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Abstract

Pseudomonas aeruginosa is especially adept at colonizing the airways of individuals afflicted with the autosomal recessive
disease cystic fibrosis (CF). CF patients suffer from chronic airway inflammation, which contributes to lung deterioration.
Once established in the airways, P. aeruginosa continuously adapts to the changing environment, in part through
acquisition of beneficial mutations via a process termed pathoadaptation. MutS and DinB are proposed to play opposing
roles in P. aeruginosa pathoadaptation: MutS acts in replication-coupled mismatch repair, which acts to limit spontaneous
mutations; in contrast, DinB (DNA polymerase IV) catalyzes error-prone bypass of DNA lesions, contributing to mutations. As
part of an ongoing effort to understand mechanisms underlying P. aeruginosa pathoadaptation, we characterized hydrogen
peroxide (H2O2)-induced phenotypes of isogenic P. aeruginosa strains bearing different combinations of mutS and dinB
alleles. Our results demonstrate an unexpected epistatic relationship between mutS and dinB with respect to H2O2-induced
cell killing involving error-prone repair and/or tolerance of oxidized DNA lesions. In striking contrast to these error-prone
roles, both MutS and DinB played largely accurate roles in coping with DNA lesions induced by ultraviolet light, mitomycin
C, or 4-nitroquinilone 1-oxide. Models discussing roles for MutS and DinB functionality in DNA damage-induced
mutagenesis, particularly during CF airway colonization and subsequent P. aeruginosa pathoadaptation are discussed.
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Introduction

Despite the fact that most organisms are equipped with

numerous DNA repair functions, DNA lesions often evade repair.

If left unchecked, these lesions can block ongoing replication,

leading to mutations, genome rearrangements, and even cell

death [1]. One evolutionarily conserved mechanism by which

bacteria tolerate replication blocking DNA lesions involves their

direct bypass via a process termed translesion DNA synthesis

(TLS) [1,2]. Most if not all organisms possess multiple DNA

polymerases (Pols) capable of catalyzing TLS, several of which

belong to the Y-family [1,3]. In general, members of this family of

Pols possess a preformed and open catalytic active site compared

to well studied high fidelity replicative Pols, are distributive, and

lack intrinsic exonuclease proofreading activity (reviewed in

[1,4]). Taken together, these features confer upon Y-family Pols a

reduced fidelity relative to most well studied replicative enzymes.

This reduced fidelity is vital to their ability to catalyze TLS, and,

together with the miscoding or non-coding nature of many

lesions, explains why TLS can be error-prone, contributing to

mutations.

The Y-family of Pols is comprised of four main subgroups, or

branches (reviewed in [3]). The bacterial DinB (Pol IV; hereafter

referred to as DinB)/eukaryotic Pol k branch is the most

evolutionarily conserved [3,5], suggesting that its members play

one or more vitally important roles with respect to DNA repair/

damage tolerance. Although it is unclear whether the members of

the DinB branch act in one or more conserved role, several distinct

activities have been described for representative members. For

example, both E. coli DinB and mammalian Pol k are capable of

catalyzing accurate bypass of N2-dG–furfuryl adducts [6,7], as well

as model N2-dG–N2-dG interstrand DNA cross-links [8,9]. In

addition, E. coli DinB plays an active role in contributing to

mutations under conditions of limiting carbon source via an error-

prone dsDNA break repair pathway [10], and may play a role in

error-free bypass of cytotoxic alkylating DNA lesions [11].

Although E. coli DinB cannot catalyze bypass of UV photoprod-

ucts [12], the Sulfolobus solfataricus DinB ortholog, P2 Pol IV (Dpo4)
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can bypass a model cis-syn thymine cyclobutane dimer in vitro [13].

Human Pol k is unable to bypass a model thymine dimer in vitro;

however, it can extend a primer bearing a 39-dG located opposite

the 39-dT of a model thymine cyclobutane dimer in vitro [14].

Moreover, Pol k catalyzes error-prone bypass of 8-oxo-7,8-

dihydro-29-deoxyguanosine 59-monophosphate (8-oxo-dG), and

largely accurate bypass of 5,6-dihydro-5,6-dihydroxythymidine

(thymine glycol) in vitro [15,16,17]. Finally, both E. coli DinB and

human Pol k incorporate 2-hydroxy-dATP opposite template-dG

or -dT, as well as 8-oxo-dG opposite template-dA [18,19]. Taken

together, these findings illustrate the difficulty in predicting a priori

the ability of a particular DinB/Pol k enzyme to tolerate a specific

lesion, and/or the fidelity with which a particular DinB/Pol k
enzyme will behave.

We recently initiated a study of the Pseudomonas aeruginosa DinB

protein as part of a larger effort aimed at understanding

mechanisms contributing to mutagenesis and adaptation [20].

P. aeruginosa is a human opportunistic pathogen that is com-

monly associated with a variety of human diseases, particu-

larly chronic respiratory infections of cystic fibrosis (CF)

patients (reviewed in [21,22]). Following airway colonization,

P. aeruginosa acquires mutations that confer an adaptive advantage,

enabling the pathogen to persist within CF airways for years

to decades, ultimately leading to the death of the patient

[23,24,25,26,27,28,29,30]. The process by which P. aeruginosa

acquires adaptive mutations is referred to as ‘pathoadaptation.’

Mutational inactivation of the P. aeruginosa mucA gene results in a

mucoid phenotype, and is one of the best-studied examples of an

adaptive mutation directly correlated with persistent infections and

poor clinical prognosis (reviewed in [31]). Based on two separate

studies [32,33], more than 80% of the mucoid P. aeruginosa strains

isolated from individuals afflicted with CF were found to contain a

mutation within mucA, suggesting that mutations inactivating this

locus confer an advantage in airway pathogenesis. The mucA gene

encodes an anti-sigma factor (MucA protein) that negatively

regulates the actions of the alternative sigma factor, AlgT (or

AlgU) (reviewed in [23,31]). Inactivation of mucA leads to loss of

MucA-mediated antagonism of AlgT, which in turn activates

transcription of genes required for alginate production. A majority

of mucA alleles impaired for regulation of AlgT contain a –1

frameshift mutation within a single homopolymeric run of 5

consecutive dG residues, referred to as the mucA22 allele [32]. Our

finding that P. aeruginosa DinB favored –1 frameshift mutations

within poly-dA and poly-dG runs over GCRTA transversions

nearly 3-to-1 led us to suggest that this Pol may contribute to mucA

inactivation during airway infection [20]. Consistent with this

hypothesis, DinB contributes to mutations in mucA that promote

alginate production under laboratory conditions [34]. This same

study revealed that mutational inactivation of MutS, which

together with MutL and UvrD enables mismatch repair (MMR),

served to significantly increase the frequency of mucA mutations.

MMR is a replication-coupled repair function that acts to

correct replication errors, thereby limiting the frequency of

spontaneous mutations. MMR function relies at a minimum on

MutS, MutL, and UvrD. Based on seminal work in E. coli, MutS

acts to recognize DNA mismatches (reviewed in [35]). After

binding the mismatch, MutS recruits MutL. In some organisms,

MutL possesses a nuclease activity that cleaves the daughter strand

containing the replication error [36]. P. aeruginosa MutL has not yet

been demonstrated to possesses nuclease activity. MutL also acts to

recruit UvrD, a DNA helicase (helicase II) that loads at the nick

site to unwind the duplex DNA, leaving a single strand (ss) DNA

gap. This ssDNA gap is subsequently filled in by action of the

replicative DNA polymerase, and the resulting nick sealed by

DNA ligase. Loss-of-function mutations in either mutS, mutL, or

uvrD abolish MMR, leading to significantly elevated spontaneous

mutation frequencies, due in large part to an inability to correct

replication errors [35]. More recently, roles for MutS, MutL, and

UvrD in addition to MMR have been suggested. For example,

MutS may participate in base excision repair, MutL was recently

determined to interact with a variety of proteins that participate in

functions other than MMR, and UvrD participates in nucleotide

excision repair, and also plays an antagonistic role in recombina-

tion by dismantling RecA/ssDNA nucleoprotein filaments

[37,38,39,40,41]. Taken together, these findings suggest that

DNA lesions in addition to mismatched base pairs might

contribute to the elevated mutation rates observed for MMR-

deficient strains. Finally, of significance to work discussed in this

report, a significant fraction of CF patients harbor a population of

P. aeruginosa that displays an elevated spontaneous mutation

frequency (e.g., hypermutable phenotype) due to loss of MMR

function, most frequently resulting from mutational inactivation of

mutS [24,25,28,42].

