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ABSTRACT

The misreplication of damaged DNA is an important
biological process that produces numerous adverse
effects on human health. This report describes
the synthesis and characterization of a non-natural
nucleotide, designated 3-ethynyl-5-nitroindolyl-20-
deoxyriboside triphosphate (3-Eth-5-NITP), as a
novel chemical reagent that can probe and
quantify the misreplication of damaged DNA.
We demonstrate that this non-natural nucleotide
is efficiently inserted opposite an abasic site, a
commonly formed and potentially mutagenic
non-instructional DNA lesion. The strategic place-
ment of the ethynyl moiety allows the incorporated
nucleoside triphosphate to be selectively tagged
with an azide-containing fluorophore using ‘click’
chemistry. This reaction provides a facile way to
quantify the extent of nucleotide incorporation
opposite non-instructional DNA lesions. In
addition, the incorporation of 3-Eth-5-NITP is
highly selective for an abasic site, and occurs
even in the presence of a 50-fold molar excess of
natural nucleotides. The biological applications of
using 3-Eth-5-NITP as a chemical probe to monitor
and quantify the misreplication of non-instructional
DNA lesions are discussed.

INTRODUCTION

Cellular DNA is frequently damaged by exposure to a
wide variety of internal and external DNA damaging
agents. While the resulting DNA lesions can be repaired
by several independent pathways (1), they are also
inappropriately replicated by DNA polymerases in a
complex biological process known as translesion DNA
synthesis (TLS) (2). TLS can cause increased levels of

mutagenesis that can in turn spark the development of
diseases such as cancer. Despite the biological importance
and medical ramifications of TLS, relatively little is
known regarding the cellular mechanisms by which
DNA polymerases misreplicate DNA lesions.
Abasic sites are one of the most commonly formed

DNA lesions that can be misreplicated to cause mutagen-
esis (3). These non-instructional DNA lesions form spon-
taneously at rates ranging between 10 000 and 200 000 per
day per cell (4,5). In addition, DNA damaging agents such
as temozolomide which are used in cancer chemotherapy
(6) can significantly increase the rates of their formation.
While abasic sites lack templating information, most
high-fidelity DNA polymerases preferentially incorporate
dATP opposite this lesion (7,8). This unusual specificity
in nucleotide selection is commonly referred to as the
‘A-rule’ and could account for the mutagenic potential
of this non-instructional lesion (9,10). Surprisingly,
members of Y-family DNA polymerases do not obey the
‘A-rule’. For example, Rev1 inserts dCTP opposite abasic
sites with a higher catalytic efficiency than dATP, dGTP,
or dTTP (11). In this case, dCTP incorporation is
mediated by interactions of the incoming nucleotide with
an active site arginine residue. However, not all
‘specialized’ polymerases show this preference. A recent
report by Choi et al. (12) demonstrated that other
specialized DNA polymerases such as pol k insert dCTP
and dATP opposite this lesion, while pol Z preferentially
inserted dTTP and pol i inserted dTTP, dGTP and dATP.
To investigate the molecular basis for the ‘A-rule’

catalyzed by high-fidelity polymerases, we developed
a series of non-natural nucleotides that mimic dATP
and characterized their incorporation opposite DNA
containing a tetrahydrofuran moiety which is a stable
and non-reactive mimetic for an abasic site (Figure 1A)
(13–17). One particular analog, designated 5-nitroindolyl-
20-deoxynucleoside triphosphate (5-NITP) (Figure 1B), is
noteworthy as it is incorporated opposite an abasic site
with an incredibly high catalytic efficiency (kpol/Kd) of
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106M�1 s�1 by the high-fidelity bacteriophage T4 DNA
polymerase (13,14). This kpol/Kd value is �1000-fold
higher than dATP, the preferred natural nucleotide
substrate (18). Subsequent crystal structures of an

exonuclease deficient variant of analogous DNA poly-
merase from bacteriophage RB69 showed that the
non-natural nucleotide existed in an interhelical configur-
ation when paired opposite the lesion (19). This thermo-
dynamically favored configuration explains the enhanced
kinetics of 5-NITP as the nucleotide is stabilized by
dipole-induced stacking interactions between the 5-nitro
group and the nucleobase that is 30 to the lesion.
Equally important, this nucleotide analog is poorly
inserted opposite any of the four natural nucleobases,
displaying low catalytic efficiencies of >103M�1s�1

(13,14). In fact, 5-nitroindole was initially reported as a
‘universal nucleobase’ due to its ability to indiscriminately
pair with each of the four natural nucleobases as defined
by duplex melting experiments (20). However, while
5-nitroindole can indiscriminately pair with natural
nucleobases, the corresponding nucleoside triphosphate
was poorly incorporated opposite unmodified DNA
(21,22). Indeed, our results showing that 5-NITP is
incorporated opposite non-instructional DNA lesions
with very high efficiencies (14) suggested that it could be
further developed as a chemical probe to quantify the rep-
lication of this lesion. In addition, the high selectivity of
this analog for damaged DNA could be used to differen-
tiate replication of the lesion from that of normal DNA
synthesis. This report provides a detailed analysis for the
conversion of 5-NITP into a chemical probe that can visu-
alize and quantify TLS. This was achieved using ‘click’
chemistry (23,24) to selectively introduce an ethynyl
moiety at the 3-position of 5-NITP so that it can be
tagged with a fluorogenic reporter after it is incorporated
opposite a DNA lesion (Figure 1C).

