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Criteria for components of a function space to be homotopy equivalent

BY GREGORY LUPTON

Department of Mathematics, Cleveland State University, Cleveland OH 44115, U.S.A.
e-mail: G.Lupton@csuohio.edu

AND SAMUEL BRUCE SMITH

Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, U.S.A.
e-mail: smith@sju.edu

Abstract

We give a general method that may be effectively applied to the question of whether
two components of a function space map(X, Y ) have the same homotopy type. We describe
certain group-like actions on map(X, Y ). Our basic results assert that if maps f, g : X → Y
are in the same orbit under such an action, then the components of map(X, Y ) that contain
f and g have the same homotopy type.

Introduction

Let X and Y be connected, countable CW complexes and let map(X, Y ) denote the space
of all continuous (not necessarily based) maps between X and Y with the compact-open to-
pology. The space map(X, Y ) is generally disconnected with path components in one-to-one
correspondence with the set 〈X, Y 〉 of (free) homotopy classes of maps. Furthermore, differ-
ent components may – and frequently do – have distinct homotopy types. A basic problem
in homotopy theory is to determine whether two components are homotopy equivalent or,
more generally, to classify the path components of map(X, Y ) up to homotopy equivalence.
For x0 ∈ X a choice of basepoint, we have the evaluation map ω : map(X, Y ) → Y , defined
by ω(g) = g(x0), which is a fibration. Let map(X, Y ; f ) denote the path component of
map(X, Y ) that contains a given map f : X → Y . We may also ask for a finer classifica-
tion, up to fibre-homotopy equivalence, of the evaluation fibrations ω f : map(X, Y ; f ) → Y ,
obtained by restricting ω to the component of f .

Work on these classification problems dates back to the 1940s. Whitehead considered
the case X = Sn and Y = Sm , in which a component corresponds to α ∈ πn(Sm), and
proved that map(Sn, Sm; α) is homotopy equivalent to map(Sn, Sm; 0) if and only if the
evaluation fibration ωα admits a section [28, Theorem 2·8]. Hansen, and later McLendon,
extended this analysis ([10, 11, 18]). In [12], Hansen obtained a classification of components
of map(Mn, Sn), where Mn is a suitably restricted n-manifold. Sutherland extended this
result in [24]. Møller [20] gave a classification of components of map(CPm, CPn) for 1 �
m � n. The case in which X is a manifold and Y = BG, the classifying space of a Lie group,
has been the subject of extensive recent research by Crabb, Kono, Sutherland, Tsukuda and
others (see e.g. [2, 15, 16, 17, 25, 26]). Our purpose in this paper is to give a general method



that may be applied to show that (evaluation fibrations of) components of map(X, Y ) are
(fibre-) homotopy equivalent. In addition to yielding many new results, our method allows
some of the particular cases just mentioned to be viewed as special cases within a general
framework.

Our basic results are presented in Section 2. We consider the orbit of a point in map(X, Y )

under a group-like action on map(X, Y ) and observe in Theorem 2·2 that two distinct
components of map(X, Y ) are homotopy equivalent whenever each overlaps with any one
orbit – not in the same point, obviously. Now, in the situations that we have in mind, the
action on map(X, Y ) arises from a group-like action on Y . In this case, we have a corres-
ponding group action on the set of homotopy classes of maps 〈X, Y 〉. Write O for the orbit
set of this group action. Then we obtain a surjection

O �� �� {components of map(X, Y )}
� (1)

of sets, where � denotes homotopy equivalence (Theorem 2·4). This may be applied
“locally,” to analyze whether two particular components are homotopy equivalent. It may
also be applied “globally,” to deduce a finite – or even a concrete upper bound on the –
number of distinct homotopy types amongst the (usually infinitely many) components of
map(X, Y ). We illustrate both approaches in Section 3. For based spaces X and Y , we may
also consider [X, Y ], the set of based-homotopy equivalence classes of based maps. Ig-
noring basepoints gives a surjection [X, Y ] �� �� 〈X, Y 〉 of sets of homotopy classes. Once
more, in the situations that we have in mind, the group action on 〈X, Y 〉 that we referred
to above actually restricts to one on [X, Y ]. Writing O∗ for the corresponding orbit set, we
may compose the surjection (1) with the surjection O∗ �� �� O of orbit sets. Although O∗
is a priori larger than O, it is more familiar in homotopy theory and in many cases may
be analyzed effectively. With further restrictions on X and Y , we may sharpen these results,
replacing the right-hand set in (1) by fibre-homotopy equivalence classes of evaluation fibra-
tions ω f : map(X, Y ; f ) → Y . Also, we may readily adapt the methods used here to study
homotopy types of components of map∗(X, Y ), the function space of basepoint-preserving
maps – see the comment at the end of Section 2 and the discussion that ends the paper.