Despite the fact that a large fraction of CF patients are

colonized by mutS-deficient P. aeruginosa strains [24,25,28,42], there

is a paucity of information regarding the biology of these strains.

Based on a murine airway infection model, inactivation of mutS

renders P. aeruginosa less virulent [28,43]. P. aeruginosa is exposed to

high levels of reactive oxygen species (ROS) while colonizing CF

airways, especially in the early ‘‘aerobic’’ phases (reviewed in

[21,22]). As a result, P. aeruginosa experiences significant levels of

DNA damage. Inasmuch as MutS acts to prevent mutations, we

hypothesized that MutS function might contribute to accurate

repair of ROS-damaged DNA, and that in the absence of MutS, P.

aeruginosa would be impaired for coping with these lesions, possibly

explaining the reduced virulence of this strain in a murine model

[28,43]. Moreover, since oxidized DNA lesions can be tolerated by

TLS, we further hypothesized an important role for DinB in

protecting P. aeruginosa against ROS-induced DNA damage.

Finally, since error-prone repair or TLS of oxidized DNA lesions

will contribute to mutations, we hypothesized that MutS and DinB

play opposing roles in P. aeruginosa pathoadaptation. While testing

these hypotheses using isogenic mutS- and/or dinB-deficient strains,

we unraveled an unexpected epistatic relationship between mutS

and dinB functionality with respect to H2O2-induced cell killing.

Our discovery that both dinB and mutS functionality contributed to

H2O2-induced mutagenesis suggests that H2O2 sensitivity of the

mutS and dinB strains was the direct result of their impaired ability

to cope with ROS-induced DNA damage. In striking contrast to

these error-prone roles, both MutS and DinB played accurate

roles in tolerating and/or repairing DNA lesions induced by

ultraviolet light (UV), mitomycin C (MMC), or 4-nitroquinilone 1-

oxide (4-NQO) exposure. Models discussing roles for MutS and

DinB functionality in DNA lesion repair and/or tolerance, as well

as DNA damage-induced mutagenesis, particularly during CF

airway colonization and subsequent P. aeruginosa pathoadaptation

are discussed.

Results

Contributions of P. aeruginosa DinB and MutS to
spontaneous mutagenesis

As part of an ongoing effort to understand mechanisms

contributing to P. aeruginosa pathoadaptation, we constructed a

set of isogenic PAO1-derived strains bearing different combina-

tions of wild-type and mutant mutS and dinB alleles. Prior to

determining roles for dinB and/or mutS function(s) in DNA

damage-induced mutagenesis, we measured their respective

Epistatic Roles for MutS and DinB
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contributions to spontaneous mutagenesis. Inactivation of mutS

(mutS::ISphoA/hah) conferred a ,650-fold increase in the frequen-

cy of spontaneous RifR compared to the isogenic mutS+ strain

(Table 1), consistent with its well-established role in replication-

coupled MMR [35]. Hypermutability of the mutS strain was fully

complemented by plasmid pmutS (Table 1), which expresses the P.

aeruginosa MutS protein from its native promoter. In contrast to

mutS, deletion of dinB (DdinB::aacC1) failed to significantly influence

the frequency of spontaneous RifR, irrespective of mutS activity

(Table 1). Based on nucleotide sequence analysis of representative

spontaneously arising RifR clones for each of the four strains,

mutations resulted exclusively from spontaneous base substitutions

(Table 2), as expected given the essential role of the rpoB gene

product (b subunit of RNA Pol) [44]. The overwhelming majority

of observed mutations were TARCG transitions, irrespective of

mutS and dinB functionality (see Fig. 1A & Table 2). Importantly,

GCRTA transversions, which are characteristic of DinB [20],

were not observed. Taken together, these results indicate that

DinB function does not contribute to spontaneous base substitu-

tions in P. aeruginosa. In addition, they confirm a pivotal role for

MutS in limiting spontaneous mutations.

DinB and MutS act epistatically to protect P. aeruginosa
against H2O2-mediated killing

The dinB and mutS genes are among the numerous P. aeruginosa

genes whose transcription is induced following exposure to H2O2

[45,46], suggesting roles for DinB and MutS in coping with ROS-

induced DNA lesions. To test this hypothesis, we asked whether

loss of dinB and/or mutS function(s) enhanced sensitivity of P.

aeruginosa to H2O2. As summarized in Fig. 2A, wild-type P.

aeruginosa (MPAO1) was relatively insensitive to killing by H2O2

over the concentration range examined. In contrast to MPAO1,

the mutS-deficient strain (MPA32417) displayed a pronounced

hypersensitivity to all H2O2 concentrations examined (Fig. 2A),

suggesting an important role for MutS in sensing and/or repairing

oxidized DNA lesions. H2O2 hypersensitivity was statistically

significant (p,0.05, based on two-way ANOVA with Bonferroni

post-test), and was fully complemented by the MutS-expressing

plasmid (pmutS). The dinB-deficient strain (WFPA334) also

displayed increased sensitivity to H2O2, although this sensitivity

was largely restricted to higher levels of H2O2 (Fig. 2A), suggesting

an important role for DinB in tolerating H2O2-induced DNA

lesions that persist in the DNA, rather than their repair. Sensitivity

of the dinB strain was statistically significant at concentrations

$200 nM H2O2 (p,0.05), and was fully complemented by the

DinB-expressing plasmid, pAR101. Finally, the mutS dinB double

mutant strain (UBPA100) displayed a level of H2O2 sensitivity that

was comparable to the mutS-deficient dinB+ strain (Fig. 2A),

indicating an epistatic relationship between dinB and mutS

function(s) with respect to H2O2-mediated killing. As a control,

we measured levels of catalase activity in cell-free extracts

prepared from each strain. As summarized in Fig. 2B, each strain

harbored comparable levels of catalase activity (p.0.05, based on

one-way ANOVA with Dunnett’s post-test), indicating that H2O2

sensitivity of the mutS and dinB strains was not the result of reduced

catalase levels. These results, taken together with the known roles

for DinB and MutS discussed above, support a model in which P.

aeruginosa MutS and DinB act in a common pathway focused on

coping with H2O2-induced DNA damage.

Both DinB and MutS contribute to H2O2-induced
mutagenesis in P. aeruginosa

We hypothesized that H2O2-sensitivity of dinB and/or mutS

strains was the result of their respective inabilities to effectively

cope with oxidized DNA lesions. Given that DinB is a TLS Pol, we

hypothesized that it might catalyze error-prone bypass of oxidized

DNA lesions, resulting in H2O2-induced mutations. In this case,

inactivation of DinB would reduce the frequency of H2O2-induced

mutagenesis. In addition, we hypothesized that independently of

DinB, MutS might recognize oxidized DNA lesions, and either

directly catalyze their repair, or shuttle them into the appropriate

accurate DNA repair pathway. In this case, loss of MutS function

would result in accumulation of H2O2-induced lesions, possibly

necessitating their tolerance via DinB-mediated TLS. As a test of

these hypotheses, we measured H2O2-induced mutation frequen-

cies for our isogenic mutS and/or dinB strains. As summarized in

Fig. 3A, mutation frequency of the wild-type P. aeruginosa strain

(MPAO1) was increased ,10-fold following exposure to H2O2

(20.761.361028) compared to the mock treated control

(2.261.561028). Since we propose that DinB activity contributes

to this mutator phenotype, we tested if the loss of DinB function

impaired H2O2-induced mutagenesis. Consistent with our hy-

pothesis, the frequency of H2O2-induced mutagenesis for the dinB-

deficient strain (5.661.061028) was ,4-fold lower than that

observed with the wild-type strain (20.761.361028; see Fig. 3A).