MATERIAL AND METHODS

Materials

Potassium hydroxide, iodine, copper iodide, 1M tetrabu-
tylammonium fluoride (TBAF) in THF, 5-nitroindole,
trimethylsilylacetylene, anhydrous sodium methoxide,
phosphoryl oxychloride, bis(triphenylphosphine)
palladiumchloride [Pd(PPh3)2Cl2] and 1,8-bis
(dimethylamino)naphthalene (Proton Sponge) were
purchased from ACROS. Sodium hydride (60% disper-
sion in mineral oil), tributylammonium pyrophosphate,
anhydrous dimethyl formamide (DMF) and dimetho-
xyethane (DME) were purchased from Sigma-Aldrich.
Triethylammonium bicarbonate (TEAB) was prepared
as previously described (25). Trimethylphosphate and
tributylamine were purified via fractional distillation
under reduced pressure. All anhydrous solvents were
dried over 4 Å molecular sieves and stored under argon
after purification. Acetonitrile was purified by refluxing
with CaH2 for 2 h followed by simple distillation. All
other solvents and reagents used were purchased at the
highest purity. Water-sensitive reactions were performed
in oven-dried glassware under argon. The intermediates
and products were characterized by NMR, UV–vis
absorbance, and mass spectrometry. 1H, 13C and
31P NMR spectra were recorded in a Varian-400 FT
NMR spectrometer. All chemical shifts are reported

Figure 1. Non-natural nucleotides as probes for TLS. (A) Comparison
of the structures for an abasic site with that for a tetrahydrofuran
moiety, the stable and non-reactive mimetic for an abasic site.
(B) Structures of dATP and 5-NITP, a prototypical non-natural nu-
cleotide that is selectively and efficiently incorporated opposite an
abasic site. (C) Strategy for using ‘clickable’ nucleotides to monitor
TLS. (D) Synthesis of 3-Eth-5-NITP using the following reagents and
conditions: (a) I2, KOH, DMF (b) i. NaH, 1-a-chloro-3,5-di-(O-p-
toluoyl)-2-deoxy-D-ribose, anhydrous ACN, RT, 16 h; ii. NaOMe,
MeOH, pH> 12, RT, 16 h; (c) Pd(PPh3)2Cl2, CuI, triethylamine,
trimethylsilylacetylene, anhydrous THF, RT, 3 h; (d) 1M TBAF,
THF, RT, 3 h; (e) i. POCl3, Proton Sponge�, trimethylphosphate,
0�C; ii. Tributylammonium pyrophosphate, DMF, tributylamine, RT,
15min; iii. 1M TEAB, RT, 2 h.
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in ppm and the coupling constants are in Hertz. 1H
and 13C NMR spectra were taken in deuterated
dimethylsulfoxide (DMSO-d6) using tetramethylsilane
(TMS) as the external reference and DMSO as the
internal standard. 31P-NMR spectra were taken in D2O
with 50mM Tris–HCl and 2mM EDTA. Phosphoric
acid (85%) was used as the external standard. High-
resolution electrospray ionization mass spectrometry
(Hi-Res ESI–MS) was performed on an IonSpec HiRes
ESI-FTICRMS at the University of Cincinnati Mass
Spectrometry facility. The configuration of the nucleoside
was confirmed by 1H NMR NOE difference spectroscopy
on a Varian Inova 600 NMR instrument. Thin layer
chromatography was carried out on a Whatman Silica
Gel UV254 plates. Column chromatography was per-
formed on a Fisher Scientific Silica Gel, sizes 32–63.
HPLC analysis and purification were performed using a
JASCO Model PU-2089 instrument with reverse phase
C-18 Vydac columns. UV absorption of the nucleosides
was used for their quantification and was performed on
a Cary 50 spectrophotometer.

Magnesium acetate, MgCl2 and Trizma base were from
Sigma. [g-32P]-ATP was purchased from Perkin Elmer,
Inc. (Boston, MA, USA). Urea, acrylamide and bis-
acrylamide were from National Diagnostics (Rochester,
NY, USA). All oligonucleotides were synthesized by
Operon Technologies (Alameda, CA, USA). Oligo-
nucleotides were purified as previously described (26)
using denaturing polyacrylamide gel electrophoresis for
single-stand DNA and native polyacrylamide gel electro-
phoresis for duplex DNA. All other materials were
obtained from commercial sources and were of the
highest quality available. The exonuclease-deficient
mutant of the bacteriophage T4 DNA polymerase was
purified and quantified as previously described (26,27).

Preparation of 3-iodo-5-nitroindole (2)

A solution of I2 (830mg, 3.25mmol) in anhydrous DMF
(8ml) was added into a solution of 5-nitroindole
(1) (500mg, 3.10mmol) and KOH (440mg, 7.75mmol)
in DMF (8ml) at room temperature and stirred for 1.5 h
under argon. The reaction mixture was immediately
poured into water (200ml) containing ammonia (0.5%)
and sodium metabisulphite (0.1%) chilled at 0�C. The
resulting precipitate was vacuum filtered and washed
with cold water and vacuum dried in a desiccator over-
night. The product was a bright yellow solid and the yield
was 95%. 1H NMR (DMOS-d6, 400MHz, 298K) d: 7.70
(d, J=9.06Hz, 1H,Ar), 7.95 (s, 1H,Ar), 8.15 (dd, J=8.98,
2.32Hz, 1H, Ar), 8.28 (d, J=2.36Hz, 1H, Ar), 12.31 (br
s, 1H, N-H). 13C NMR (DMSO-d6, 100MHz, 298K) d:
59.6, 113.7, 117.7, 118.4, 130.0, 134.8, 140.3, 142.3. ESI–
MS (+): calculated mass spectrum formula C8H5IN2O2

for M+Na: 310.9294; experimental mass spectrum:
310.9294.