In Section 3 we focus our general method on actions on map(X, Y ) that arise from cer-
tain specific actions on Y . We first consider the holonomy action of �B on the fibre Y of
a fibration Y → E → B. In Theorem 3·2, we show that if two based maps f, g : X → Y
satisfy j ◦ f ∼∗ j ◦ g : X → E , where j : Y → E denotes the fibre inclusion, then
the components map(X, Y ; f ) and map(X, Y ; g) have the same homotopy type. With some
restrictions on X and Y , we are able to conclude more strongly that the evaluation fibra-
tions ω f : map(X, Y ; f ) → Y and ωg : map(X, Y ; g) → Y are fibre-homotopy equivalent.
We illustrate these ideas in Example 3.3 and Example 3.5, which give simple cohomolo-
gical conditions under which two components of map(X, G/H) are homotopy equivalent,
or there are finitely many homotopy types amongst the components of map(X, G/H), where
H is a closed subgroup of a Lie group G. Next we focus on the universal fibration with
fibre Y and obtain a link between the classification problem for components of a function
space and the class of cyclic maps (see [27]). In this context, we extend the result of White-
head mentioned above to prove that the evaluation fibrations ω f : map(X, Y ; f ) → Y and
ω0 : map(X, Y ; 0) → Y are fibre-homotopy equivalent if and only if ω f admits a section
(Theorem 3·7). We obtain further results in the case in which X is a co-H-space, including a
connection between computations of the Gottlieb groups of spheres and Hansen’s results on



the classification of the components of map(Sn, Sm) (cf. Example 3.11). We end the paper
with a brief discussion of comparable results about components of the based mapping space
map∗(X, Y ), but with the action arising from cogroup-like actions on X .

Group-Like Actions on a Function Space

We begin by setting conventions and notation. First, we make clear that homotopy (ho-
motopic maps, homotopy equivalence, etc.) generally refers to free homotopy: we use “∼”
and “�” to denote (free) homotopy and (free) homotopy equivalence, respectively. If based
homotopy is intended, we will be specific and use “∼∗” and “�∗” in that case.

A fibration p : E → B means a Hurewicz fibration [29, p.29]. Recall that, for p1 : E1 →
B and p2 : E2 → B fibrations over a space B, a based map f : E1 → E2 is a fibre homotopy
equivalence if there exists g : E2 → E1 such that g ◦ f and f ◦ g are homotopic to the
respective identities by based homotopies F and G satisfying p1 ◦ F(x, t) = p1(x) and
p2 ◦ G(y, t) = p2(y) for x ∈ E1, y ∈ E2 and t ∈ I.

An H-space is a based space G together with a based multiplication m : G × G → G
that satisfies m ◦ J ∼∗ ∇ : G ∨ G → G where J : G ∨ G → G × G is the inclusion and
∇ : G ∨ G → G is the folding map. We note that the homotopy can be replaced by strict
equality provided the basepoint of G is non-degenerate [29, Theorem III·4·7]. The H-space
is homotopy-associative if m ◦ (m × 1) ∼∗ m ◦ (1 × m) : G × G × G → G. By a group-
like space, we mean a homotopy-associative H-space G together with a based inverse map
ι : G → G that satisfies m ◦(ι×1)◦� ∼∗ 0 and m ◦(1× ι)◦� ∼∗ 0, where � : G → G ×G
is the diagonal map.

By a homotopy-associative action of a homotopy-associative H-space G on a based space
Y, we mean a based map A : G×Y → Y that satisfies A◦i2 ∼∗ 1 : Y → Y and A◦(1×A) ∼∗
A ◦ (m × 1) : G × G × Y → Y , where i2 : G → Y × G is the inclusion. We say the action
is strictly unital if we have A ◦ i2 = 1. The argument in [29, Theorem III·4·7] mentioned
above easily extends to show an action may be taken to be strictly unital when the basepoint
of G is non-degenerate. Given g ∈ G and x ∈ Y , we will usually write g · x for A(g, x).

For the rest of the paper, we assume (at least) that X and Y are based, connected, countable
CW complexes with fixed choices of non-degenerate basepoints. While these hypotheses
are not strictly necessary for all that we do, they seem to provide a reasonable level of
generality. Despite these restrictions on X and Y – indeed, despite further restrictions (e.g.
X is frequently assumed to be a finite complex) – we must allow for much greater generality
when considering the function space map(X, Y ). Lemma 2·1 and Lemma 2·3 below deal
with technical points that become issues when we consider the function space.

