDL cholesterol, HDL
cholesterol, systolic blood pressure, and history of diabetes mellitus.



illustrates that in the outpatient cardiology setting, these
hematologic data may add prognostic information.

Limitations of the study are worth noting. Foremost,
although the study population examined is large and replica-
tion of the findings is observed within multiple samplings of
an entirely distinct, nonoverlapping validation cohort of
subjects, the generalizability of these findings to other pop-
ulations remains to be tested. The population examined,
although stable and without evidence of myocardial necrosis
(ie, cardiac troponin T negative), was nonetheless selected by
referral for elective diagnostic coronary angiography. Fur-
thermore, although the PEROX score predicted incident MI
risk, it is notable that the PEROX offers lower discrimination
for MI than for death. In this regard, it would be helpful to
know the causes of death and the C statistic for cardiovascular
mortality because only all-cause mortality data were avail-
able. It should also be noted that the present study represents
a large, single-center study with �90% whites and a high
degree of cardiovascular risk factors and comorbidities, some
of which (eg, left ventricular function, measures of fitness or
frailty, pulmonary diseases, performance of stress test) were
not available in all subjects and therefore not included in the
model. Several alternative populations (such as community-
based or previously untreated populations) will be particu-
larly interesting to examine with the PEROX model. Simi-
larly, patients in whom complete blood count is already being
measured (eg, those presenting with chest pain and suspected
acute coronary syndromes) represent a particularly attractive
cohort to monitor, given the high-throughput nature of the
hematology analyzer and the existing availability of the data.
One might hypothesize that additional platelet parameters, for
example, might add to rapid risk screening in such a cohort.
Whereas the process for generating the PEROX score may be
applied elsewhere, in each setting, it is essential to incorpo-
rate additional key clinical variables when available, and it
may be necessary to modify the PEROX model or to
recalibrate the PEROX score based on local distributions of
clinical and hematologic variables.

Conclusion
The results from the present studies suggest that the expanded
use of more comprehensive hematology analyzer profiling of
blood holds promise for improved risk stratification, more
efficient targeting of preventive risk reduction efforts, and
potential for monitoring of therapeutic responses in the future.
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