Preparation of 3-iodo-5-nitroindolyl-20-deoxyribose (3)

To an ice-chilled solution of (2) (700mg, 2.4mmol)
dissolved in anhydrous acetonitrile (80ml) was added
NaH (173mg, 7.2mmol). The reaction mixture was then

stirred at room temperature for an hour under argon
prior to the addition of the Hoffer’s chlorosugar,
1-a-chloro-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose (996mg,
3.0mmol), prepared as previously described (28), and
was further stirred for 16 h. The solvent was then
rota-evaporated under reduced pressure and the resulting
crude product was immediately dissolved in anhydrous
methanol (100ml). To this solution was added anhydrous
sodium methoxide until the pH is >12 and stirred at room
temperature under argon atmosphere for 16 h. The solvent
was evaporated under reduced pressure, and the crude
product was purified by silica flash column chromatog-
raphy using chloroform:methanol (90:10) as the eluent
to yield 81% of bright yellow-orange solid. 1H NMR
(DMSO-d6, 400MHz, 298K) d: 2.25–2.31 (m, 2H, 20-H),
3.48–3.59 (m, 2H, 50-H), 3.83–3.86 (m, 1-H, 40-H), 4.34–
4.38 (m, 1H, 30-H), 4.99 (t, J=5.28Hz, 1H, 50-OH), 5.34
(d, J=4.13Hz, 1H, 30-OH), 6.44 (tapp, J=6.96Hz, 1H,
10-H), 7.89 (d, J=9.07Hz, 1H, Ar), 8.09 (dd, J=9.13,
2.33Hz, 1H, Ar), 8.12 (s, 1H, Ar), 8.16 (d, J=2.36Hz,
1H, Ar). 13C NMR (DMSO-d6, 100MHz, 298K) d: 40.7,
61.6, 62.5, 71.4, 86.1, 88.5, 112.8, 118.0, 118.8, 130.9,
134.4, 139.9, 142.8. ESI–MS (+): calculated mass spectrum
formula C13H13IN2NaO5 for M+Na: 426.9767; experi-
mental mass spectrum: 426.9764.

Preparation of 3-[(trimethylsilyl)ethynyl]-5-nitroindolyl-
20-deoxyribose (4)

To a solution of (3) (250mg, 0.60mmol), Pd(PPh3)2Cl2
(40mg, 57 mmol) and CuI (27.6mg, 147 mmol) dissolved
in anhydrous THF (7.0ml) was added triethylamine
(0.24ml, 1.7mmol). To this reaction mixture was added
dropwise trimethylsilylacetylene (0.42ml, 2.9mmol) over
a period of 20min and stirred at room temperature under
argon for 3 h. The solvent was then evaporated under
reduced pressure and the resulting oily residue was
dissolved in EtOAc (50ml) and washed with saturated
KCl solution (50ml). The organic layer was collected and
further washed with 50ml of 0.5M EDTA (pH=8.0),
followed by another 50ml of the saturated KCl solution.
The organic layer was dried with MgSO4, filtered through
celite, and the solvent evaporated under reduced pressure
to obtain a red-orange foam. The crude product was
purified by silica flash column chromatography using
ethyl acetate:methanol (90:10) as the eluent to yield 55%
of red-orange foam. 1H NMR (DMSO-d6, 400MHz,
298K) d: 0.27 [s, 9H, Si(CH3)3], 2.27–2.33 (m, 2H, 20-H),
3.49–3.60 (m, 2H, 50-H), 3.84–3.87 (m, 1-H, 40-H), 4.35–
4.39 (m, 1H, 30-H), 4.99 (t, J=5.27Hz, 1H, 50-OH), 5.35
(d, J=4.21Hz, 1H, 30-OH), 6.48 (tapp, J=6.94Hz, 1H,
10-H), 7.93 (dapp, J=9.07Hz, 1H, Ar), 7.86 (dd, J=9.09,
2.47Hz, 1H, Ar), 8.28 (s, 1H, Ar), 8.39 (dd, J=2.35,
0.36Hz, 1H, Ar). ESI–MS (+): calculated mass spectrum
formula C18H22N2O5Si for M+H: 375.1376; experimen-
tal mass spectrum: 375.1384.

Preparation of 3-ethynyl-5-nitroindolyl-20-deoxyribose (5)

To a degassed solution of (4) (120mg) dissolved in anhyd-
rous THF was added TBAF in THF (1.20ml, 1M) and
stirred at room temperature under argon for 3 h. The
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solvent was evaporated under reduced pressure and the
resulting crude product was purified by silica flash
column chromatography using ethyl acetate:methanol
(90:10) as the eluent to yield 80% of reddish foam.
1H NMR (DMSO-d6, 400MHz, 298K) d: 2.27–2.33
(m, 2H, 20-H), 3.49–3.60 (m, 2H, 50-H), 3.84-3.87 (m,
1-H, 40-H), 4.35–4.39 (m, 1H, 30-H), 4.37 (s, 1H, –C�C–
H), 5.00 (t, J=5.53Hz, 1H, 50-OH), 5.34 (d, J=4.34Hz,
1H, 30-OH), 6.47 (tapp, J=6.73Hz, 1H, 10-H), 7.92 (d,
J=9.20Hz, 1H, Ar), 8.11 (dd, J=9.20, 2.34Hz, 1H,
Ar), 8.27 (s, 1H, Ar), 8.39 (d, J=2.27Hz, 1H, Ar). 13C
NMR (DMSO-d6, 100MHz, 298K) d: 40.5, 62.1, 71.1,
76.3, 84.6, 85.9, 88.3, 99.5, 112.7, 116.1, 118.7, 128.9,
134.1, 138.4, 142.6. ESI–MS (+): calculated mass spectrum
formula C15H14N2O5 for M+Na: 325.0800; experimental
mass spectrum: 325.0799. UV (MeOH) �275 (nm):
e=37500 cm�1 M�1.