LEMMA 2·1. Suppose U and V are path-connected spaces with non-degenerate
basepoints. Then we have:
(1) Given f : U → V , there exists a based map f ′ : U → V with f ∼ f ′;
(2) If U and V are homotopy equivalent, then they are based homotopy equivalent with

respect to the non-degenerate basepoints.

Proof. Part (1) is [29, III·1·4]. For (2), suppose that f : U → V is a (free) homotopy equi-
valence. Let u0 ∈ U and v0 ∈ V be non-degenerate basepoints. Since u0 is non-degenerate,
f is homotopic to a based map f ′ : U → V by (1). Since f is a homotopy equivalence, so
too is f ′. But since f ′(u0) = v0, and both u0 and v0 are non-degenerate, it follows that f ′ is
a based homotopy equivalence (see, e.g., [13, Proposition 6·18]).



It is well-known that all components of a group-like space have the same homotopy type
(see [13, Proposition 5·28]). We generalize this fact in the following result:

THEOREM 2·2. Let A : G × Y → Y be a homotopy-associative action of a group-like
space G on a space Y . For each x ∈ Y , let Yx ⊆ Y denote the path component of Y that
contains x. Then for each g ∈ G, the components Yx and Yg·x have the same homotopy type.
If Yx and Yg·x both have non-degenerate basepoints, then Yx and Yg·x have the same based
homotopy type.

Proof. Let m : G × G → G be the multiplication and ι : G → G the inverse map. Let
e ∈ G denote the basepoint. For each g ∈ G, we may define “translation by g” to be the map
τg : Y → Y , where τg(x) = g · x for each x ∈ Y . Then τg restricts to a map τg : Yx → Yg·x .
On the other hand, we have the translation τι(g) : Y → Y . Let ig : Y → G × Y be the
inclusion defined by ig(x) = (g, x) for each x ∈ Y . Then we have

τι(g) ◦ τg = A ◦ (1 × A) ◦ (
(ι, 1) × 1

) ◦ ig ∼ A ◦ (m × 1) ◦ (
(ι, 1) × 1

) ◦ ig

∼ A ◦ (0 × 1) ◦ ig ∼ τe ∼ 1Y .

Let H : Y × I → Y be a homotopy from τι(g) ◦τg to 1. H(x, t) gives a path from ι(g) · (g · x)

to x and it follows that τι(g) restricts to a map τι(g) : Yg·x → Yx . Furthermore, the homotopy
H restricts to a homotopy H : Yx × I → Yx between the composition of the restrictions
τι(g) ◦ τg and the restriction of the identity to Yx . That is, the restriction of τι(g) to Yg·x is a
left-homotopy inverse for the restriction of τg to Yx . A similar argument shows that τι(g) is
a two-sided inverse, and thus τg : Yx → Yg·x is a homotopy equivalence. The last assertion
follows from Lemma 2·1 (2).

Our interest in Theorem 2·2 lies in its implications for function spaces. By Lemma 2·1 (1),
any map f : X → Y is homotopic to a based map. Therefore, when identifying a component
of map(X, Y ) as map(X, Y ; f ) for some map f : X → Y , we may assume that f is a based
map. Also, these hypotheses ensure that the evaluation map ω f : map(X, Y ; f ) → Y is
a Hurewicz fibration by [29, Theorem I·7·8]. We write map∗

∗(X, Y ; f ) = ω−1
f (∗) for the

fibre over the basepoint of Y . Note that the space map∗
∗(X, Y ; f ) consists of based maps

g : X → Y which are (freely) homotopic to f . Thus map∗(X, Y ; f ) ⊆ map∗
∗(X, Y ; f ) and

the inclusion can be strict.
Lemma 2·1 indicates that we will want map(X, Y ) to have non-degenerate basepoints.

Since we have not been able to find an explicit reference for what we want in the literature,
we provide the following result that is suited to our purposes.

LEMMA 2·3. Let X be a compact metric space and Y a countable CW complex. Then
every point of map(X, Y ) is non-degenerate.

Proof. Suppose given a0 ∈ map(X, Y ). We want to show that {a0} ↪→ map(X, Y ) is a
cofibration. By [5, Theorem XV·7·4], it is sufficient to show that there exists a neighbour-
hood of a0 in map(X, Y ), of which {a0} is a strong deformation retract. By [19, Lemma 3],
map(X, Y ) is “ELCX.” In particular, we may choose an open set V in map(X, Y ) that con-
tains a0, and for which there exists a homotopy λ : V × V × I → map(X, Y ) that satisfies
λ(a, b, 0) = a, λ(a, b, 1) = b, and λ(a, a, t) = a for all a, b ∈ V (cf. the discussion above
[19, Lemma 3]). We define H : V × I → map(X, Y ) by H(b, t) = λ(a0, b, t) and check
that this displays a0 as a strong deformation retract of V , as required.