Importantly, H2O2-induced mutagenesis was fully restored by the

DinB-expressing plasmid, verifying a direct role for DinB.

We next asked whether MutS function influenced the

frequency of H2O2-induced mutagenesis. As shown in Fig. 3B,

the mutS-deficient dinB+ strain (MPA32417) displayed a weak

Table 1. Contribution of P. aeruginosa mutS and dinB functionality to spontaneous RifR.

Strain Phenotype with respect to functionality of:a Frequency of spontaneous Rif Rb Fold-effectc

MutS DinB

MPAO1 + + 2.5 (1.4–3.0)61028 ;1.0

WFPA334 + 2 4.0 (1.6–4.0)61028 1.6

MPA32417 2 + 16.2 (12.9–19.0)61026 648

MPA3241 (pmutS)d +d + 2.1 (0.7–5.2)610-8 0.8

UBPA100 2 2 15.1 (13.8–19.9)61026 604

aRelevant phenotypes with respect to dinB and mutS function are indicated: +, wild-type; 2, loss-of-function.
bMedian mutation frequency is shown. Calculated frequencies are based on either 5 (for strain MPA32417 bearing plasmid pmutS) or 30 (for all other strains)

independent determinations. Values in parentheses represent 95% confidence intervals, and were calculated as described [68].
cFold-increase in median spontaneous mutation frequency relative to MPAO1, whose frequency was set equal to 1.0 (;1.0).
dPlasmid pmutS expresses the wild-type MutS protein (mutS+) from its native promoter.
doi:10.1371/journal.pone.0018824.t001

Epistatic Roles for MutS and DinB
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H2O2-induced mutator phenotype that was only ,1.5-fold

higher than its spontaneous mutation frequency (26.56

3.261026 for H2O2-treated cultures compared to 18.26

5.961026 for mock-treated controls). Inasmuch as this increase

was considerably smaller than the ,10-fold increase observed for

the mutS+ dinB+ strain (MPAO1), these results suggest a direct role

for MutS in ROS-induced mutagenesis (see Discussion). Impor-

tantly, H2O2-induced mutagenesis in the mutS strain was still

DinB-dependent (Fig. 3B), as we observed a more than 8-fold

reduction in the H2O2-induced mutation frequency for the mutS

dinB strain (3.361.961026) compared to the mutS-deficient dinB+

strain (26.563.261026). Consistent with results discussed above,

this defect was fully complemented by the DinB-expressing

plasmid, providing further support for a role for DinB (Fig. 3B).

Remarkably, the frequency of RifR for the H2O2-treated mutS

dinB strain (3.361.961026) was more than 6-fold lower than the

spontaneous mutation frequency observed for the same strain

following mock treatment (21.564.561026), resulting in an

overall negative value for H2O2-induced mutation frequency

(218.264.761026; Fig. 3B). This difference was reproducibly

observed, and was statistically significant (p,0.001, based on

Student’s t-test). Taken together, these results support a model in

which DinB and MutS act synergistically to cope with oxidized

DNA lesions (see Discussion).

Table 2. Nucleotide sequence analysis of rpoB alleles recovered from spontaneous or H2O2-induced RifR P. aeruginosa strains.a

Spontaneous rpoB mutations

Nucleotide substitutionb
Deduced amino
acid substitution RifR P. aeruginosa strainsc

MPAO1 (WT)d WFPA334 (dinB) MPA32417 (mutS) UBPA100 (mutS dinB)

CTGRCCG L516RP nd nd nd 1

TCGRCCG S517RP 1 nd nd 1

CAGRCGG Q518RR 4 nd nd 4

GACRAAC D521RN 1 nd nd 1

GACRGGC D521RG 3 14 15 12

GACRGTC D521RV 1 nd nd nd

GACRGCC D521RA nd 1f nd nd

CAGRGAG Q522RE nd 1f nd nd

AACRGAC N523RD nd 1 nd nd

CACRTAC H531RY nd 1 nd nd

CACRCGC H531RR nd 1 3 1

TCCRTTC S536RF 1 nd nd nd

CTCRCCC L538RP 1 nd nd nd

H2O2-induced rpoB mutations

Nucleotide substitutionb
Deduced amino
acid substitution RifR P. aeruginosa strainsc

MPAO1 (WT) WFPA334 (dinB)g MPA32417 (mutS) UBPA100 (mutS dinB)h

CTGRCCG L516RP nd nd 1 nd

TCGRCCG S517RP nd nd 1 nd

TCGRTTG S517RL nd 1 nd 1

CAGRCGG Q518RR nd nd 1 nd

GACRAAC D521RN nd nd 2 nd

GACRGGC D521RG 10 8 15 17

CACRGAC H531RD 3 6 nd nd

CACRTAC H531RY nd 2 nd nd

CACRCTC H531RL 2 nd nd nd

CTCRCCC L538RP 4 nd nd nd

CCTRCTT P567RL 1 nd nd nd

aSpontaneous and H2O2-induced (25 mM H2O2) mutations were identified as described in Materials and Methods. The region of rpoB encompassing amino acids 499–
582 of the b subunit of RNA polymerase was PCR amplified from 18–20 independent RifR clones for each strain and subjected to automated nucleotide sequence
analysis.

bEach nucleotide substitution (underlined) is shown in the context of its respective codon.
cThe number of times that each mutation was identified in the group of 18–20 that was sequenced is indicated; nd, the indicated mutation was not detected.
dSeven of the 19 RifR clones examined did not contain a mutation within amino acids 499–582.
eOne of the 19 RifR clones examined did not contain a mutation within amino acids 499–582.
fThese mutations were present in the same rpoB allele.
gThree of the 20 RifR clones examined did not contain a mutation within amino acids 499–582.
hTwo of the 20 RifR clones examined did not contain a mutation within amino acids 499–582.
doi:10.1371/journal.pone.0018824.t002

Epistatic Roles for MutS and DinB
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P. aeruginosa DinB catalyzes bypass of 8-oxo-dG in vitro
We interpreted our finding that dinB function contributes to

H2O2-induced mutagenesis (Fig. 3) to suggest that DinB catalyzes

TLS over one or more classes of oxidized DNA lesions. Since 8-

oxo-dG is a well-established ROS-induced lesion [1], we tested

whether purified DinB protein could catalyze bypass of template–

8-oxo-dG in vitro. For these experiments, we utilized a synthetic

oligonucleotide substrate comprised of 20-mer template bearing

either dG, or 8-oxo-dG positioned immediately downstream of the

39-OH of an annealed complimentary 13-mer oligo (see legend to

Table 3 for oligo sequences). Under single turnover conditions (e.g.,

200 nM DinB and 100 nM DNA), DinB specifically incorporated

dCTP opposite template-dG: we did not detect incorporation of

dATP, dGTP, or dTTP (Table 3). In contrast to template-dG,

DinB incorporated both dCTP and dATP opposite template–8-

oxo-dG: incorporation of dGTP or dTTP was not detected

(Table 3). The 2-fold preference for incorporation of dATP

compared to dCTP arises primarily through an increase in binding

affinity for dATP (KM = 1565.0 mM) relative to dCTP

(KM = 2867.0 mM; see Table 3). Taken together, these findings

indicate that DinB can bypass template–8-oxo-dG in either an

accurate manner by inserting dCTP, or an error-prone manner by

inserting dATP, contributing to GCRTA transversions. Coinci-

dently, P. aeruginosa DinB catalyzes GCRTA transversions when

expressed in E. coli [20].

