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First-principles definition and measurement of 
planetary electromagnetic-energy budget
Michael I. Mishchenko, * James A. Lock, Andrew A. Lacis, Larry D. Travis, and Brian Cairns

The imperative to quantify the Earth’s electromagnetic-energy budget with an extremely high accuracy has been 
widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a 
first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism 
and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical 
assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual 
formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical mea­
surement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting 
satellites hosting identical well-calibrated DHCRs. © 2016 Optical Society of America

OCIS codes: (010.5630) Radiometry; (010.0280) Remote sensing and sensors; (010.5620) Radiative transfer; (010.3920) 
Meteorology.

1. INTRODUCTION
The global climate of a planet (or an exoplanet) is ultimately 
defined by the planet’s electromagnetic-energy budget, i.e., by 
the difference between the incoming electromagnetic energy 
from the star and the outgoing electromagnetic energy scattered 
and emitted by the planet [1-13]. The imperative to monitor 
and model the Earth’s electromagnetic-energy budget and to do 
that with an extremely high accuracy (~0.1% or even better) 
has been articulated in many recent publications (see, e.g., 
[14-29] and references therein). Yet, despite the supreme im­
portance of this problem, it has never been formulated in the 
framework of first-principles physics. Instead, obsolete notions 
of phenomenological radiometry [30-38] have exclusively been 
used, even though many of them had predated the discovery of 
the electromagnetic nature of light [39]. Among the typical 
misconceptions have been the generally wrong belief that mat­
ter interacts with radiant energy rather than with the electro­
magnetic field; the misapprehension that what propagates in 
space is electromagnetic energy rather than electromagnetic 
waves; the heuristic notions of radiance and multidirectional 
radiation fluxes; the misuse of electromagnetic radiation as con­
sisting of “incoherent pencils of rays” or streams of localized 
point-like particles of light called “photons”; etc.

The outdated and deceptive character of these and similar 
misconceptions has by now been thoroughly exposed (see, 
e.g., [40-46] and numerous references therein). This makes 
it quite imperative to reformulate the planetary energy-budget 

problem in terms of a fundamental electromagnetic theory. 
Indeed, the highly demanding accuracy requirement quoted 
above appears to be utterly incommensurate with the tradi­
tional heuristic way of addressing this problem. Hence our 
main objective is to give a physics-based definition of the plan­
etary electromagnetic-energy budget and discuss how it can, in 
principle, be measured. We intentionally focus on presenting a 
formalism that is based on an absolute minimum of theoretical 
assumptions rather than on a specific discussion of the technical 
feasibility of the requisite measurement approach.

2. GENERAL FRAMEWORK
Although the most fundamental theory of field-matter inter­
actions available today is quantum electrodynamics (QED) 
[43,47,48], it is clear that technical complexities of using 
the QED to describe electromagnetic interactions of the enor­
mous number of elementary particles constituting a star and a 
planet are overwhelming and not especially instructive. 
Fortunately, the explicit use of the QED can be avoided by 
recognizing that once an elementary source has scattered or 
emitted electromagnetic radiation, the resulting field at a large 
distance from the source (i.e., in its far zone) can be considered 
an outgoing spherical electromagnetic wave. As a consequence, 
the instantaneous electromagnetic field at a point in a vacuum 
surrounding the planet is a superposition of a vast number of 
spherical electromagnetic waves centered at the various elemen­
tary sources involved. This factor allows for the use of the



Fig. 1. Planetary climate is defined by difference between incoming 
and outgoing electromagnetic energy.

semiclassical approach wherein only matter is quantized, while 
the electromagnetic field is treated classically [43,49-51].