Preparation of 3-ethynyl-5-nitroindolyl-20-deoxyribose-
50-triphosphate (6)

This compound was prepared as previously described
(22,29) using compound (5) as the starting material. The
triphosphorylation process was initiated by forming
the 50-monophosphorodichloridated intermediate by the
dropwise addition of POCl3 in the reaction mixture con-
taining (5) (0.07mmol) and Proton Sponge (0.11mmol)
dissolved in 0.37ml of trimethylphosphate pre-chilled at
0�C. The reaction was stirred for 2 h and monitored by
TLC using the solvent system of 1-propanol:ammonium
hydroxide:water (6:3:1). The reaction mixture was
then spontaneously treated with 0.5M DMF solution of
tributylammonium pyrophosphate (0.37mmol) and
tributylamine (0.37mmol) and stirred for 15min at room
temperature. 1M TEAB was added to quench the reaction
and stirred at room temperature for 2 h, then the crude
product was evaporated by rota-evaporation under
reduced pressure and purified by preparative reverse
phase HPLC (mobile phase A: 0.1M TEAB; B: 35%
ACN in 0.1M TEAB). The desirable nucleotide was
lyophilized to dryness and characterized by mass spec-
trometry and 31P NMR. The isolated yield was �30%.
31P-NMR (D2O, 162MHz) d: �5.4 (g-P), �10.2 (a-P),
�21.3 (b-P). HiRes ESI–MS (�): calculated mass
spectrum formula C15H15N2O14P3 for [M-H]: 540.9820;
spectral mass spectrum: 540.9830.

Polymerization assays

All enzymatic assays were performed as previously
described (14). Briefly, kcat and Km values were determined
using pseudo-first order reaction conditions in which
DNA polymerase (1 nM) was preincubated with DNA
substrate (500 nM) in an assay buffer and mixed with
variable concentrations of the nucleotide analog (0.10–
500mM) and 10mM Mg2+. Reactions were quenched
with 200mM EDTA at variable times (5–600 s) and
analyzed using 20% denaturing polyacrylamide gel
electrophoresis as previously described (30). Gel images
were obtained and quantified using a PhosphorImager
instrument. Product formation was calculated as

described (13). Time courses in product formation were
fit using Equation (1):

y ¼ mt+b ð1Þ

y is the amount of product, m is the rate of the reaction,
t is time, and b is the y-intercept. Km and kcat values were
determined by fits of the data points to the Michaelis-
Menten Equation (2):

rate ¼ ðkcat � ½dNTP�Þ=ðKm+½dNTP�Þ ð2Þ

where kcat is the maximal turnover number of the
polymerase, Km is the Michaelis constant for dNTP, and
[dNTP] is the concentration of nucleotide substrate.

Elongation beyond the incorporated non-natural
nucleotides was measured using single turnover conditions
in which 500 nM polymerase and 250 nM DNA was mixed
with nucleotide and Mg2+. After four half-lives, an aliquot
of the reaction was quenched with 350mM EDTA to
validate nucleotide insertion opposite the lesion. At this
time, 500 mM dGTP was added to initiate elongation.
Aliquots were quenched with EDTA at variable time
points and analyzed via denaturing gel electrophoresis.

Detection of nucleotide incorporation via ‘click’
chemistry

In vitro ‘clicking’ reactions were performed by adding
25 mM non-natural nucleotide to a reaction cocktail con-
taining 32P radio-labeled DNA (500 nM), Mg2+ (10mM)
and DNA polymerase (10 nM) to initiate the reaction, and
incubated at room temperature for 5min. The reaction
was then quenched through heat-inactivation at 90�C for
10min and allowed to cool down to room temperature.
An aliquot was then subjected to ‘click’ reaction at 37�C
for 90min by the addition of a cocktail containing
AlexaFluor488-azide (10 mM) and CuSO4 (10 mM) in a
Tris-buffered saline solution with the reducing agent
ascorbic acid. The Tris-buffered saline solvent and
reducing agent were from a Click-iTTM kit (Invitrogen).
All concentrations listed are final concentrations from
a stock solution of CuSO4 (Sigma-Aldrich) prepared in
water and AlexaFluor488-azide dye (Invitrogen) dissolved
in DMSO. The AlexaFluor488 dye fluorescence was
visualized using the Typhoon 9400 instrument (excitation
laser: 488 nm, emission filter: 526 SP).

RESULTS

Synthesis of a ‘clickable’ non-natural nucleoside and
nucleoside triphosphate

The synthetic approach outlined in Figure 1D was used to
convert 5-NITP into a ‘clickable’ nucleotide designated
3-ethynyl-5-nitroindolyl-20-deoxyribose-50-triphosphate
(3-Eth-5-NITP). This multi-step process begins with the
installation of iodine at the 3-position of 5-nitroindole
followed by N-glycosidic bond formation between
3-iodo-5-nitroindole and the Hoffer’s chlorosugar using
sodium hydride. Deprotection of the 30- and 50-hydroxyl
moieties of the protected deoxyribose sugar was per-
formed using Zemplén conditions (31). This reaction
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yields the b-anomeric isomer as the primary product as
confirmed by nuclear-Overhauser effect (NOE) difference
experiment (NOE’s of H-2, H-7, H-20 and H-40 upon ir-
radiation of H-10 as shown in Supplementary Figure S1).
Furthermore, the presence of an apparent triplet (tapp)
peak for the H-10 resonance with a coupling constant of
�7.0Hz in the 1H NMR spectrum are also characteristics
for the b-anomer of N-nucleosides (32). The iodine was
then substituted with trimethylsilylacetylene using the
Sonogashira reaction (33) and eventually deprotected
to obtain the free ethynyl functional group using 1M
TBAF in THF. Conversion of 3-ethynyl-5-nitroindolyl-
20-deoxyribonucleoside to the corresponding triphosphate
was accomplished by first reacting the nucleoside with
POCl3 to form the 50-monophosphoro-dichloridated
nucleoside intermediate which was then treated with pyro-
phosphate to form the nucleoside 50-triphosphate. The
crude product from this one-pot synthesis was purified
via reverse-phase HPLC. The purified product was
characterized by 31P-NMR and high resolution mass-
spectrometry. Complete details regarding the synthesis
of this non-natural nucleotide are provided in Material
and Methods, while details regarding their charac-
terization are provided in Supplementary Figure S2.