Suppose A : G × Y → Y is a homotopy-associative action of a group-like space G on Y .
The based function space map∗(X, G) is then a group-like space as well, with multiplica-
tion defined to be pointwise multiplication of functions [29, Theorem III·5·18]. We have an
induced action

A : map∗(X, G) × map(X, Y ) → map(X, Y )

of map∗(X, G) on map(X, Y ) defined by

A(γ, g)(x) = A(γ (x), g(x))

for γ ∈ map∗(X, G), g ∈ map(X, Y ). As above, we write γ · g for A(γ, g). We note that
the following result holds in considerable generality.

THEOREM 2·4. Let f : X → Y be a map between based, connected, countable CW
complexes. Let A : G × Y → Y be a homotopy-associative action of a group-like space G
on Y . Let γ : X → G be any based map. Then we have:
(A) the path components map(X, Y ; f ) and map(X, Y ; γ · f ) have the same homotopy

type;
(B) if X is a finite complex, then map(X, Y ; f ) and map(X, Y ; γ · f ) have the same based

homotopy type;
(C) if X is finite and the action is strictly unital, then the evaluation fibrations

ω f : map(X, Y ; f ) → Y and ωγ · f : mapγ · f (X, Y ; γ · f ) are fibre-homotopy equivalent.

Proof. Write τγ : map(X, Y ; f ) → map(X, Y ; γ · f ) for translation by γ. By The-
orem 2·2, τγ is a homotopy equivalence and (A) follows. Part (B) follows from The-
orem 2·2 and Lemma 2·3. For (C), we use results of Dold in [3]. The evaluation fibration
ω f : map(X, Y ; f ) → Y has the Weak Covering Homotopy Property [3, Definition 5·1]
since it is a Hurewicz fibration. Since the action of G is strictly unital, the diagram

map(X, Y ; f )

ω f

�������������
τγ �� map(X, Y ; γ · f )

ωγ · f

��������������

Y

commutes. The map τγ is a based homotopy equivalence by (B). By [3, Theorem 6·1], τγ is
thus a fibre-homotopy equivalence.

We can recast Theorem 2·4 as follows: Write

A# : [X, G] × 〈X, Y 〉 → 〈X, Y 〉
for the induced action of the group [X, G] induced on the set 〈X, Y 〉 of homotopy classes of
maps. We write O for the set of orbits of 〈X, Y 〉 under this action.

COROLLARY 2·5. Let f : X → Y be a map between CW complexes. Let A : G × Y → Y
be a homotopy-associative action of a group-like space G on Y . Let O be the set of orbits of
the induced action of the group [X, G] on 〈X, Y 〉. Then:
(A) we have a surjection of sets

O �� �� {components of map(X, Y )}
� ;



(B) if X is a finite complex then

O �� �� {components of map(X, Y )}
�∗

;

(C) if X is a finite complex and the group-like action on Y is strictly unital then

O �� �� {evaluation fibrations ω f : map(X, Y ; f ) → Y }
fibre-homotopy equivalence

;

In particular, if O is a finite set, then there are finitely many distinct homotopy types
amongst the components of map(X, Y ).

We observe that the discussion of this section can be given with map∗(X, Y ) replacing
map(X, Y ). We will see in the next section that there is a further situation that gives rise to
an action on map∗(X, Y ), to which we may apply our methods.

Holonomy Actions and Universal Actions

A standard source for an action on a space Y is fibration sequence

Y
j �� E

p �� B (2)

in which Y occurs as the fibre. For then we have the holonomy action A : �B × Y → Y of
the group-like space �B on Y . As above, this yields an induced action

A : map∗(X, �B) × map(X, Y ) −→ map(X, Y ) (3)

of map∗(X, �B) on map(X, Y ). In this situation, we may be quite precise about the orbits.

LEMMA 3·1. Let f, g : X → Y be based maps. With reference to the action (3) induced
from the fibration (2), the following are equivalent:
(A) g ∼∗ γ · f for some γ ∈ map∗(X, �B), that is, f and g are in the same orbit;
(B) g ∼∗ A ◦ (γ × f ) ◦ �;
(C) j ◦ f ∼∗ j ◦ g : X → E.