Let us surround the planet by a concentric sphere S with a 
radius RS exceeding the radius of the planet (Fig. 1), denote by 
V the volume bounded by S, and assume that the planet is an 
electrically neutral configuration of elementary charges. Then, 
according to the Poynting theorem (see §31 of [52] or Section 
2.3 of [53]), the time-averaged electromagnetic-energy budget 
of the planet is defined by the following integral,

(1)

where t is time, r is the position vector originating at the center 
of the planet O, ȓ = r/Rs is the unit vector in the direction of 
the local outward normal to S, (· · ·) denotes averaging over a 
sufficiently long period of time (e.g., the time interval necessary 
to take a measurement), and S(r, t) is the instantaneous local 
Poynting vector. The latter is given by the vector product of the 
electric, E, and magnetic, H, field vectors,

(2)

where Ě (r, t) is the complex-valued electric field vector, H (r, t) 
is the complex-valued magnetic field vector, and “Re” stands for 
“the real part of.” The total electric and magnetic fields at any 
point r G S are superpositions of those contributed by the star 
(subscript “s”) and the planet (subscript “p”):

(3)

(4)

If Ip > 0 then electromagnetic energy is accumulated and 
dissipated inside V , which obviously causes a warming effect. If 
Ip < 0 then the planet is losing electromagnetic energy and 
hence is cooling. If Ip = 0 then the planet is in the state of 
precise electromagnetic-energy balance.

In the framework of the semiclassical approach based on mi­
croscopic electromagnetics, the Poynting vector is the only 
quantity characterizing the transport of electromagnetic energy. 
The fact that S(r, t) is a monodirectional entity completely 
rules out physical coexistence of multiple energy fluxes at an 
observation point r. This, of course, is in a stark contrast to 

one of the main premises of the phenomenological radiative 
transfer theory [36-38]. Furthermore, the derivation of the 
Poynting theorem (i.e., electromagnetic energy conservation) 
[54,55] says that S(r, t) of itself does not have a physical in­
terpretation. Only the integral of the scalar product S(r, t) · ȓ
over a closed surface is physically meaningful and describes 
the electromagnetic-energy budget of the entire inscribed 
volume [56].

Note that coexistence of multiple electromagnetic energy 
fluxes at a point r in space also cannot be justified by invoking 
the notion of “streams of photons flowing through r in differ­
ent directions.” Indeed, the real QED photons have no position 
operator and no wave function in the coordinate representa­
tion. As such, each QED photon occupies the entire quantiza­
tion domain rather than being an infinitesimal particle of light 
localized at a point in space [40-43,47,48,50,57,58]. The phe­
nomenological notion of a “Monte Carlo photon” frequently 
invoked to interpret verbally the Monte Carlo solution of 
the integral form of the radiative transfer equation [59-66] 
has nothing to do with physical reality and in no way represents 
the actual QED photons.

Thus the notion of multidirectional flow of electromagnetic 
energy through a point in space is generally irrelevant. One can, 
of course, define directional radiation fluxes purely mathemati­
cally as projections of the time-averaged Poynting vector on 
specific directions. However, this would not change two fun­
damental facts, i.e., (i) that the Poynting vector is a monodirec­
tional quantity, and (ii) that in and of itself the Poynting 
vector does not characterize the local flow of electromagnetic 
energy.

The generality of the Poynting theorem enables us to discuss 
the planetary energy-budget problem without addressing the 
enormously complex problem of light-matter interactions at 
the microphysical level. In what follows we will discuss the 
main implications of Eqs. (1)-(4) from the perspective of 
satellite observations and theoretical modeling.

3. BASIC PROBLEM
Let us assume that the distance between the star and the planet 
can be considered essentially infinite. Then in the vicinity of 
the planet all the spherical waves generated by the elementary 
charges of the star can be thought of as forming a superposition 
of polychromatic plane waves with quasi-monochromatic com­
ponents propagating in directions ŝ within the small solid angle 
Ωs; subtended by the star as viewed from the planet (Fig. 2). 
Obviously, this solid angle is centered around the straight line 
connecting the centers of the star and the planet (Fig. 1). The 
frequency range and the spectral distribution of the electromag­
netic radiation generated by the star are functions of many 
parameters [67]. The physical causes of quasi-monochromatic­
ity of the stellar light are discussed in [68,69]. We thus have

(5)

(6)



Fig. 2. Illumination geometry.

where i = √-1; ω is the angular frequency; e0 and μ0 are the 
electric permittivity and the magnetic permeability of a 
vacuum, respectively;

(7)

is the wavenumber; Es(ŝ, ω, t) is the complex electric-field 
amplitude of a quasi-monochromatic plane wave generated 
by the star at the frequency ω in the direction ŝ G Ω^ and

(8)

Note that Es(ŝ; ω, t) varies in time much more slowly than 
the complex-exponential factor exp(-iωt). The quasi-random 
temporal fluctuations of the amplitude Es(ŝ; ω, t) imply fluc­
tuations of both the amplitude and the phase of the corre­
sponding real electric field vector. In what follows, we will 
assume that Es(ŝ; ω, t) is unaffected by the presence of the 
planet.