To determine whether GCRTA transversions induced by

DinB-mediated bypass of 8-oxo-dG contributes to H2O2-induced

mutagenesis in P. aeruginosa in vivo, we analyzed the sequence of the

rpoB gene from representative RifR clones (see Materials and

Methods). As noted above, and summarized in Fig. 1A, the majority

of spontaneous mutations resulted from TARCG transitions,

irrespective of dinB and/or mutS function: 9/12 (75%) RifR

Figure 1. Summary of spontaneous and H2O2-induced base substitutions in rpoB that confer RifR. Results of rpoB DNA sequence analysis
for spontaneous (A) and H2O2-induced (B) RifR P. aeruginosa mutants are summarized with respect to the types of nucleotide substitution observed.
Frequency refers to the occurrence of each observed base substitution mutation as a function of the total number of spontaneous or H2O2-induced
RifR mutants sequenced for each strain. See Table 2 for details concerning the number of RifR clones analyzed for each strain, as well as the specific
nucleotide position and substitution of each documented mutation.
doi:10.1371/journal.pone.0018824.g001

Figure 2. Contributions of dinB and/or mutS function to survival following exposure to ROS. Respective H2O2 sensitivities (A), and
catalase activities for cell free extracts (B) of isogenic P. aeruginosa strains MPAO1 (wild-type) bearing pUCP20T, WFPA334 (DdinB::aacC1) bearing
pUCP20T (control) or pAR101 (dinB+), MPA32417 (mutS::ISphoA/hah) bearing pUCP20T (control) or pmutS (mutS+), and UBPA100 (DdinB::aacC1
mutS::ISphoA/hah) bearing pUCP20T were determined as described in Materials and Methods. H2O2 sensitivities represent the average of 4
independent experiments, while catalase activities represent the average of 3 independent experiments; error bars represent the standard deviation.
Based on a two-way ANOVA with Bonferroni post-test, there was a significant interaction between strain and concentration of H2O2 in (A), and
differences in H2O2 sensitivity of wild-type and mutS and dinB strains were statistically significant (p,0.05). Based on a one-way ANOVA with
Dunnett’s post-test, differences in catalase activity in (B) were not significant (p.0.05).
doi:10.1371/journal.pone.0018824.g002
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mutations in the wild-type strain resulted from TARCG

transitions, compared to 16/19 (85%) for the dinB strain, 18/18

(100%) for the mutS strain, and 19/20 (95%) for the dinB mutS

double mutant. In contrast to spontaneous mutations, which at

least in the wild-type strain (MPAO1) were distributed among

seven distinct nucleotide positions, corresponding to five different

amino acids, H2O2-treatment resulted in an obvious increase in

the frequency of mutation at residue D521, identifying this

position as a ‘hot spot’ for ROS-induced RifR mutations in P.

aeruginosa (Table 2). Furthermore, with the exception of the DdinB

strain (WFPA334), which contained comparable levels of

TARCG transitions and CGRGC transversions, H2O2 treatment

induced mostly TARCG transitions (see Fig. 1B & Table 2). It is

noteworthy that GCRTA transversions, characteristic of error-

prone DinB-mediated bypass of 8-oxo-dG (see Table 3), were not

observed. Taken together, these results suggest that P. aeruginosa

DinB contributes to H2O2-induced mutagenesis by one or more

mechanisms that are functionally distinct from that involving its

ability to catalyze error-prone bypass of 8-oxo-dG (see Discussion).

Both DinB and MutS functionality contribute to accurate
tolerance of DNA lesions induced by exposure to
ultraviolet light (UV), mitomycin C (MMC), or
4-nitroquinilone 1-oxide (4-NQO) in vivo

As part of an effort to better understand the synergistic

relationship between MutS and DinB in H2O2-induced mutagen-

esis, we asked whether these proteins played similar roles in

tolerating DNA lesions induced by exposure to UV, MMC, or 4-

NQO. We first determined contributions of dinB and/or mutS

functionality to UV-induced mutagenesis. Based on results of

previously published experiments utilizing mutS+ strains [20], Pol I

and PolC are required for the vast majority of UV-induced

mutagenesis: in this study, inactivation of dinB failed to impact

significantly on the frequency of mutations induced by UV

irradiation [20]. In order to determine whether MutS (or MMR)

function masked an error-prone role for DinB in UV-induced

mutagenesis, we analyzed frequencies for mutS-deficient dinB+ and

DdinB strains. As summarized in Fig. 4A, the mutS-deficient strain

(MPA32417) displayed a modest UV-induced mutator phenotype

Figure 3. Contribution of dinB and/or mutS function to H2O2-induced mutagenesis. H2O2-induced mutagenesis was measured in mutS+ (A),
or mutS::ISphoA/hah (B) dinB+ and DdinB::aacC1 strains, bearing the indicated plasmids. Strains examined include MPAO1 (wild-type) bearing
pUCP20T, WFPA334 (DdinB::aacC1) bearing pUCP20T (control) or pAR101 (dinB+), MPA32417 (mutS::ISphoA/hah) bearing pUCP20T (control), or
UBPA100 bearing pUCP20T (control) or pAR101 (dinB+). H2O2-induced mutation frequencies represent the average of 4–6 independent experiments.
Error bars represent the standard deviation. P-values are indicated, and were calculated using the Student’s t-test.
doi:10.1371/journal.pone.0018824.g003

Table 3. P. aeruginosa DinB catalyzes both accurate and error-prone bypass of 8-oxo-dG in vitro.a

Incorporation of:b Kinetic parametersc

Nucleoside triphosphate Opposite template base KM (mM) kcat (s21) kcat/KM (M21s21)

dCTP dG 5.462.3 0.12060.010 2.26104

dCTP 8-oxo-dG 2867.0 0.06660.005 0.26104

dATP dG ndd nd nae

dATP 8-oxo-dG 1565.0 0.06660.006 0.46104

aBypass activity was measured in vitro using a synthetic 13-mer oligonucleotide primer (59-TGG CAG CCG GTC A-39) annealed to a synthetic 20-mer template strand
bearing either dG or 8-oxo-dG (39-ACC GTC GGC CAG Tx C CCA AA-59, where x represents either dG or 8-oxo-dG).

bNeither dTTP nor dGTP were incorporated opposite template dG at a detectable level.
cValues shown represent the average of at least 3 independent experiments, 6 the standard deviation.
dIncorporation of dATP opposite template dG was not detected (nd).
eNot applicable (na).
doi:10.1371/journal.pone.0018824.t003
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that was similar in magnitude (,2-fold increase relative to the

mock-treated control) to that observed for the isogenic mutS+ strain

[20]. These findings indicate that mutS functionality does not

contribute to UV-induced mutagenesis. In contrast to the mutS

strain, the mutS dinB double mutant (UBPA100) displayed a

statistically significant ,2.3-fold further increase in the frequency

of UV-induced mutagenesis (Fig. 4A). This increased frequency of

UV-induced mutagenesis was fully complemented by the DinB-

expressing plasmid (Fig. 4A), suggesting that DinB is capable of

bypassing UV-induced lesions in a relatively accurate manner in

vivo, and that in its absence, one or more alternative Pols catalyze

less accurate bypass of UV-induced lesions (see below). Moreover,

these results suggest that MutS plays an accurate role in policing

the fidelity of these alternative Pols.