Proof. (A) and (B) are equivalent from the definitions. To see (C) is equivalent, consider
the Puppe sequence

· · · �� [X, �B] ∂∗ �� [X, Y ] j∗ �� [X, E] p∗ �� [X, B] (4)

corresponding to the fibration (2). As is well-known, [X, �B] acts on [X, Y ] as described in
(B) (see e.g. [29, p.140]). Furthermore, an orbit of [ f ] ∈ [X, Y ] under this action is precisely
the pre-image of j∗([ f ]) ([29, III·6·20]). The equivalence of (B) and (C) follows.

THEOREM 3·2. Let X and Y be connected, countable CW complexes with non-
degenerate basepoints. Let j : Y → E be the fibre inclusion of a fibration in which Y occurs
as the fibre. Suppose j ◦ f ∼∗ j ◦ g : X → E for maps f, g : X → Y . Then map(X, Y ; f )

and map(X, Y ; g) are homotopy equivalent. If X is a finite complex then the evaluation
fibrations ω f : map(X, Y ; f ) → Y and ωg : map(X, Y ; g) → Y are fibre-homotopy equi-
valent.

Proof. The result follows directly from Theorem 2 4 and Lemma 3 1.



Example 3·3. Consider a compact, connected Lie group G and a toral subgroup T ⊆ G.
Then we have a fibre sequence G/T → BT → BG with fibre inclusion j : G/T →
BT = ∏

K (Z, 2). Given a CW complex X and based maps f, g : X → G/T we see
that H 2( f ) = H 2(g) : H ∗(G/T ; Z) → H ∗(X; Z) implies j ◦ f ∼∗ j ◦ g. We conclude
from Theorem 3·2 that H 2( f ) = H 2(g) implies the components map(X, G/T ; f ) and
map(X, G/T ; g) are homotopy equivalent.

We may develop Theorem 3·2 as follows.

COROLLARY 3·4. Let X and Y be connected, countable CW complexes with non-
degenerate basepoints. Let j : Y → E be the fibre inclusion of a fibration in which Y occurs
as the fibre. If the image of j∗ : [X, Y ] → [X, E] is a finite set in [X, E], then there are
finitely many distinct homotopy types amongst the components of map(X, Y ). If, further,
X is finite, there are finitely many fibre-homotopy types amongst the evaluation fibrations
ω f : map(X, Y ; f ) → Y for f : X → Y.

So, for instance, returning to the situation of Example 3.3, we may say that if H 2(X; Z)

is finite, then there are finitely many distinct homotopy types amongst the components of
map(X, G/T ). We offer a further example along these lines.

Example 3·5. Let G be a connected Lie group and H a closed subgroup. Suppose that
Hom

(
H ∗(G/H ; Q), H ∗(X; Q)

) = 0, for a finite complex X . (These hypotheses hold, for
instance, whenever H is a subgroup of maximal rank and X is any finite complex with
H even(X; Q) = 0.) Then there are finitely many fibre-homotopy types amongst the eval-
uation fibrations ω f : map(X, G/H ; f ) → Y , for maps f : X → G/H . To see why, ob-
serve that B H is rationally a product of Eilenberg–Mac Lane spaces, and hence the hy-
potheses imply that each j ◦ f : X → B H is null-homotopic after rationalization, where
j : G/H → B H is the fibre inclusion of the fibre sequence G/H → B H → BG and
f : X → G/H is any map. Since rationalization of homotopy sets is a finite-to-one map
[21, Corollary II·5·4], it follows that j∗ : [X, G/H ] → [X, B H ] has finite image. Now we
may apply Corollary 3·4.

We next observe that the universal action on a space Y is that induced by the evaluation
map of the identity component. Precisely, observe that the space map(X, X; 1) is a strictly
associative H -space with multiplication given by composition of functions. Define the action

A∞ : map(Y, Y ; 1) × Y → Y

by A∞(g, y) = g(y) for g ∈ map(Y, Y ; 1) and y ∈ Y. Given any H -action A : G × Y → Y
we obtain, by adjointness, an H -map Â : G → map(Y, Y ; 1) which commutes with the
actions in the sense that A∞( Â(g), y) = A(g, y) for all g ∈ G and y ∈ Y . Conversely,
any H -map Â : G → map(Y, Y ; 1) induces an action A : G × Y → Y . We remark that,
according to Gottlieb [8], this universal action corresponds to the holonomy action in the
universal fibration with fibre Y

Y
j∞ �� E∞

p∞ �� B∞, (5)

(cf. [1, 4, 23]). We will need the following consequence of the classifying fibration:

THEOREM 3 6. Let Y be a CW complex. Then map(Y, Y 1) is a group-like space.



Proof. Since Y is a CW complex, combining [1] with [6, Satz.7·3] gives an H -
equivalence map(Y, Y ; 1) � �0 B∞, where �0 B∞ denotes the component of the constant
loop. Thus map(Y, Y ; 1) is group-like by [29, Corollary III·5·17].