The electromagnetic field contributed by the planet is a 
superposition of spherical quasi-monochromatic waves cen­
tered at various infinitesimal volumes constituting the planetary 
volume V (Fig. 2),

(9)

(10)
where R is the position vector of an infinitesimal element of the 
volume Vp;ρ = r - R; ρ = |ρ| ρ = ρ/ρ; Ep(R,ρ, ω, t) is the 
complex electric-field amplitude of the quasi-monochromatic 
spherical wave created by the infinitesimal volume element 
d3R in the direction ρ at the frequency ω; and

(11)

Since kp » 1, the integrands in Eqs. (9) and (10) can be 
thought of as representing locally quasi-plane wavefronts. 
Again, the electric-field amplitude Ep(R, ρ, ω, t) is assumed 
to vary in time much more slowly than exp(-ίωt), while its 
quasi-random temporal fluctuations are caused by those of both 
the amplitude and the phase of the corresponding real electric 
field vector.

In what follows, we will discuss the practical consequences 
of the fundamental formulas (1)-(11).

4. MEASUREMENT OF THE LOCAL POYNTING 
VECTOR
A fundamental property of the electromagnetic field is additiv­
ity: the electric and magnetic field vectors of a superposition of 
several fields are equal to vector sums of the respective individ­
ual field vectors. Unlike the field itself, the Poynting vector is 
not additive: the Poynting vector of a superposition of fields is 
not, in general, equal to the vector sum of the respective partial 
Poynting vectors. This factor makes the problem of measuring 
or calculating the right-hand side of Eq. (1) highly nontrivial. 
Indeed, the total Poynting vector contains the cross terms 
between the fields of the various different sources, in addition 
to the sum of the Poynting-vector contributions of the individ­
ual sources. These cross terms are the central feature of the 
nonadditivity.

Equations (5)-(11) show that the total Poynting vector at a 
point r is contributed to by locally quasi-plane electromagnetic 
wavefronts with a wide range of propagation directions from 
locations both on the star and the planet (Fig. 2). If the solid 
angle of incoming directions is smaller than 2π (as, for example, 
in the case of point 1 in Fig. 2) then there is hope that the total 
Poynting vector can be measurable with a carefully designed 
radiometer. Often, however, the solid angle of incoming direc­
tions can exceed 2π and pairs of incoming directions can even 
be opposite to each other, as, for example, in the case of point 2 
in Fig. 2 where the waves from the star come from the left and 
the waves from the planet come generally from the right. Then 
the Poynting vector cannot be measured with a single radiom­
eter since the instrument will inevitably block certain incoming 
directions and will thus mismeasure the total local electromag­
netic field. Hence we need a simplification of Eqs. (1)-(11) that 
would enable the measurement of the Poynting vector with two 
separate radiometers.

Indeed, let us consider a cavity radiometer whose cross sec­
tion is depicted schematically in Fig. 3. The walls of this radi­
ometer are assumed to be very cold and completely opaque so 
that the time-averaged Poynting vector at points inside the 
walls is essentially zero (hereinafter Assumption 1). The en­
trance window Sent of the radiometer is flat and normal to 
the incoming unit vector n. Let us consider an imaginary 
surface S0 located entirely inside the walls of the radiometer. 
The union of Sent and S' forms a closed surface S" = Sent U S' 
bounding a volume V00.

Let us consider the situation wherein the radiometer is ex­
posed to a superposition of several quasi-monochromatic plane 
electromagnetic wavefronts with a wide range of propagation 
directions ms j (Fig. 4). It is obvious that all wavefronts with 
propagation directions such that ns · ms j < 0 (e.g., wavefronts



Fig. 3. Hemispherical cavity radiometer.

Fig. 4. Hemispherical cavity radiometer exposed to a superposition 
of quasi-monochromatic plane wavefronts.