Kinetic analyses for incorporating non-natural nucleotides

The kinetics of incorporating 3-Eth-5-NITP and 5-NITP
opposite an abasic site and templating nucleobases (A, C,
G and T) were next measured to evaluate if the ethynyl
group influenced the efficiency and/or selectivity of
nucleotide incorporation. All kinetic experiments used
a defined DNA substrate containing an abasic site or
any of the four natural nucleobases at position 14 of the
template (Figure 2A). Denaturing gel electrophoresis
images provided in Figure 2B show that 5-NITP and
3-Eth-5-NITP are both preferentially incorporated
opposite an abasic site as opposed to undamaged DNA.
The selectivity for incorporation was further quantified by
defining the kinetic parameters, Km, kcat and kcat/Km, for
incorporating 5-NITP and 3-Eth-5-NITP opposite the
DNA lesion. Time courses in product formation were
generated using pseudo-first order reaction conditions in
which 1 nM of exonuclease-deficient DNA polymerase
was incubated with 500 nM DNA substrate and mixed
with variable concentrations of non-natural nucleotide
and 10mM Mg2+. Figure 2C provides representative
time courses for the incorporation of variable concentra-
tions of 3-Eth-5-NITP opposite an abasic site. Each time
course was fit to an equation for a straight line [Equation
(1)] to define rates of nucleotide incorporation [We note
that all time courses show y-intercepts that are higher
than 0 at �t=0s. This phenomenon reflects biphasic
kinetic behavior and indicates that the first turnover of
the polymerase is much faster than subsequent rounds of
nucleotide incorporation opposite the lesion. Indeed,
experiments performed using single-turnover conditions
(polymerase concentration in excess versus DNA sub-
strate) provide a rate constant 26 s�1 for incorporating
3-Eth-5-NITP opposite an abasic site (Supplementary
Data). Note that the rate constant of 26 s�1 measured

under single-turnover conditions is �7-fold faster than
the kcat of 3.5 s

�1 measured under steady-state conditions].
The resulting plot of rate versus 3-Eth-5-NITP concentra-
tion is hyperbolic (Figure 2D), and a fit of the data to the
Michaelis–Menten equation yields a kcat value of
3.5±0.3 s�1, a Km of 0.20±0.07mM, and a kcat/Km

of 1.75*107M�1s�1. Identical experiments performed
with 5-NITP yield a kcat of 6.8±0.6 s�1, a Km of
3.2±0.9 mM, and a kcat/Km of 0.21*107M�1s�1 (data
not shown). Comparison of these kinetics parameters
provided in Table 1 indicates that the catalytic efficiency
of 3-Eth-5-NITP is �10-fold higher than 5-NITP during
TLS. The enhancement is caused by lowering of the Km

for the nucleotide that results from the introduction of the
hydrophobic and pi-electron rich ethynyl moiety that
amplifies the base-stacking potential of the non-natural
nucleotide (14).
Identical kinetic experiments were performed to

define the kinetic parameters for the incorporation of
3-Eth-5-NITP and 5-NITP opposite undamaged DNA.
A summary of these kinetic parameters is provided in
Table 1. In general, kcat/Km values measured for inserting
5-NITP opposite any templating nucleobase are 100- to
1500-fold lower than that measured for incorporation
opposite the non-instructional abasic site. Similar results
are obtained with 3-Eth-5-NITP as it is also incorporated
opposite templating nucleobases �200-fold less efficiently
compared to insertion opposite the abasic site. Indeed, it is
surprising that 3-Eth-5-NITP is even more selective than
5-NITP for insertion opposite the non-instructional
lesion. The increase in selectivity reflects the inability of
3-Eth-5-NITP to be incorporated opposite pyrimidines
coupled with its poor insertion opposite purines. The
combined kinetic properties of efficient and selective
incorporation by this non-natural nucleotide make it
an excellent chemical probe to study the mechanism
of TLS.

Extension kinetics

The ability of either non-natural nucleotide to be extended
was examined using protocols outlined in Figure 2E. In
these experiments, polymerase and DNA substrate were
first mixed with 150 mM dATP, 5-NITP, or 3-Eth-5-NITP
to initiate incorporation opposite the abasic site. After
four half-lives (time required to obtain 95% mispair
formation), 500 mM of dGTP was added to initiate
elongation beyond the misincorporated nucleotide. Data
provided in Figure 2F shows that dATP, when paired
opposite the abasic site, is elongated rather efficiently. In
contrast, neither 5-NITP nor 3-Eth-5-NITP is extendable
when paired opposite an abasic site. As before, the lack of
extension is interesting since both non-natural nucleotides
are incorporated opposite this non-instructional DNA
lesion with remarkably high catalytic efficiencies. The
dichotomy between facile incorporation kinetics and
poor elongation potential indicates that the biophysical
features required for elongation are distinct from those
needed for efficient incorporation opposite the non-
instructional lesion.
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Figure 2. Validation that non-natural nucleotides are substrates during TLS. (A) DNA substrate used for kinetic analysis. (B) Denaturing gel
electrophoresis image comparing the incorporation of 5-NITP (left) and 3-Eth-5-NITP (right) opposite an abasic site and templating bases (A, C,
G and T). (C) Representative time courses for the incorporation of 3-Eth-5-NITP opposite an abasic site performed using 1 nM of the
exonuclease-deficient bacteriophage T4 DNA polymerase, 500 nM 13/20AP DNA substrate, and 10mM Mg2+ in a reaction buffer with the following
3-Eth-5-NITP concentrations: 0.10 (closed circle), 0.25 (open circle), 0.50 (open square), 1.0 (closed square), 2.0 (open triangle), or 4.0 mM (closed
triangle) (D) Michaelis–Menten plot for the incorporation of 3-Eth-5-NITP opposite an abasic site yielded the following kinetic parameters:
kcat=3.5±0.3 s�1, Km=0.20±0.07mM, kcat/Km=1.75*107M�1 s�1. (E) Experimental protocol used to evaluate the chain termination capabilities
of the non-natural nucleotides used in this study. (F) Gel electrophoresis data evaluating incorporation and extension beyond an abasic site.
Experiments were performed using single turnover conditions by mixing 500 nM DNA polymerase and 250 nM DNA with nucleotide and Mg2+.
After four half-lives, an aliquot of the reaction was quenched with 350mM EDTA to validate nucleotide insertion opposite the lesion. At this time,
500mM dGTP was added to initiate elongation. As indicated, dATP can be incorporated opposite the DNA lesion and extended. While 5-NITP
and 3-Eth-5-NITP are incorporated opposite the DNA lesion, they are not extended and thus behave as chain terminators.