Now write

A∞ : map∗(X, map(Y, Y ; 1)) × map(X, Y ) → map(X, Y )

for the action induced by A∞ on map(X, Y ), and

(A∞) : [X, map(Y, Y ; 1)] × [X, Y ] → [X, Y ]
for the corresponding group action on the set [X, Y ]. Given a homotopy class [ f ] ∈ [X, Y ]
we write O∞([ f ]) for the orbit of [ f ] under this action.

We recall that a based map f : X → Y is called cyclic if the map ( f | 1) : X ∨ Y → Y
admits some extension � : X × Y → Y [27]. We write G(X, Y ) ⊆ [X, Y ] for the set of
based homotopy classes of cyclic maps. In the special case in which X = Sn , G(Sn, Y ) is
just Gn(Y ) ⊆ πn(Y ), the nth Gottlieb group of Y [9].

It is a direct consequence of adjointness that f : X → Y is cyclic if and only if the
evaluation fibration ω f : map(X, Y ; f ) → Y admits a section. We also have

O∞([0]) = G(X, Y ). (6)

For suppose γ : X → map(Y, Y ; 1) is a based map. We define a section s : Y →
map(X, Y ; γ · 0) by the rule s(y) = γ (x)(y). Conversely, if s : Y → map(X, Y ; f ) is a
section for some based map f : X → Y then f ∼∗ γ · 0 where γ : X → map(Y, Y ; 1)

is given by γ (x)(y) = s(y)(x). As a consequence, we obtain the following result which
extends [28, Theorem 2·8] and its generalization by Yoon [30, Theorem 4·5].

THEOREM 3·7. Let X and Y be CW complexes with non-degenerate basepoints. Let
f : X → Y be a map. If ω f : map(X, Y ; f ) → Y has a section then map(X, Y ; f ) is homo-
topy equivalent to map(X, Y ; 0). If X is a finite complex then the following are equivalent:
(A) the map f : X → Y is cyclic;
(B) the evaluation fibration ω f : map(X, Y ; f ) → Y has a section;
(C) the evaluation fibration ω f : map(X, Y ; f ) → Y is fibre-homotopy equivalent to

ω0 : map(X, Y ; 0) → Y.

Proof. The first statement follows from (6) and Theorem 2·4 (A). The equivalence of (A)
and (B) is a consequence of adjointness, as mentioned above. We obtain (A) implies (C) by
observing that the universal action A∞ is strictly unital and applying Theorem 2·4 (C) and
(6). Finally, note that (C) implies (B) since the evaluation fibration ω0 : map(X, Y ; 0) → Y
admits the section s(y)(x) = y.

COROLLARY 3·8. Let Y be a finite CW complex. Then Y is an H-space if and only if
for every finite CW complex X the evaluation fibrations ω f : map(X, Y ; f ) → Y are fibre-
homotopy equivalent for all maps f : X → Y.

Proof. The result follows from Theorem 3·7 and the equivalences:

Y is an H-space ⇐⇒ 1 : Y → Y is cyclic ⇐⇒ every map f : X −→ Y is cyclic

which are direct from definitions.



We now consider the above action A∞ in the special case in which X is a co-H-space.
Suppose the coproduct is σ : X → X ∨ X. The map σ induces a pairing which we denote
‘+’ in the set [X, Y ]. By [27, Theorem 1·5] the set of cyclic maps G(X, Y ) is a subgroup
of [X, Y ] when X is a co-group-like space. When X is merely a co-H-space, Varadarajan’s
proof gives that the set G(X, Y ) is closed under addition. We show that, when X is a co-H-
space, the orbit of a class [ f ] ∈ [X, Y ] under the action of (A∞) is just the set of translates
of [ f ] by G(X, Y ), that is, we have

O∞([ f ]) = {d + f |d ∈ G(X, Y )} (7)

This result is a direct consequence of the following:

LEMMA 3·9. Let X be a co-H-space. Let γ : X → map(Y, Y ; 1) and f : X → Y be
based maps. Let d : X → Y be defined by d(x) = γ (x)(y). Then

γ · f ∼∗ d + f.

Proof. Let � : X × Y → Y denote the adjoint of γ. By the definition of d we then have
the following homotopy-commutative diagram:

X
� ��

σ
����

��
��

��
� X × X

1× f �� X × Y
� �� Y

X ∨ X

J

��

1∨ f
�� X ∨ Y

J

��

(d|1)

�����������
.

The following consequence was proved by Yoon ([30, Theorem 4·9]) for X a suspension.