(12)

(13)

Fig. 5. Combination of two hemispherical cavity radiometers ex­
posed to a superposition of quasi-monochromatic plane wavefronts.

wavefront propagation directions m such that m · ή > 0. In 
what follows, we will assume that such an instrument can ac­
tually be designed and built without discussing any specific 
technical issues. However, it is imperative to keep in mind 
the above-formulated Assumptions 1-3 according to which 
(i) the walls of the radiometer are sufficiently cold, (ii) the sur­
face of the cavity is sufficiently black, and (iii) the electromag­
netic energy dissipated inside the volume V00 per unit time can 
accurately be measured. Fundamentally, a HCR does not, in 
general, react to the total Poynting vector at points r G Sent 

that would exist in the radiometer’s absence and instead reacts 
to the truncated Poynting vector (13).

Let us now consider the measurement configuration involv­
ing a combination of two identical but oppositely oriented 
HCRs 1 and 2 shown in Fig. 5. Obviously, the corresponding 
truncated electromagnetic field {Etr,1 (r, t); Htr;1 (r, t)} is a 
superposition of waves 1 and 2, while the truncated field 
{Etr,2(r, t); Htr, 2(r, t)} is a superposition of waves 3 and 4.

Let us assume that in the absence of the radiometers, the two 
truncated fields are independent (and thus uncorrelated) random 
processes at any point r G S ent,i (hereinafter Assumption 4). 
This assumption implies that

hS(r, t)> = hStr,1(r, t)> + <Str,2(r, t)>, r G Sent,1 (14)

where we have taken into account that

(15)

owing to the high-frequency oscillations of the complex 
time-harmonic factors involved (see Section 9.3 of [70]).

Note that HCR 1 integrates <Str, 1(r, t)> over Sent,1 while 
HCR 2 integrates <Str, 2(r, t)> over Sent, 2. However, Eq. (1) 
actually requires that we integrate both hStr,i(r, t)> and 
<Str, 2(r, t)> over the same surface. Let us therefore assume that 
the electric and magnetic field vectors of quasi-monochromatic 
plane waves 3 and 4 also are independent random processes 
everywhere in the vicinity of HCRs 1 and 2 (hereinafter 
Assumption 5). Then it is straightforward to verify that 
<Str, 2(r, t)> is independent of r, and is thus the same over 
Sent 1 and Sent 2 . This implies that

(16)

3 and 4) will be blocked by the walls of the radiometer and 
will not contribute to the total electromagnetic field at 
points r G V". The superposition of the remaining wavefronts 
with propagation directions such that ή · mj > 0 (e.g., 
wavefronts 1 and 2) forms a “truncated” electromagnetic 
field fEtr(r, t); Htr(r, t)} with respect to the original field 
{E(r,t); H(r,t)} of Eqs. (3) and (4).

Let us now assume that the total (i.e., emitted and scattered) 
electromagnetic field created by the radiometer (including its 
internal surface) at points r G Sent is negligibly small compared 
to {Etr.(r, t); Htr(r, t)g (hereinafter Assumption 2). Then, upon 
applying the Poynting theorem to the closed surface S00, we can 
conclude that the total amount of electromagnetic energy 
dissipated in the enclosed volume V00 of the radiometer per 
unit time is equal to

where

We will assume that this dissipated power causes warming of 
the cavity and can thereby be accurately measured (hereinafter 
Assumption 3).

Equations (12) and (13) provide the first-principles electro­
magnetic model of what can be called a hemispherical cavity 
radiometer (HCR). The word “hemispherical” refers to the 
ability of the instrument to capture the entire hemisphere of

fEtr.gr


It then becomes clear that

(17)

We will refer to the instrument shown in Fig. 5 as the dou­
ble hemispherical cavity radiometer (DHCR). Equation (17) 
shows how this instrument can be used to measure the full 
Poynting vector integrated over the entrance window of its first 
component (i.e., HCR 1) provided that Assumptions 4 and 
5 hold.

Note that, strictly speaking, neither HCR 1 nor HCR 2 in 
Fig. 5 captures wavefronts propagating perpendicularly to ή. In 
what follows, we will assume that such wavefronts represent a 
set of zero measure with respect to wavefronts with propagation 
directions m such that ή · m ≠0.