Table 1. Summary of kinetic parameters for the incorporation of 5-NITP and 3-Eth-5-NITP opposite an abasic site or templating nucleobasesa

5-NITP 3-Eth-5-NITP

DNA Km [mM] kcat (s
�1) kcat/Km (M�1s�1) Km [mM] kcat (s

�1) kcat/Km (M�1s�1)

A 16±6 0.39±0.02 24 400 0.46±0.07 0.041±0.001 89 130
C 64±6 0.072±0.002 1130 NDb ND ND
G 8.7±1.7 0.026±0.002 2990 11.3±5.2 0.094±0.017 8320
T 22±3 0.074±0.002 3360 ND ND ND
Abasic 3.2±0.9 6.8±0.6 2 125 000 0.20±0.07 3.5±0.3 17 500 000

aExperiments were performed using the high-fidelity bacteriophage T4 DNA polymerase as a model DNA polymerase. Assays were performed
as previously described (18).
bNot determined due to low amounts of product formed even at the highest concentration of nucleotide tested (500mM).
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Visualization of nucleotide incorporation using ‘click’
chemistry

We next tested the ability of this non-natural nucleotide
to visualize TLS using ‘click’ chemistry to label the
incorporated non-natural nucleotide with a fluorogenic
reporter. First, 5-NITP or 3-Eth-5-NITP were enzy-
matically incorporated opposite an abasic site lesion and
aliquots of the reaction were subjected to ‘click’ chemistry
using AlexaFluor488-azide dye and Cu(I) formed in situ
from Cu(II) with a reducing agent, ascorbic acid, in a
tris-buffered saline solvent. Figure 3A shows represen-
tative denaturing gel electrophoresis data validating
product formation. Lane 1 shows the ‘clicking’ reaction
for DNA containing 3-Eth-5-NITP incorporated opposite
the lesion. This sample contains two species with different
mobilities: an upper band representing ‘clicked’ DNA and
a lower band representing unreacted AlexaFluor488-
azide. This conclusion is supported by the presence of a
single fluorogenic species in ‘clicking’ reactions of DNA
and 3-Eth-5-NITP in the absence of polymerase (lane 2)
and AlexaFluor488-azide alone (lane 3).

The presence of ‘clicked’ DNA was also confirmed by
radiolabeling the DNA from the reactions and using
PhosphorImaging techniques to visualize the separated
products after denaturing gel electrophoresis. Figure 3B
shows that the reaction of ‘clicked’ DNA containing
3-ethynyl-5-nitroindolyl-20-deoxyribose-50-monophosphate
(3-Eth-5-NIMP) at the primer terminus contains two
species with different mobilities (lane 3). The upper band
represents ‘clicked’ DNA while the lower band represents
DNA that was elongated but that did not react with the
AlexaFluor488-azide. Quantifying these products indi-
cates that the efficiency of ‘clicking’ 3-Eth-5-NIMP in a
DNA primer is �30%. As before, the clicking reaction is
absolutely dependent upon the presence of the ethynyl
moiety as a ‘clicked’ species is not detected when
5-NITP is incorporated opposite the lesion (lane 6).

The ability of 3-Eth-5-NITP to selectively visualize
the replication of an abasic site was further tested by
performing the incorporation reaction in the presence of
increasing concentrations of natural dNTPs. Experiments
were performed mixing 40 nM DNA polymerase and 2 mM
DNA substrate with 10 mM 3-Eth-5-NITP in the absence
and presence of increasing dNTP concentrations
(50–500 mM) in reaction buffer containing 10mM Mg2+.
After incubation at room temperature for 60 s, the reac-
tions were quenched by heating at 90�C for 10min.
The samples were allowed to cool to room temperature
prior to ‘clicking’ of the non-natural nucleotide with
AlexaFluor488-azide and Cu(I) for 2 h at 37�C. Samples
were separated as described using denaturing polyacryl-
amide gel electrophoresis followed by washing of the gel
with 20% methanol/water for 12 h. This washing step was
included to remove unreacted AlexaFluor488-azide from
the gel which serves to optimize the signal-to-noise ratio
for detecting the labeled DNA. Gel electrophoresis data
provided in Figure 3C reveals that the amount of
fluorescently-labeled DNA remains essentially constant
as the concentration of natural dNTPs is increased.
Quantifying the amount of labeled DNA indicates that

product formation is reduced by <5% even at 500 mM
dNTPs, the highest concentration tested (data not
shown). Collectively, the ability of 3-Eth-5-NITP to be
incorporated opposite the lesion even in the presence of
a 50-fold molar excess of natural nucleotides again high-
lights the incredibly high efficiency of the non-natural
nucleotide for insertion opposite an abasic site.
Similar experiments were performed to further validate