We next examined roles for dinB and mutS in coping with

MMC-induced N2-dG–N2-dG interstrand DNA cross-links at 59-

dC–dG-39 DNA sequences [47]. We previously determined that P.

aeruginosa mutS+ strains failed to display an MMC-induced mutator

phenotype [20]. Likewise, the mutS-deficient strain failed to display

a discernable MMC-induced mutator phenotype (Fig. 4B). E. coli

DinB contributes to the repair of MMC-induced N2-dG–N2-dG

interstrand DNA cross-links [8]. Consistent with P. aeruginosa DinB

similarly contributing to repair of MMC-induced lesions, simul-

taneous inactivation of both mutS and dinB led to a more than 10-

fold increase in the frequency of MMC-induced mutagenesis

(Fig. 4B). This robust MMC-induced mutator phenotype was fully

complemented by the DinB-expressing plasmid (Fig. 4B). Taken

together, these results suggest that DinB contributes to accurate

repair/bypass of N2-dG–N2-dG interstrand DNA crosslinks, and

that in the absence of DinB, another Pol catalyzes error-prone

bypass. Moreover, the 10-fold increase in RifR observed for the

mutS dinB double mutant suggests that: (i) P. aeruginosa has one or

more Pol(s) in addition to DinB that is capable of catalyzing bypass

of MMC-induced interstrand DNA crosslinks; and (ii) MutS (or

MMR) corrects errors catalyzed by the Pol(s) that is used in place

of DinB.

The last agent that we examined was 4-NQO. We previously

determined that dinB function protected P. aeruginosa against 4-

NQO–mediated killing without significantly affecting mutation

frequency, suggesting that DinB catalyzed accurate bypass of 4-

NQO–induced DNA lesions [20]. As summarized in Fig. 4C, the

mutS-deficient strain (MPA32417) failed to display a 4-NQO–

induced mutator phenotype. In contrast, the mutS dinB double

mutant (UBPA100) exhibited a ,10-fold increase in the frequency

of 4-NQO–induced mutagenesis that was fully complemented by a

DinB-expressing plasmid (Fig. 4C). Taken together, these results

suggest that P. aeruginosa: (i) possesses one or more Pols in addition

to DinB that contributes to bypass of 4-NQO–induced DNA

lesions; and (ii) MutS acts to limit errors catalyzed by the Pol(s)

used in place of DinB.

Taken together, results discussed above indicate that DinB

function contributes to the accurate tolerance of DNA lesions

induced by UV, MMC, or 4-NQO. Importantly, in the absence of

DinB, P. aeruginosa is able still able to tolerate these lesions, albeit

less accurately, possibly through the use of one or more alternative

TLS Pols. Importantly, mutS function contributes further to the

fidelity with which these lesions are tolerated. Finally, these results

also demonstrate that the mutS strain is capable of a robust DNA

damage-induced mutator phenotype (Fig. 4). Thus, the inability of

this same strain to display a significant H2O2-indcued mutator

Figure 4. Contribution of dinB function to UV-, MMC-, and 4-
NQO–induced mutagenesis in P. aeruginosa. DNA damage-
induced mutation frequencies following exposure of MutS-deficient
dinB+ and DdinB::aacC1 P. aeruginosa strains to 25 J/m2 of 254 nm UV
light delivered from a germicidal bulb (A), 1 mg/ml MMC (B), or 320 mM
4-NQO (C) were determined as described in Materials and Methods.
Strains examined include MPA32417 (mutS::ISphoA/hah) bearing
pUCP20T, and UBPA100 (DdinB::aacC1 mutS::ISphoA/hah) bearing
pUCP20T (control) or pAR101 (dinB+). Induced mutation frequencies
represent the average of 5 independent experiments. Error bars

represent the standard deviation. P-values are indicated, and were
calculated using the Student’s t-test.
doi:10.1371/journal.pone.0018824.g004
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phenotype is not an artifact of the high spontaneous mutation

frequency that is characteristic of mutS-deficient strains; rather,

these results provide further support for a direct role for MutS in

promoting H2O2-induced mutagenesis.

DinB catalyzes accurate bypass of a cis-syn thymine
cyclobutane dimer in vitro

In contrast to its error-prone role in coping with H2O2-induced

lesions (see Table 3), results summarized in Fig. 4 suggest that

DinB catalyzes accurate bypass of DNA lesions induced by UV,

MMC, or 4-NQO. In order to obtain biochemical support for this

conclusion, we asked if recombinant DinB protein catalyzed

accurate bypass of a model cis-syn thymine cyclobutane dimer in

vitro. As a control for these experiments, we utilized an exonuclease

proofreading-deficient form of the bacteriophage T4 Pol (T4 exo–

Pol), which incorporates dATP exclusively opposite the 39-dT of

the dimer, yielding almost exclusively a 14-mer product ([48]; see

Fig. 5, panels B & C). In contrast to T4 exo– Pol, DinB catalyzed

insertion of dATP opposite both thymines in the dimer, yielding a

15-mer product (,25 nM), with little to no detectable 14-mer

(Fig. 5, panels B & C). This result suggests that incorporation of

dATP opposite the 59-dT of the dimer by DinB is remarkably

efficient following bypass of the 39-dT of the dimer. We therefore

investigated the efficiency with which DinB extended a 14-mer

primer containing a 39-dA located opposite the 39-dT of the dimer

(see Fig. 6A). As summarized in Fig. 6 (panels B & C), DinB

efficiently extended the 14-mer, preferentially incorporating dATP

opposite the 59-dT of the dimer (KM = 172639 mM,

kcat = 0.1260.01 s21). These findings, taken together with those

discussed above, indicate that DinB bypasses ROS-induced lesions

(see Fig. 3 and Table 3) with lower fidelity than a thymine

cyclobutane dimer (see Figs. 4A, 5 & 6).

Discussion

In striking contrast to their largely accurate roles in coping with

lesions induced by UV, MMC, or 4-NQO, MutS and DinB

activities contribute to H2O2-induced mutagenesis (Fig. 3).

Moreover, in the absence of both DinB and MutS, H2O2 exposure

actually increased the fidelity of P. aeruginosa DNA replication by a

factor of more than 6-fold as measured by RifR. The increase in

replication fidelity without a concomitant increase in the sensitivity

of P. aeruginosa to H2O2-induced killing (Fig. 2) suggests the

presence of one or more ROS-inducible pathways that are

responsible for accurate tolerance of oxidized DNA lesions. A

potential candidate is the activity of other Pols. Indeed, P.

aeruginosa polC and imuB encode putative Y-family Pols ([49,50]; see

http://www.pseudomonas.com). Based on results of microarray

experiments, transcription of both polC and imuB is induced

following exposure of P. aeruginosa to H2O2 [45,46]. Thus, these

Pols may contribute to accurate bypass of ROS-induced lesions.

Alternatively, polC and imuB function may contribute to error-

prone bypass, resulting in the modest level of H2O2-induced

mutagenesis observed in the DdinB strain (Fig. 7).

Consistent with a role for DinB in contributing to H2O2-

induced mutations by catalyzing error-prone bypass of oxidized

DNA bases, we determined that DinB favored incorporation of

dATP opposite template–8-oxo-dG over dCTP by a factor of ,2

in vitro (Table 3). However, based on nucleotide sequence analysis

of the rpoB gene isolated from RifR mutants, this behavior of DinB

does not appear to contribute significantly to H2O2-induced

mutations in P. aeruginosa (Table 2 & Fig. 1). Taken together, these

results suggest that DinB contributes to mutations by catalyzing

error-prone bypass of one or more oxidized DNA lesions other

than 8-oxo-dG in vivo. Alternatively, P. aeruginosa DinB may

incorporate oxidized precursors into undamaged DNA. Consistent

Figure 5. DinB catalyzes accurate bypass of a model cis-syn thymine cyclobutane dimer in vitro. Cartoon representation of the 13/20T = T -
mer DNA template (A). T = T represents the cis-syn thymine cyclobutane dimer. Predicted sizes for the starting primer (13-mer), as well as the different
possible bypass products (14-mer & 15-mer) are indicated. Representative bypass results for T4 exo– Pol and P. aeruginosa DinB are shown (B).
Positions for the primer (13-mer), and the 14-mer and 15-mer bypass products are indicated. Quantitation of the results of a representative bypass
assay obtained with both T4 exo– Pol and DinB are shown (C).
doi:10.1371/journal.pone.0018824.g005
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with this model, E. coli DinB catalyzes incorporation of dCTP

opposite template–2-hydroxyadenine, 2-hydroxyadenine opposite

template-dG (or template-dT), and 8-oxo-dG opposite template-

dA. If left unrepaired, these insertions will result in TARCG,

GCRTA or ATRCG substitutions, respectively, following the

subsequent round of DNA replication [18,51]. Nucleotide

sequence analysis indicated that although the majority of H2O2-

induced mutations corresponded to TARCG transitions, this

substitution represented less than one-half of the mutations in the

DdinB strain (Fig. 1 and Table 2). These results suggest that DinB-

dependent H2O2-induced mutagenesis may result, at least in part,

from error-prone bypass of 2-hydroxyadenine.