5. MEASUREMENT OF THE PLANETARY 
ELECTROMAGNETIC-ENERGY BUDGET
Finally, let us assume that we can fly simultaneously a large 
number of DHCRs so that they cover the spherical surface 
S with sufficient density (hereinafter Assumption 6). The op­
tical axes of all the instruments go through the center of the 
planet and the HCR 1 component of each instrument faces 
the planet (Fig. 6). In view of Eqs. (1) and (17), we have 
for the quasi-instantaneous energy budget,

(18)

where r0 is the position vector of the central point of the 
entrance window S ent;1. In practice, only a finite number N 
of DHCRs can be operational at a moment in time, and so 
the integral in Eq. (18) has to be replaced by a surface 
quadrature formula on S,

(19)

where n numbers the instruments and wn are appropriate 
quadrature weights. Furthermore, typical climate applications

Fig. 6. Measurement of the planetary electromagnetic-energy 
budget.

require averages <<Ip(t)>> over an extended time interval T, 
e.g., over a month, a season, or a year:

(20)

It is clear from the above discussion that Ir, 1 (r, t) is contrib­
uted to by wavefronts with a large solid angle of incoming 
directions. This solid angle (shown by dashed lines for point 
1 in Fig. 6) typically subtends a vast area of the planetary sur­
face, which implies that Ir;1(r; t) cannot be considered repre­
sentative of specific surface locations. In fact, it is easy to think 
of situations wherein major contributions to Ir;1 (r, t) at visible 
and infrared wavelengths come from widely separated surface 
elements. For example, the visible-wavelength component of 
Ir;1(r; t) can be overwhelmed by an oblique direction defined 
by the specular reflection of sunlight from the ocean surface, 
whereas the infrared component is typically dominated by 
thermal emission from a nadir surface element.

6. DISCUSSION AND CONCLUSIONS
Hansen et al. [28] claim that “Earth’s energy imbalance, which 
must be eliminated to stabilize climate, provides a crucial met­
ric.” The entire voluminous body of relevant publications, of 
which [1-29] are just a representative subset, deals specifically 
with electromagnetic energy (while often substituting it with the 
term “radiative energy”), i.e., the energy of the electromagnetic 
field. One could therefore expect that this particular problem in 
electromagnetism would have by now been formulated in the 
framework of an electrodynamics discipline, such as the QED, 
the semiclassical approach, or classical electromagnetics. Yet, 
none of the previous publications on this subject have been 
based on first physical principles, and the term “the 
Poynting vector” is nowhere to be mentioned. Instead, out­
dated phenomenological principles and notions are still univer­
sally used. This situation is unfortunate given the requisite 
numerical accuracy as tough as a tenth of a percent or better.

The main advantage of the first-principles framework 
described in this paper is that it is completely devoid of 
questionable heuristic and phenomenological concepts. This 
framework is based on determining the radial component of 
the local Poynting vector at points of an imaginary spherical 
surface surrounding the planet, followed by numerical integra­
tion over the surface according to Eq. (1). The generality of our 
approach implies that any first-principles computational 
scheme or measurement methodology must explicitly be based 
on Eqs. (1)-(11).

The measurement methodology discussed in Sections 4 
and 5 is a natural corollary of the first-principles formalism 
and invokes only two additional “theoretical” assumptions 
(Assumptions 4 and 5). Assumption 5 appears to be quite 
realistic in that the scattering and emission processes in two 
infinitesimal volume elements of the stellar atmosphere can 
be expected to be statistically independent unless these volume 
elements and the observation point lie on the same straight line. 
Similarly, the wavefronts generated by the star and the planet 
can also be expected to be statistically independent in the ma­
jority of cases, such as that exemplified by point 1 in Fig. 6. 
However, Assumption 4 is obviously violated in the case of



forward scattering of stellar wavefronts by the planetary atmos­
phere. A well-known manifestation of the forward-scattering 
coherence is the phenomenon of extinction [70,71]). This phe­
nomenon is strongly wavelength-dependent and will manifest 
itself whenever the instrument captures stellar wavefronts tra­
versing the atmosphere (e.g., point 2 in Fig. 6). Fortunately, 
however, in such cases HCR 2 captures no wavefronts gener­
ated by the star, while HCR 1 automatically captures both the 
stellar-generated wavefronts and the wavefronts forward- 
scattered by the planetary atmosphere. These two factors make 
Assumption 4 unnecessary.