THEOREM 3·10. Suppose X is a CW co-H-space and Y is any CW complex. Let d ∈
G(X, Y ) be any cyclic map. Then for each map f : X → Y , we have map(X, Y ; f ) �
map(X, Y ; f + d). If X is a finite co-H-space then the corresponding evaluation fibrations
ω f and ω f +d are fibre-homotopy equivalent.

Proof. Since d : X → Y is cyclic there exists a based map � : X × Y → Y extending
(d | 1) : X ∨ Y → Y . Let γ : X → map(Y, Y ; 1) denote the adjoint to �. Then, under
the universal action we have γ ◦ f ∼∗ d + f by Lemma 3·9 and the result follows from
Theorem 2·4.

Note that if X is a suspension, or more generally a cogroup-like space, then (7) gives a
bijection

O∞ � [X, Y ]/G(X, Y ), (8)

where O∞ denotes the orbits of the action (A∞) on [X, Y ] and the right-hand side is simply
the quotient group. If, for instance, X = Sn , then from Corollary 2·5 (C) we obtain a surjec-
tion

πn(Y )/Gn(Y ) �� �� {evaluation fibrations ω f : map(Sn, Y ; f ) → Y }
fibre-homotopy equivalence

. (9)

When Y is simple, the connecting homomorphism in the long exact homotopy sequence
of the evaluation fibration ω f : map(Sn, Y ; f ) → Y , when viewed as a map

∂ : πk(Y ) −→ πk−1(map (Sn, Y ; f ))�πk+n−1(Y ),



may be described in terms of Whitehead products with the class represented by f : Sn → Y
(see [29, Section 3]). This fact can be used in special cases to distinguish non-equivalent
components of map(Sn, Y ) by calculating homotopy groups. For a recent application of this
method see [25]. Hansen uses this method in [11]; his result [11, Theorem 2·3] implies the
surjection (9) is actually a bijection when Y = Sm is also a sphere. Thus the homotopy clas-
sification of components of map(Sn, Sm) reduces to the problem of computing the Gottlieb
groups Gn(Sm). See [7] for recent results in this direction. Using other recent calculations
of Gottlieb groups we obtain the following.

Example 3·11. Let Vn+k,k = O(n + k)/O(n) denote the real Stiefel manifold. Suppose
that we have m � n and m ≡ 3, 5, 6, 7(mod 8). Then the evaluation fibrations

ω f : map(Sm, Vn+k,k; f ) → Vn+k,k

are fibre-homotopy equivalent for all f : Sm → Vn+k,k . For by [14, Theorem 3·1], we have
Gm(Vn+k,k) = πm(Vn+k,k) in these cases. Similar examples can be formulated for the com-
plex and quaternionic Stiefel manifolds using [14, Theorem 3·2] and [14, Theorem 3·3],
respectively.

Our last remark on these topics concerns the case in which Y is a so-called G-space, that
is, a space that satisfies Gn(Y ) = πn(Y ) for each n. Such spaces have been studied by Siegel,
Gottlieb and others, and are considered as being “close” to H -spaces from certain points of
view. There are examples of G-spaces that are not H -spaces, however [22]. If Y is a G-
space, then the surjection (9) yields that all evaluation fibrations map(Sn, Y ; f ) → Y are
fibre-homotopy equivalent to each other (and each has a section). This is a further property
that G-spaces share with H -spaces.

In case the function space of based maps is of interest, there is a separate source of actions
in addition to those obtained by restricting actions on the unbased function space, as we have
done above. Namely, those group-like actions on the based mapping space map∗(X, Y ) that
arise from cogroup-like actions on X . We finish the paper with a brief discussion of this
topic. The approach here is essentially that observed by Sutherland in [25, Section 4].

Suppose that C is a co-H-space with comultiplication σ : C → C∨C . Then, for any space
Y , the based function space map∗(C, Y ) is an H -space with product m( f, g) = ( f | g) ◦ σ ,
where f, g : C → Y are based maps. By [29, Theorem III·5·16], map∗(C, Y ) is homotopy-
associative, respectively group-like, if C is homotopy-coassociative, respectively cogroup-
like. By a homotopy-coassociative coaction of a homotopy-coassociative co-H-space C on
a based space X , we mean a based map B : X → C ∨ X that satisfies p2 ◦ B ∼∗ 1 : X → X
and (σ | 1) ◦ B ∼∗ (1 | B) ◦ B : X → C ∨ C ∨ X where p2 : C ∨ B → B is the obvious
projection.