An error-prone role for P. aeruginosa MutS in coping with

oxidized DNA lesions was unexpected. The human MutS

ortholog, MutSa, recognizes and binds 2-hydroxyadenine present

within poly-dA sequences that mimic an insertion/deletion loop

[52]. It is possible that P. aeruginosa MutS contributes to ROS-

induced mutagenesis by influencing the fidelity with which

oxidized lesions are repaired. For example, MutS may play an

error-prone role in repairing mismatches catalyzed by DinB,

particularly mismatches resulting from bypass of oxidized lesions,

and/or incorporation of oxidized precursors (such as 2-hydro-

xyadenine and 8-oxo-dG), due to an inability to discriminate

between the lesion and the undamaged base, resulting in

mutations. Alternatively, MutS might recruit DinB to sites of

ROS-induced lesions, contributing to their error-prone bypass.

Biochemical approaches are required to test these models.

Roles for DinB/Pol k in catalyzing largely accurate bypass of

N2-dG adducts, such as those induced by 4-NQO and MMC, have

been described: E. coli DinB and mammalian Pol k can each

bypass N2-dG furfuryl adducts in vitro [6], and dinB-deficient E. coli

and P. aeruginosa strains are sensitive to 4-NQO [6,20].

Furthermore, it was recently reported that both E. coli DinB [8]

and human Pol k [9,53], catalyze bypass of model N2-dG–N2-dG

interstrand cross-links in vitro. Moreover, functionality of these Pols

served to protect cells against MMC-induced killing, presumably

via their involvement in cross-link repair. Finally, DinB and Pol k
also catalyze bypass of DNA-peptide crosslinks involving the N2

position of dG in vitro [53]. Taken together, these findings indicate

that DinB and Pol k promote accurate bypass of a variety of

different N2-dG adducts. Our results summarized in Fig. 4B

suggest that P. aeruginosa DinB plays similar roles. In addition, our

findings suggest that P. aeruginosa possesses one or more additional

Pols that catalyze potentially error-prone bypass of N2-dG adducts.

Our results further suggest that MutS corrects errors made by

these alternate Pols, ensuring accurate bypass of N2-dG adducts in

vivo (Fig. 7).

Although E. coli DinB is unable to bypass UV photoproducts

[12], P. aeruginosa DinB catalyzes accurate bypass of a cis-syn

thymine dimer, both in vivo (Fig. 4A) and in vitro (Figs. 5 & 6).

Importantly, our results also indicate that DinB is less efficient at

inserting a base opposite the 39-dT of the dimer, and instead

prefers to extend from the 39-OH of dA paired with the 39-dT of

the dimer (Fig. 6). PolC and Pol I each also contribute significantly

to UV-induced mutagenesis in P. aeruginosa [20]. Taken together,

these findings suggest that DinB may cooperate with one or more

of these Pols while tolerating UV adducts. For example, PolC or

Pol I may initiate bypass by inserting a nucleotide opposite the 39-

dT of the dimer, which DinB subsequently extends by preferential

incorporation of dATP opposite the 59-dT of the dimer. DinB may

then further extend, or it may transfer the 39-OH end of the

nascent DNA strand to PolC or Pol I before ultimately returning it

to the replicative Pol (Fig. 7). In the absence of DinB, PolC or Pol I

may catalyze error-prone bypass of both the 39-dT and 59-dT of

the dimer. Finally, MutS may recognize and correct errors

catalyzed by PolC and/or Pol I, helping to minimize the frequency

of UV-induced mutations.

A significant fraction of P. aeruginosa strains isolated from CF

airways exhibit a spontaneous hypermutable phenotype due to

mutations within mutS [24,25,28,42]. As a result of their elevated

spontaneous mutation frequencies, these strains are proposed to

acquire adaptive mutations more frequently than those that are

MMR-proficient [42,54,55]. Our results indicate that mutS-

deficient P. aeruginosa strains are hypersensitive to H2O2 (Fig. 2).

In addition, we demonstrate that these strains are impaired for

H2O2-induced mutagenesis (Fig. 3). These results suggest that

mutS-deficient strains are ill equipped for colonizing and persisting

within the highly oxidizing environment of the early CF airways.

Although this view is consistent with the finding that mutS strains

are less efficient than wild-type P. aeruginosa at establishing airway

infections in mice [28,43], it is nevertheless inconsistent with the

Figure 6. DinB catalyzes accurate bypass of the 59-dT in a cis-
syn thymine cyclobutane dimer in vitro. Cartoon representation of
the 14/20T = T-mer DNA template (A). T = T represents the cis-syn
thymine cyclobutane dimer. Sizes for the starting primer (14-mer), as
well as the bypass product (15-mer) are indicated. Bypass efficiency of
the 59-dT of the dimer by DinB as a function of time in the presence of
each of the four individual dNTPs is shown (B). Catalytic efficiency with
which DinB mediates bypass of the 59-dT of the dimer in the presence
of dATP (C). KM and kcat values shown represent the average of at least
3 independent experiments. Error bars represent the standard
deviation.
doi:10.1371/journal.pone.0018824.g006

Epistatic Roles for MutS and DinB

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e18824



fact that mutS-deficient strains are prevalent among the CF

population. This dichotomy can be explained by several unique

mechanisms. First, it is possible that mutS strains colonizing CF

airways reside within biofilms, which may help to protect them

from ROS-induced cell damage. Alternatively, hypermutability

resulting from loss of mutS may promote rapid acquisition of

compensatory mutations that help to mitigate ROS-sensitivity.

Indeed, our finding that the mutS dinB double mutant was no more

sensitive to H2O2 than the mutS single mutant (Fig. 2), yet

displayed a greatly reduced level of H2O2-induced mutagenesis

(Fig. 3), suggests that alternative pathways for coping with ROS-

induced DNA damage exist in P. aeruginosa. We are currently

characterizing MMR-deficient P. aeruginosa strains recovered from

CF airways to determine whether they exhibit phenotypes

comparable to the mutS reference strain used in this work.

A recent study by Hogardt and colleagues [25] concluded that

mutS-deficient P. aeruginosa strains co-exist with non-mutator (e.g.,

mutS+) strains, and predominate the CF airways during end-stage

infection. These results suggest that mutS-deficient strains may not

necessarily have an adaptive advantage over mutS+ strains in all

airway niches. Alternatively, it is possible that hypermutability

contributes to adaptation of P. aeruginosa within certain airway

niches, or under specific conditions, such as end-stage infection

when airways undergo rapid decline in function. Regardless, these

findings in conjunction with our results demonstrating a crucial

role for MutS and DinB in coping with ROS-induced DNA

damage support an alternative model for pathoadaptation of P.

aeruginosa colonizing the CF airways. In this model, we propose

that the remarkably high levels of ROS generated by chronic CF

airway inflammation contribute to excessive DNA damage in P.

aeruginosa. We hypothesize that this high level of damage acts to

saturate accurate DNA repair functions, such as those catalyzed by

MutS, due to finite levels of the proteins involved. Saturation of

MutS function would hamper repair of ROS-induced lesions, and

would also serve to impair MMR, leading to a mutator phenotype.

We further hypothesize that as a result of oxidized lesions

persisting in the DNA, viability of P. aeruginosa becomes dependent

upon TLS, catalyzed in large part by DinB (see Fig. 3 & Table 3).