The “instrumental” Assumptions 1-3, as well as the tech­
nical capability to achieve and maintain the requisite instru­
mental calibration, define the feasibility of designing and 
building an orbital DHCR and are not discussed here. 
Should one or more of these assumptions prove to be wrong 
then a different instrument concept will need to be used. In 
that case a new first-principles measurement methodology must 
be developed and traced back to Eqs. (1)-(11). It is worth men­
tioning in this regard that, to the best of our knowledge, the 
ad hoc approach discussed in [16,18] has never been established 
as the one based on fundamental principles of classical, semi- 
classical, and/or quantum electromagnetics.

Assumption 6 has a number of both scientific and logistical 
aspects. The former have to do with the expected temporal and 
spatial variability of Ir, 1 (r0; t) and the length of time intervals 
used to calculate climate-related averages <<Ip(t)>>. Obviously, 
flying simultaneously more instruments and/or averaging over 
longer time intervals can be expected to improve the accuracy 
of <<Ip(t)>>. The logistical aspects have to do with the feasibil­
ity of launching and maintaining a constellation of a large num­
ber of DHCRs optimally distributed over the surface S as well 
as with the affordability of this endeavor (cf. [29]). A discussion 
of these aspects is well beyond the scope of our paper.

Also beyond the scope of this paper is a discussion of whether 
Eqs. (1)-(11) can be used to develop a theoretical methodology 
to model the Earth’s electromagnetic-energy budget with the 
requisite accuracy. This problem is extremely complicated, and 
the applicability of numerical simulations based on the standard 
phenomenological radiative transfer theory (especially on its 
scalar version [72,73]) remains questionable.

Funding. National Aeronautics and Space Administra­
tion (NASA).

Acknowledgment. We appreciate numerous insightful 
discussions with James Hansen and William Rossow and thank 
two anonymous reviewers for their helpful comments.

REFERENCES
1. J. Tyndall, Contributions to Molecular Physics in the Domain of 

Radiant Heat (Appleton and Company, 1873).
2. K. Y. Kondratyev, Radiation in the Atmosphere (Academic, 1969).
3. R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical 

Basis (Oxford University, 1989).
4. K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, 

Observation, and Modeling (Oxford University, 1992).
5. K. E. Trenberth, ed., Climate System Modeling (Cambridge 

University, 1993).

6. D. L. Hartmann, Global Physical Climatology (Academic, 1994).
7. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere 

and Ocean (Cambridge University, 1999).
8. D. A. Randall, ed., General Circulation Model Development 

(Academic, 2000).
9. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, 

2002).
10. M. L. Salby, Physics of the Atmosphere and Climate (Cambridge 

University, 2012).
11. M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: 

A Comprehensive Introduction (Wiley, 2012).
12. S. J. Mackwell, A. A. Simon-Miller, J. W. Harder, and M. A. Bullock, 

eds., Comparative Climatology of the Terrestrial Planets (University of 
Arizona, 2013).

13. M. A. Box and G. P. Box, Physics of Radiation and Climate (CRC 
Press, 2016).

14. T. H. Vonder Haar and V. E. Suomi, “Measurements of the earth’s 
radiation budget from satellites during a five-year period. Part I: 
Extended time and space means,” J. Atmos. Sci. 28, 305-314 
(1971).

15. E. Raschke, T. H. Vonder Haar, W. R. Bandeen, and M. Pasternak, 
“The annual radiation balance of the Earth-atmosphere system during 
1969-1970 from Nimbus-3 measurements,” J. Atmos. Sci. 30, 
341-364 (1973).

16. B. R. Barkstrom and G. L. Smith, “The Earth radiation budget experi­
ment: science and implementation,” Rev. Geophys. 24, 379-390 
(1986).

17. S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An 
Introduction (Academic, 1995).

18. B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. 
Smith, and J. E. Cooper, “Clouds and the Earth’s Radiant Energy 
System (CERES): an Earth observing system experiment,” Bull. 
Am. Meteorol. Soc. 77, 853-868 (1996).