the selectivity of 3-Eth-5-NITP as a probe for damaged
DNA. One key experiment measured the ability of natural
nucleotides to inhibit the incorporation of 3-Eth-5-NITP
opposite adenine (A) at position 14 in the template.
Insertion opposite A was tested since previous kinetic
analyses demonstrated that 3-Eth-5-NITP is incorporated
opposite this natural nucleobase, albeit with poor effi-
ciency (Table 1). Regardless, Figure 3D shows fluorescent
labeling of 3-Eth-5-NITP after enzymatic insertion
opposite A (lane 1). It is clear that the intensity of the
‘clicked’ nucleobase is significantly lower than that
measured opposite an abasic site (lane 3). This reduced
intensity is expected since 3-Eth-5-NITP is incorporated
opposite templating DNA �200-fold less efficiently than
opposite the DNA lesion. More importantly, the addition
of 10 mM dTTP completely inhibits the incorporation of
3-Eth-5-NITP opposite A (lane 2) but has no effect on the
insertion of 3-Eth-5-NITP opposite an abasic site (lane 4).
These results provide additional evidence for the selective
nature of 3-Eth-5-NITP as a probe to measure the repli-
cation of non-instructional DNA lesions.
The final test for defining the selectivity of

3-Eth-5-NITP as a probe for TLS was to measure inser-
tion opposite an abasic site when mixed with high concen-
trations of natural nucleotides. These experiments
employed a ‘running’ start protocol using a DNA sub-
strate with a primer nine bases upstream from the abasic
site (Figure 4A). To optimize the extension reaction,
assays were performed using single turnover conditions
in which 500 nM bacteriophage T4 exo� DNA polymerase
was pre-incubated with 250 nM DNA (13/28AP-mer)
followed by the addition of 500 mM dNTPs in the
absence or presence of 10 mM 3-Eth-5-NITP. The
control experiment performed with dNTPs alone shows
that replication occurs up to and beyond the abasic
site within 1min (Figure 4B). The ability of the
exonuclease-deficient DNA polymerase to bypass the
abasic site at position 22 is consistent with previous
reports (18). Reactions performed with dNTPs in the
presence of 10 mM 3-Eth-5-NITP also show rapid synthe-
sis up to the abasic site (Figure 4C). However, lesion
bypass does not occur as replication products accumulate
at the abasic site (position 22). The termination of DNA
synthesis is undoubtedly caused by the selective incorpor-
ation of 3-Eth-5-NITP opposite the lesion. The chain
terminating capabilities of 3-Eth-5-NITP are particularly
impressive since these reactions were performed using a
50-fold molar excess of natural nucleotides, conditions
which allow for facile elongation (Figure 4B). It should
also be noted that DNA synthesis is terminated only at the
abasic site and not at positions containing natural
nucleobases. This last feature again highlights the
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selectivity of 3-Eth-5-NITP as a substrate for the replica-
tion of damaged DNA.

DISCUSSION

At least 50 different types of DNA lesions have been
identified both in vitro and in vivo (34,35). While most
organisms possess sophisticated DNA repair pathways
to correct damaged nucleic acid, these lesions frequently
escape repair and are replicated in either a correct or
error-prone process. In most cases, the ability of DNA
polymerases to bypass a lesion has an immediate impact

Figure 3. (A) Denaturing gel electrophoresis validates the ability
of 3-Eth-5-NITP to react with an azide-containing fluorophore. Lane
1 shows the ‘clicking’ reaction of 3-Eth-5-NITP incorporated opposite
abasic-containing DNA. The upper band represents ‘clicked’ DNA
containing 3-Eth-5-NIMP while the lower band represents unreacted
AlexaFluor488-azide. Lane 2 shows the presence of a single fluorogenic
species in ‘clicked’ reactions of DNA and 3-Eth-5-NITP without
DNA polymerase. Lane 3 shows AlexaFluor488-azide alone.
(B) Autoradiogram of ‘clicked’ DNA. Lane 1 represents radiolabeled
primer (13-mer) in the absence of polymerase and nucleotide substrate.
Lane 2 represents the incorporation of 3-Eth-5-NITP opposite an
abasic site. Lane 3 represents the ‘clicking’ reaction of DNA containing
3-Eth-5-NIMP opposite an abasic site. Lane 4 represents radiolabeled
primer (13-mer) in the absence of polymerase and nucleotide substrate.
Lane 5 represents the incorporation of 5-NITP opposite an abasic site.
Lane 6 shows the ‘clicking’ reaction of DNA containing 5-NIMP
opposite an abasic site. (C) Gel electrophoresis data showing the
efficiency of 3-Eth-5-NITP incorporation opposite damaged DNA.
Assays were performed using 40 nM bacteriophage T4 exo� DNA
polymerase, 2 mM 13/20AP-mer DNA substrate in a buffer containing
10mM Mg2+ and 10 mM 3-Eth-5-NITP in the presence of the following
concentrations of dNTPs: 0 mM (lane 1), 50 mM (lane 2), 100mM
(lane 3), 250mM (lane 4) and 500mM (lane 5). (D) Denaturing
gel electrophoresis validating the selectivity of 3-Eth-5-NITP for
replicating damaged DNA. Assays were performed using

40 nM bacteriophage T4 exo� DNA polymerase with the following con-
ditions: 2mM13/20A-mer DNA substrate, 100mM3-Eth-5-NITP without
dTTP (lane 1), 2 mM 13/20A-mer DNA substrate, 100mM 3-Eth-5-NITP
with 10 mM dTTP (lane 2), 2 mM 13/20AP-mer DNA substrate, 100mM
3-Eth-5-NITP without dTTP (lane 3), or 2 mM 13/20AP-mer DNA sub-
strate, 100 mM 3-Eth-5-NITP with 10 mM dTTP (lane 4).