As TLS is often error-prone, we expect this to contribute further to

the mutator phenotype. One advantage of this model over chronic

hypermutability is the fact that the mutator phenotype is

reversible. As a result, P. aeruginosa can ‘shed’ its mutator

phenotype once it has acquired one or more adaptive mutations

that serve to protect it from ROS. This ability would minimize the

likelihood that members of the P. aeruginosa population would

accumulate deleterious mutations. At the same time, our

postulated saturation-induced mutator phenotype might contrib-

ute to mutations in genes encoding proteins that act in DNA

repair, such as mutS, resulting in hypermutable P. aeruginosa strains.

Although our model postulates that the induced mutator

phenotype contributes to adaptation, it is possible that chronic

hypermutability per se does not. In this case, hypermutators may

persist by hitchhiking along with truly adaptive mutations, as

discussed previously [56]. In conclusion, irrespective of whether an

increased mutation frequency is strictly required for P. aeruginosa

pathoadaptation in CF, the ability of this pathogen to display a

reversible mutator phenotype likely contributes to airway

colonization, persistence, and pathoadaptation, particularly under

conditions of ROS-induced stress.

ROS-sensitivity of the mutS and/or dinB strains is reminiscent

of phenotypes described for P. aeruginosa strains impaired for

function of the ‘GO’ component of base excision repair, due to

mutations within mutM, mutY, or mutT, which act independently

to limit GCRTA transversions resulting from 8-oxo-dG, as well

as other oxidized DNA lesions [57,58]. Although P. aeruginosa

strains deficient for ‘GO’ function display a level of H2O2

sensitivity that is similar to that observed for the mutS strain, they

exhibit significantly increased levels of H2O2-induced mutagen-

esis, consistent with ‘GO’ function acting to limit ROS-induced

mutations [58]. Of relevance to our model discussed above, E. coli

MutS is suggested to contribute to MutY function in vivo [37].

Thus, under our model, saturation of MutS impacts not only on

error-prone tolerance of ROS-induced lesions and MMR, but

may impact on ‘GO’-catalyzed repair of ROS-induced lesions, as

well, perhaps leading to an even greater spectrum of mutations

that may contribute to pathoadaptation of P. aeruginosa.

Collectively, these findings illustrate the complexity of the

phenotypes that may be observed with hypermutable P. aeruginosa

Figure 7. Models to describe roles for P. aeruginosa DinB and MutS in DNA repair, DNA damage tolerance, and DNA damage-
induced mutagenesis. Proposed roles for MutS, DinB, and additional factors (as noted) in coping with ROS-, UV-, and MMC- or 4-NQO–induced
(collectively referred to as ‘N2-dG adducts’) DNA lesions are summarized. Fidelities (accurate or error-prone) of MutS and DinB in each pathway (DinB-
dependent and DinB-independent) are indicated. See text for additional details.
doi:10.1371/journal.pone.0018824.g007
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strains, and further highlight the importance of carefully

analyzing these strains under a variety of CF-relevant conditions

as part of a comprehensive effort aimed at defining the

contribution of mutagenesis to P. aeruginosa virulence and

pathoadaptation.

In summary, findings discussed in this report reveal previously

unrecognized roles for MutS and DinB, and additionally uncover

a functional relationship between these proteins in modulating the

mutation frequency of P. aeruginosa following exposure to ROS.

Roles for MutS and DinB in ROS-induced mutagenesis are

particularly fascinating given the significance of P. aeruginosa to CF

airway disease. Continued genetic and biochemical characteriza-

tion of MutS, DinB, as well as additional factors involved in P.

aeruginosa MMR, TLS, and DNA repair will expand our

understanding of these important metabolic pathways, and should

provide crucial insights into their contribution(s) to pathoadapta-

tion of this important human pathogen.

Materials and Methods

Commercial reagents and recombinant proteins
Unlabeled ultrapure dNTPs were obtained from GE Health-

care. [c-32P]–ATP was purchased from M.P. BioMedicals (Irvine,

CA). Chemicals were obtained from Sigma-Aldrich. Oligonucle-

otides used for PCR or nucleotide sequence analysis were

synthesized by Sigma-Aldrich. The oligonucleotide containing a

cis-syn thymine cyclobutane dimer (20T = T-mer; see panel A, Figs. 6

& 7) was synthesized by TriLink Biotechnologies (San Diego, CA).

All other oligonucleotides utilized for enzymatic assays, including

that containing 8-oxo-dG (208-oxo-dG-mer; see legend to Table 3),

were synthesized by Operon Technologies (Alameda, CA). Single

strand DNA was purified by denaturing gel electrophoresis and

quantified as described [59]. Duplex DNA was prepared by

annealing stoichiometric quantities of the primer strand oligonu-

cleotide with the template strand oligonucleotide, and subsequent

purification of the duplex template by non-denaturing gel

electrophoresis as described [59]. The C-terminally hexahisti-

dine-tagged form of the P. aeruginosa DinB protein [20], and the

exonuclease-deficient (D219A) bacteriophage T4 DNA polymer-

ase (T4 exo– Pol) mutant were purified and quantified as described

[60,61].

Bacteriological techniques
P. aeruginosa strains used in this study are derived from PAO1,

and the salient features of each are detailed in Table 4. Strains

were routinely grown in Luria-Bertani (LB; 10 g/l tryptone, 5 g/l

yeast extract, 10 g/l NaCl) medium [62], unless stated otherwise.

When necessary, the following antibiotics were used at the

indicated concentrations: rifampicin (Rif), 100 mg/ml; gentamicin

(Gent), 100 mg/ml; carbenicillin (Carb), 250 mg/ml; and tetracy-

cline (Tet), 60 mg/ml.

P. aeruginosa strains MPAO1 (prototroph; identical to PAO1) and

MPA32417 (mutS::ISphoA/hah) were obtained from the University

of Washington Genome Center [63]. MPA32417 contains an

ISphoA/hah transposon inserted after nucleotide 361 (amino acid

121) of the mutS coding sequence (the mutS ORF consists of 2,568

bases, encoding 856 amino acids). The mutS::ISphoA/hah allele in

MPA32417 was verified by diagnostic PCR using a protocol

provided by Dr. Michael Jacobs of the University of Washington

Genome Center. Briefly, primers homologous to either the 59-

(PAmutSF; 59-CAG GCA CAT ATG ACC GAC CTC TCC

CAG CAC-39) or the 39-end (PAmutSR; 59-GAG TGT GGA

TCC TCA GAC CCG CAT CTT CC-39) of the mutS gene were

paired with a primer homologous to the transposon (hah minus

138; 59-CGG GTG CAG TAA TAT CGC CCT-39). No product

was detected using the PAmutSF-hah minus 138 pair, while the

expected ,2,300 bp product was observed using the PAmutSR-

hah minus 138 pair, verifying both the presence and the correct

orientation of the transposon insertion in mutS. Finally, primers

PAmutSF and PAmutSR were used to verify the absence of an

intact copy of mutS.

P. aeruginosa strain UBPA100 (mutS::ISphoA/hah DdinB::aacC1)

was constructed using the protocol described by Schweizer and

colleagues [64]. Briefly, plasmid pLS100 was electroporated into

strain MPA32417 (relevant genotype: mutS::ISphoA/hah). Colonies

were screened for GentR and sucrose resistance as described

previously [65,66]. The presence of the DdinB::aacC1 allele was

confirmed by PCR analysis using primers PAgent59F (59-GAG

ATG CGC GAC GAC-39) and PAgent31R (59-CTG CAG GTC

GAG CAG G-39), which flank the aacC1 cassette located within

the dinB gene to amplify an ,2,000-bp fragment consisting of the

Gent cassette and flanking dinB sequence. In addition, primers

Table 4. P. aeruginosa strains and plasmid DNAs used in this study.