19. J. Hansen, M. Sato, P. Kharecha, and K. Von Schuckmann, “Earth’s 
energy imbalance and implications,” Atmos. Chem. Phys. 11, 
13421-13449 (2011).

20. R. Kandel, “Understanding and measuring Earth’s energy budget: 
from Fourier, Humboldt, and Tyndall to CERES and beyond,” Surv. 
Geophys. 33, 337-350 (2012).

21. M. D. Palmer, “Climate and Earth’s energy flows,” Surv. Geophys. 33, 
351-357 (2012).

22. N. G. Loeb, S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. 
Norris, and X. Huang, “Advances in understanding top-of-atmosphere 
radiation variability from satellite observations,” Surv. Geophys. 33, 
359-385 (2012).

23. K. E. Trenberth and J. T. Fasullo, “Tracking Earth’s energy: from 
El Niño to global warming,” Surv. Geophys. 33, 413-426 (2012).

24. B. Stevens and S. E. Schwartz, “Observing and modeling Earth’s 
energy flows,” Surv. Geophys. 33, 779-816 (2012).

25. G. L. Stephens, J. Li, M. Wild, C. A. Clayson, N. Loeb, S. Kato, T. 
L’Ecuyer, and P. W. Stackhouse, Jr., M. Lebsock and T. Andrews, 
“An update on Earth’s energy balance in light of the latest global 
observations,” Nat. Geosci. 5, 691-696 (2012).

26. K. E. Trenberth, Y. Zhang, J. T. Fasullo, and S. Taguchi, “Climate 
variability and relationships between top-of-atmosphere radiation 
and temperatures on Earth,” J. Geophys. Res. Atmos. 120, 3642­
3659 (2015).

27. G. L. Stephens, D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and 
J.-L. Li, “The albedo of Earth,” Rev. Geophys. 53, 141-163 (2015).

28. J. Hansen, M. Sato, P. Hearty, R. Ruedy, M. Kelley, V. Masson- 
Delmotte, G. Russell, G. Tselioudis, J. Cao, E. Rignot, I. 
Velicogna, E. Kandiano, K. Von Schuckmann, P. Kharecha, A. N. 
Legrande, M. Bauer, and K.-W. Lo, “Ice melt, sea level rise and super­
storms: evidence from paleoclimate data, climate modeling, and 
modern observations that 2°C global warming is highly dangerous,” 
Atmos. Chem. Phys. Discuss. 15, 20059-20179 (2015).

29. W. H. Swartz, L. P. Dyrud, S. R. Lorentz, D. L. Wu, W. J. Wiscombe, 
S. J. Papadakis, P. M. Huang, E. L. Reynolds, A. W. Smith, and D. M. 
Deglaua, “The RAVAN CubeSat mission: advancing technologies 
for climate observation,” in Geoscience and Remote Sensing 
Symposium (IGARSS) (IEEE, 2015), pp. 5300-5303.



30. P. Bouguer, Traité d’Optique sur la Gradation de la Lumiere 
(é Royale des Sciences, 1760).

31. J. H. Lambert, Photometria, sive de Mensura et Gradibus Luminis, 
Colorum et Umbrae (Detlefsen, 1760).

32. A. Beer, Grundriss des Photometrischen Calcüles (Friedrich Vieweg 
und Sohn, 1854).

33. E. Lommel, “Die Photometrie der diffusen Zurückwerfung,” Sitzber. 
Acad. Wissensch. Munchen 17, 95-124 (1887).

34. O. Chwolson, “Grundzϋge einer mathematischen Theorie der inneren 
Diffusion des Lichtes,” Bull. l’Acad. Impériale Sci. St. Pétersbourg 33, 
221-256 (1889).

35. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 
21, 1-22 (1905).

36. M. Planck, Theorie der Wärmestrahlung (Verlag Von Johann 
Ambrosius Barth, 1906).

37. A. A. Gershun, “The light field,” J. Phys. Math. 18, 51-151 (1939).
38. S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
39. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, 

1873).
40. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6-17 (1978).
41. R. Kidd, J. Ardini, and A. Anton, “Evolution of the modern photon,” Am. 