Suppose C is a homotopy-coassociative co-H-space and B : X → C ∨ X is a homotopy-
coassociative coaction. Define

B : map∗(C, Y ) × map∗(X, Y ) −→ map∗(X, Y ). (10)

by setting B(γ, f ) = (γ | f ) ◦ B. It is direct to check that B defines a homotopy-associative
action on map∗(X, Y ). If C is cogroup-like, this is a group-like action. Thus we may apply
Theorem 2·2 to this situation, giving:

THEOREM 3·12. Let B : X → C ∨ X be a homotopy-coassociative coaction of a
cogroup-like space C on X. Let γ C Y be a based map.



(A) For any map f : X → Y , under the resulting action (10) on map∗(X, Y ), the path com-
ponents map∗(X, Y ; f ) and map∗(X, Y ; γ · f ) of map∗(X, Y ) have the same homotopy
type.

(B) Write

B# : [C, Y ] × [X, Y ] → [X, Y ]
for the action induced on homotopy sets by the action (10). Let O′ denote the set of
orbits of [X, Y ] under this action of the group [C, X ]. There is a surjection of sets

O′ �� �� {components of map∗(X, Y )}
� .

In particular, if O′ is a finite set, then there are finitely many distinct homotopy types
amongst the components of map∗(X, Y ).

Proof. The proof is a direct consequence of the preceding discussion and Theorem 2·2.

A standard source for a coaction on a space X is a cofibration sequence

Z
i �� A

q �� X

in which X occurs as the cofibre. For then we have B : X → �Z ∨ X , the usual coaction of
the cogroup-like space �Z on X . This then leads to an action as above

B : map∗(�Z , Y ) × map∗(X, Y ) −→ map∗(X, Y ). (11)

Consider the Puppe sequence

· · · �� [�Z , Y ] ∂∗
�� [X, Y ] q∗

�� [A, Y ] i∗
�� [Z , Y ]. (12)

As is well known, [�Z , Y ] acts on [X, Y ] and an orbit of f ∈ [X, Y ] under this action is
precisely the pre-image of q∗( f ) (see [29, III·6·20]). It is easy to see that this action in the
Puppe sequence is identical with the action B# induced on [X, Y ] by the action (11). Thus
the following result is a direct consequence of Theorem 3·12.

THEOREM 3·13. Let q : A → X be the cofibre projection of a cofibration in which
X occurs as the cofibre. Suppose f ◦ q ∼∗ g ◦ q : A → Y for maps f, g : X → Y .
Then map∗(X, Y ; f ) and map∗(X, Y ; g) have the same homotopy type. If the image of
q∗ : [X, Y ] → [A, Y ] is a finite set in [A, Y ], then there are finitely many distinct homo-
topy types amongst the components of map∗(X, Y ).

Example 3·14. Suppose X is an n-dimensional manifold. Then X occurs as the cofibre in a
cofibration of the form Sn → A → X where A is an (n−1)-dimensional CW complex. Note
that the components of map∗(X, Sn) are in one-to-one correspondence with H n(X), by the
Hopf–Whitney classification theorem, and so there are generally infinitely many compon-
ents of map∗(X, Sn). However, [A, Sn] consists of a single element, namely the homotopy
class of the trivial map. By Theorem 3·13, all components of the based mapping space
map∗(X, Sn) have the same homotopy type.

Along the same lines, we offer the following:

Example 3·15. Suppose X = Sn �α er+1 is a two-cell complex, with α ∈ πr (Sn) for
some r � n. Suppose Y is any space with πn(Y ) finite. Then there are finitely many distinct



homotopy types amongst the components of the based mapping space map∗(X, Y ). For we
have a cofibre sequence Sr → Sn → X , in whose Puppe sequence the map q∗ : [X, Y ] →
[Sn, Y ] has finite image by hypothesis. The assertion follows from Theorem 3·13.

REFERENCES

[1] G. ALLAUD. On the classification of fiber spaces. Math. Z. 92 (1966), 110–125.
[2] M. C. CRABB and W. A. SUTHERLAND. Counting homotopy types of gauge groups. Proc. London

Math. Soc. (3) 81, no. 3 (2000), 747–768.
[3] A. DOLD. Partitions of unity in the theory of fibrations. Ann. of Math. (2) 78 (1963), 223–255.
[4] A. DOLD. Halbexakte homotopiefunktoren. Lecture Notes in Mathematics, vol. 12 (Springer-Verlag,

1966).
[5] J. DUGUNDJI. Topology (Allyn and Bacon Inc., 1978), Reprinting of the 1966 original, Allyn and

Bacon Series in Advanced Mathematics.
[6] M. FUCHS. Verallgemeinerte homotopie-homomorphismen und klassifizierende Räume. Math. Ann.
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