Figure 4. (A) DNA substrate used to analyze the selective incorpor-
ation of 3-Eth-5-NITP opposite an abasic site. (B) Denaturing gel
electrophoresis demonstrating the ability of the bacteriophage T4
DNA polymerase to bypass an abasic site. Reactions were performed
by pre-incubating 500 nM bacteriophage T4 exo� DNA polymerase
with 250 nM 13/28AP-mer and initiating the reaction with 500mM
dNTPs. Although there is slight pausing at the lesion (position 22),
the polymerase can completely elongate the DNA. (C) Denaturing gel
electrophoresis validates the chain termination capabilities of
3-Eth-5-NITP during TLS. Reactions were performed by pre-
incubating 500 nM bacteriophage T4 exo� DNA polymerase with
250 nM 13/28AP-mer and initiating the reaction with 500 mM dNTPs
and 10 mM 3-Eth-5-NITP. Note that DNA synthesis is terminated
specifically at the DNA lesion (position 22).
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of cell survival as it allows the continuity of cellular DNA
synthesis to be maintained. There have been several recent
reports that highlight the roles of different DNA polymer-
ases in replicating damaged DNA (36–39). However,
a clear understanding of TLS has been hindered due to
the lack of chemical tools that can quantify this biological
process at the molecular and cellular level. One glaring
deficiency is the lack of nucleotide analogs that can be
selectively and efficiently inserted opposite different
forms of DNA damage. In this report, we describe the
synthesis and application of a novel nucleotide that can
monitor and quantify the ability of DNA polymerases to
replicate a specific DNA lesion that is frequently formed
under physiological conditions. Monitoring the replica-
tion of an abasic site is important since TLS can cause
both beneficial and adverse cellular effects. For example,
mutagenic DNA synthesis can drive evolutionary changes
(40) or produce immunological diversity in higher organ-
isms (41) which can be advantageous for an organism’s
survival. In contrast, TLS can produce adverse effects
including the initiation of cancer in humans (42) as well
as introducing mutations that cause drug resistance in
microbial and viral species (43).

Herein, we show that 3-Eth-5-NITP is a prototypical
non-natural nucleotide analog that can function as a
chemical tool to accurately and selectively monitor
the misreplication of an abasic site, a frequently formed
non-instructional DNA lesion. In this respect, 3-Eth-5-
NITP is incorporated opposite an abasic site 200- to
2000-fold more efficiently than opposite templating
nucleobases. This selectivity is driven by poor insertion
of 3-Eth-5-NITP opposite purines coupled with the lack
of insertion opposite pyrimidines that are predicted to be
complementary partners for this non-natural nucleotide.
The unusual preference for incorporation opposite
purines may be caused by changes in the syn- versus
anti-configuration of the non-natural nucleotide as
similar reports have been reported with modified purines
such as 8-oxo-dATP and 8-oxo-dGTP (44,45). This
conclusion is speculative and requires more advanced
structural studies to confirm or refute its validity.
Regardless, these data show that 3-Eth-5-NITP is a select-
ive nucleotide for replicating an abasic site, and this
activity has several potential applications. One possible
use is as a chemical reagent to detect the replication
of abasic sites present in large pieces of DNA such as
genomic samples. While there are numerous types of
DNA lesions, abasic sites are arguably the most prevalent
as they form spontaneously at appreciable rates ranging
from 10 000 to 200 000 per day per cell (4,5). Although
antibodies (46) and small molecule reagents (47–49) can
detect the presence of abasic sites in genomic DNA, the
non-instructional nature of this lesion makes it extremely
difficult to define the mutagenic consequences caused by
its replication. The data here shows that 3-Eth-5-NITP
can act as a sensitive probe to monitor the replication of
this non-coding DNA lesion. We envision that combining
3-Eth-5-NITP with these lesion-specific probes will be
useful in determining the fraction of lesions that are
replicated by various DNA polymerases.

Similar pragmatic applications include detecting abasic
sites in DNA during PCR amplification. Since abasic sites
are strong blocks toward replication (7,18), this lesion can
form abortive intermediates caused by inhibiting PCR-
mediated synthesis. We note that while 3-Eth-5-NITP
is a selective probe for the replication of abasic sites,
its inability to be elongated prohibits its use as a nucleo-
tide substrate for PCR-amplification of nucleic acid that
contains abasic sites. However, we have demonstrated that
other non-natural nucleotides such as 5-methylcarboxylate-
indole-20-deoxyriboside-50-triphosphate (5-MeCITP) are
incorporated opposite this non-instructional lesion
almost as effectively as 5-NITP (13). Indeed, facile exten-
sion beyond the abasic site occurs when the nitro moiety is
replaced with a functional group such as methyl carboxyl-
ate that provides hydrogen bonding interactions needed
for elongation (13). Current efforts are underway to
convert 5-MeCITP into a ‘clickable’ nucleotide analog
that can fully replicate and quantify abasic site-containing
DNA.
This study also paves the way to develop other

nucleotide analogs that are specific to detect the
misreplication of other DNA lesions. In this respect,
we recently reported a novel analog, designated
4-methylpyrimidone-20-deoxyriboside triphosphate (4-
MePoTP), that is inserted opposite O6-methylguanine
�100-fold more efficiently than opposite unmodified
guanine or adenine (50). This high selectivity, coupled
with its ability to be elongated indicates that it could
be converted into a ‘clickable’ nucleotide to monitor
the replication of miscoding DNA lesions such as
O6-methylguanine.
Perhaps the most challenging endeavor, however, will

be to apply this type of non-natural nucleotide to study
lesion bypass at the cellular level. It will be exciting to
determine if the corresponding non-natural nucleoside
can monitor TLS inside a cell. This would be an important
advancement in cell biology as there is currently a lack of
chemical tools that function as nucleotide substrates to
accurately differentiate between correct versus mutagenic
DNA synthesis.
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