J. Phys. 57, 27-35 (1989).
42. W. E. Lamb, Jr., “Anti-photon,” Appl. Phys. B 60, 77-84 (1995).
43. L. Mandel and E. Wolf, Quantum Coherence and Quantum Optics 

(Cambridge University, 1995).
44. L. A. Apresyan and Yu. A. Kravtsov, Radiation Transfer: Statistical and 

Wave Aspects (Gordon and Breach, 1996).
45. M. I. Mishchenko, “Gustav Mie and the fundamental concept of 

electromagnetic scattering by particles: a perspective,” J. Quant. 
Spectrosc. Radiat. Transfer 110, 1210-1222 (2009).

46. M. I. Mishchenko, “Directional radiometry and radiative transfer: the 
convoluted path from centuries-old phenomenology to physical 
optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 4-33 (2014).

47. C. Cohen-Tannoudij, J. Dupont-Roc, and G. Grynberg, Photons and 
Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

48. C. Cohen-Tannoudij, J. Dupont-Roc, and G. Grynberg, Atom-Photon 
Interactions: Basic Processes and Applications (Wiley, 1992).

49. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, 
1980).

50. J. N. Dodd, Atoms and Light: Interactions (Plenum, 1991).
51. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum 

Optics: From the Semi-classical Approach to Quantized Light 
(Cambridge University, 2010).

52. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields 
(Butterworth-Heinemann, 1994).

53. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation 1 
(Springer, 2006).

54. J. H. Poynting, “On the transfer of energy in the electromagnetic field,” 
Phil. Trans. R. Soc. London 175, 343-361 (1884).

55. O. Heaviside, “Electromagnetic induction and its propagation,” The 
Electrician 14, 178-180; 306-307 (1885).

56. H. A. Lorentz, The Theory of Electrons (B. G. Teubner, 1916).
57. D. Bohm, Quantum Theory (Prentice-Hall, 1951).
58. H. A. Kramers, Quantum Mechanics (North-Holland, 1957).
59. J. J. Duderstadt and W. R. Martin, Transport Theory (Wiley, 1979).
60. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. 

Kargin, and B. S. Elepov, The Monte Carlo Methods in Atmospheric 
Optics (Springer, 1980).

61. J. Lenoble, ed., Radiative Transfer in Scattering and Absorbing 
Atmospheres: Standard Computational Procedures (A. Deepak, 
1985).

62. W. J. Wiscombe, “Scales, tools and reminiscences,” in 3D Radiative 
Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, eds. 
(Springer, 2005), pp. 3-92.

63. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric 
Radiation (Wiley, 2006).

64. W. Zdunkowski, T. Trautmann, and A. Bott, Radiation in the 
Atmosphere (Cambridge University, 2007).

65. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response 
of Laser-Irradiated Tissue (Springer, 2011).

66. O. Pujol, “Comment on the (misused) concept of photon in radiative 
transfer, and proposition of a neologism,” J. Quant. Spectrosc. Radiat. 
Transfer 159, 29-31 (2015).

67. I. Hubeny and D. Mihalas, Theory of Stellar Atmospheres (Princeton 
University, 2015).

68. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics 
Approach (Wiley, 1998).

69. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics (Cambridge 
University, 2011).

70. M. I. Mishchenko, Electromagnetic Scattering by Particles and 
Particle Groups: An Introduction (Cambridge University, 2014).

71. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of 
Light by Particles: Radiative Transfer and Coherent Backscattering 
(Cambridge University, 2006).

72. M. I. Mishchenko, A. A. Lacis, and L. D. Travis, “Errors induced by the 
neglect of polarization in radiance calculations for Rayleigh-scattering 
atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 51, 491-510 
(1994).

73. A. A. Lacis, J. Chowdhary, M. I. Mishchenko, and B. Cairns, “Modeling 
errors in diffuse-sky radiation: vector vs. scalar treatment,” Geophys. 
Res. Lett. 25, 135-138 (1998).

Post-print standardized by MSL Academic Endeavors, the imprint of the 
Michael Schwartz Library at Cleveland State University, 2020


	First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget
	Original Citation
	Repository Citation


	untitled