P. aeruginosa strainsa

Strain Relevant genotype Source or construction

MPAO1 Prototroph [63]

WFPA334 DdinB::aacC1 (GentR) [20]

MPA32417 mutS::ISphoA/hah [63]

UBPA100 mutS::ISphoA/hah DdinB::aacC1 (GentR) This work

Plasmid DNAsa

Plasmid Relevant characteristics Source or construction

pEX18Ap ApR (CarbR); suicide replacement vector containing B. subtilis sacB gene [65]

pLS100 ApR (CarbR), GentR; pEX18Ap bearing P. aeruginosa DdinB::aacC1 (GentR) allele This work

pUCP20T ApR (CarbR); shuttle vector that replicates in both P. aeruginosa and E. coli [69]

pAR101 ApR (CarbR); pUCP20T bearing P. aeruginosa dinB+ [20]

pmutS ApR (CarbR); pUCP20T bearing P. aeruginosa mutS+ This work

aSee Materials and Methods for details regarding construction of P. aeruginosa strains and plasmids DNAs.
doi:10.1371/journal.pone.0018824.t004
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PAdinBSalIF (59- GGT TCG TCG CCG AGT TG-39) and

PAdinBSalIR (59-CAC CGG TCG CTC GTC GAT AC-39) were

used to amplify the region of dinB replaced with the aacC1 cassette

to verify the absence of a wild-type copy of the dinB allele.

Plasmid DNAs used in this study are described in Table 4.

Plasmid pLS100 was constructed by sub-cloning the PCR

amplified DdinB::aacC1 cassette from strain WFPA334 into

pEX18Ap [20,65]. The mutS gene, complete with its native

promoter, was PCR amplified from P. aeruginosa MPAO1 genomic

DNA using primers PAmutSPROMF (59-GAT CAG GAG CTC

GGT CTA CGC GAC AGG AG-39) and PAmutSKpn1R (59-

GCT CAT GGT ACC TCA GAC CCG CAT CTT C-39). The

amplified DNA fragment was blunt-end cloned into the pCR-

Blunt II-TOPO vector (Invitrogen). The SacI-KpnI fragment

containing mutS from this TOPO construct was sub-cloned into

plasmid pUCP20T, resulting in plasmid pmutS.

Determination of spontaneous mutation frequency
P. aeruginosa cultures were inoculated from single colonies and

grown for 16 hrs in 5 ml of LB containing the appropriate

antibiotics. Appropriate dilutions of each culture were plated onto

LB plates to determine the number of viable cells, and LB plates

supplemented with 100 mg/ml of Rif to identify spontaneous rpoB

mutants. Spontaneous mutation frequency was calculated by

dividing the number of RifR cells by the total number of viable

cells in the culture.

Determination of H2O2 sensitivity
Cultures of the indicated P. aeruginosa strains were grown in LB

medium containing the appropriate antibiotics to an OD595 of

,0.5. Cells from 1 ml of culture were collected by centrifugation,

resuspended in 1.0 ml sterile 0.8% NaCl, and immediately

treated with the indicated concentration of H2O2 (Sigma-Aldrich;

9.8 M stock). After 15 min, H2O2 was removed by washing the

cells with 1 ml of sterile 0.8% NaCl. H2O2-induced killing was

measured by immediately spreading appropriate dilutions of

washed cells onto LB plates, followed by incubation overnight at

37uC. Survival of each strain was calculated relative to a mock-

treated control.

Determination of H2O2-induced mutation frequency
H2O2-induced mutagenesis was measured following exposure to

25 mM H2O2, as described previously [58]. Following treatment

as described above, 4.5 ml of fresh LB containing the appropriate

antibiotics was inoculated with 0.5 ml of washed cells, followed by

growth at 37uC until saturated. Appropriate dilutions of each

culture were plated onto LB plates with or without Rif. Mutation

frequency was calculated by dividing the total number of RifR

clones present in 1.0 ml of culture by the total number of viable

cells in that same culture. H2O2-induced mutation frequency was

calculated by subtracting the spontaneous frequency of RifR from

that observed following H2O2-treatment.

Determination of catalase activity in cell-free extracts
Cell-free extracts were prepared from sonicated stationary-

phase cells suspended in 50 mM potassium phosphate buffer

(pH 7.0; KPi). Catalase activity was measured in triplicate by

monitoring the decomposition of 19.5 mM H2O2 in KPi at

240 nm. One unit of catalase activity is defined as that which

decomposes 1 mmol of H2O2 min-1 mg protein-1. Protein

concentrations were estimated by the method of Bradford [67]

using bovine serum albumin fraction V (Sigma-Aldrich) as a

standard.

DinB-mediated bypass of 8-oxo-dG and cis-syn thymine
cyclobutane dimer in vitro

Kinetic rate and Michaelis-Menten constants for dNTP

incorporation opposite 8-oxo-dG or a cis-syn thymine cyclobutane

dimer were determined using 100 nM 13/208-oxo-dG-mer or

250 nM 13/20T = T-mer (or 14/20T = T-mer, as noted), respective-

ly, and variable concentrations of nucleotide (5-500 mM). Com-

ponents were pre-incubated in assay buffer (25 mM Tris-OAc

[pH 7.5], 150 mM KOAc, 10 mM 2-mercaptoethanol), then

mixed with 200 nM DinB (or T4 exo– Pol) and 10 mM MgCl2
at 25uC. Reactions were quenched with 500 mM EDTA at the

indicated times (5–300 s). Polymerization was monitored by

analysis of products on 20% sequencing gels [59]. Gel images

were captured using a Packard PhosphorImager equipped with

OptiQuant software. Product levels were determined by measur-

ing the ratio of 32P-labeled extended and non-extended primer

after subtracting background levels for product levels observed in

the absence of added Pol (zero point). Corrected ratios were

multiplied by the concentration of primer/template used in each

assay to determine total product yield. Data obtained for single

turnover DNA polymerization assays were fit to equation 1:

y~A 1ekt
� �

zC, ð1Þ

where A is the burst amplitude, k is the observed rate constant

(kobs) in initial product formation, t is time, and C is a defined

constant [59]. Data for the dependency of kobs as a function of

dNTP concentration were fit to the Michaelis-Menten equation

(equation 2) to provide values corresponding to kcat and KM:

kobs~ kcat| dNTP½ �ð Þ= KMz dNTP½ �ð Þ, ð2Þ

where kobs is the observed rate constant of the reaction, kcat is the

maximal polymerization rate constant, KM is the Michaelis-

Menten constant for dNTP, and [dNTP] is the concentration of

nucleotide substrate [60].

Nucleotide sequence analysis of the P. aeruginosa rpoB
allele from RifR clones

RifR P. aeruginosa colonies were selected for each strain examined

as described above. Eighteen-to-twenty independent colonies for

each strain (for spontaneous as well as H2O2-induced) were grown

overnight in LB broth supplemented with Rif. A 250-base pair

fragment of the P. aeruginosa rpoB gene corresponding to amino acid

residues 499-582 was PCR amplified from 2 ml of each culture

using primer A1 (59-GCC TCC CTC GCG CCA TCA GAG

CGC GCC AAG CCG GTG GCT GCC-39) and primer B1 (59-

GCC TTG CCA GCC CGC TCA GGG TCG CCA GGG AGT

TGA TCA GAC C-39) as described previously [58]. PCR

products were purified using the Qiaprep Mini-spin kit (Qiagen)

as per the manufacturer’s recommendations. The nucleotide

sequence of each purified PCR product was determined by the

Biopolymers Facility at Roswell Park Cancer Center (Buffalo, NY)

using primer A1.

Determination of ultraviolet light (UV), mitomycin C
(MMC), or 4-nitroquinilone 1-oxide (4-NQO) -induced
mutation frequency

UV-, MMC-, and 4-NQO–induced mutation frequencies were

measured as described previously [20]. Values reported represent
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the frequency of RifR observed following exposure to UV (25 J/

m2), MMC (1 mg/ml), or 4-NQO (320 mM) after subtracting the

spontaneous RifR frequency for the same strain.
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