Examination of The Role of The Clamp-loader and ATP Hydrolysis in The Formation of The Bacteriophage T4 Polymerase Holoenzyme

Michael A. Trakselis
Pennsylvania State University

Anthony J. Berdis
Cleveland State University, A.BERDIS@csuohio.edu

Stephen J. Benkovic
Pennsylvania State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

How does access to this work benefit you? Let us know!

Recommended Citation
https://engagedscholarship.csuohio.edu/scichem_facpub/192

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Examination of the Role of the Clamp-loader and ATP Hydrolysis in the Formation of the Bacteriophage T4 Polymerase Holoenzyme

Michael A. Trakselis, Anthony J. Berdis and Stephen J. Benkovic

Introduction

The coordinated efforts of many proteins are responsible for processive DNA replication in organisms ranging from bacteriophages to eukaryotes. Many of these individual proteins share structural homology throughout different species, although subtle differences in the mechanisms of holoenzyme assembly and replication make each system unique. In bacteriophage T4, the replicative holoenzyme is composed of the DNA polymerase (gp43), the processivity factor (gp45), and the clamp-loading protein (a 4:1 complex of gp44 and gp62, respectively). The polymerase holoenzyme is a highly processive system due to the topological link that the clamp, gp45, provides between the DNA and the polymerase, gp43. Gp45 is a ring-shaped trimeric protein, which shares very similar structural properties to the β clamp from E. coli as well as PCNA from eukaryotes. Detailed kinetic experiments using stopped-flow fluorescence resonance energy transfer (FRET) have resulted in structural models for gp45 that arise during the distinct steps leading to holoenzyme assembly.

The clamp-loader complexes: gp44/62 from bacteriophage T4, γ complex from E. coli, and RF-C complex from eukaryotes are all multiprotein complexes that hydrolyze ATP in formation of the holoenzyme. The role of the clamp-loader is to load the clamp onto DNA and facilitate its interaction with the polymerase. Recent high and low resolution structures of the clamp-loaders from
E. coli, S. P. furious, and humans have provided structural mechanistic models for loading the clamp onto DNA. Gp44/62 is thought to dissociate from the holoenzyme after the latter’s formation; although the γ complex dissociates from the β subunit of DNA polymerase III, and like gp44/62, the RF-C complex is thought to dissociate from PCNA after loading the clamp. In all systems, ATP hydrolysis by the clamp-loader occurs during the reaction cycle either in the loading of the clamp onto DNA, in its subsequent interaction with the polymerase to form the holoenzyme, or in dissociation of the clamp-loader.

The specific number of molecules of ATP and the step in which ATP is hydrolyzed seems to vary in each system. In the E. coli replication system, two to three molecules of ATP are hydrolyzed by the γ complex upon interaction with DNA, although ATP hydrolysis apparently is not coupled to clamp opening but to closing. In the eukaryotic system, four molecules of ATP are bound to the RF-C complex sequentially: two molecules before and two molecules after addition of DNA, although only three molecules of ATP are necessary for eukaryotic clamp loading. Though hydrolysis of ATP is necessary for effective loading of PCNA onto DNA by the RF-C complex, ATPγS also promotes loading of PCNA onto DNA but leads to an inactive form. This suggests that the binding of ATP to the RF-C complex of the eukaryotic system may be sufficient to load PCNA onto DNA, and ATP hydrolysis may only be important in subsequent events including clamp closing and complexation with the polymerase.

In the bacteriophage T4 DNA polymerase holoenzyme, it had been reported by our laboratory as well as others that gp44/62 binds four molecules of ATP, and hydrolysis of ATP was necessary for formation of the holoenzyme. Hydrolysis of ATP was described to proceed sequentially with two molecules hydrolyzed to open gp45 and an additional two molecules hydrolyzed to close the clamp onto DNA. New evidence from a variety of rapid-quench experiments disputed the occurrence of the previously identified ATP hydrolysis steps and concluded that only one molecule of ATP is hydrolyzed after addition of DNA to the holoenzyme. We were therefore compelled to reinvestigate the role of gp44/62 in bacteriophage T4 holoenzyme assembly and broaden our inquiry to define more exactly all steps in which the clamp-loader participates.

Here, we investigated the opening of gp45 in the presence of various nucleotides by measuring the magnitude of the opening of the subunit interface of gp45 upon interaction with gp44/62 using intramolecular FRET. We found that ATP hydrolysis was necessary to open the clamp wide enough so that it could be loaded onto dsDNA. We also used interprotein FRET to detail the chaperone-like role of gp44/62 in formation of the holoenzyme. Gp44/62 mediates the interaction between gp45, DNA, and gp43. We observed transient formation of a multiprotein complex, gp45·gp44/62·DNA·gp43, that upon release of gp44/62 forms the active holoenzyme composed solely of gp45·DNA·gp43. Once again, we used rapid-quench techniques to detail the ATP hydrolysis events during holoenzyme formation and extended our study to include the effects of differences in quenching techniques. Holoenzyme formation was reconfirmed to occur through the sequential hydrolysis of two molecules of ATP before and after addition of DNA consistent with previous results from our lab as well as others but inconsistent with the recent report. The discrepancy between the two studies was traced to the quenching procedure used. We extended our inquiry to include pulse-chase experiments that suggested in the absence of DNA two equivalents of bound ATP rapidly dissociate to free ATP and no significant partitioning of gp45·gp44/62·ADP·Pi into free ATP occurs. In brief, there is a high commitment to catalysis. The collective data, thus, identifies the overall role of gp44/62 during bacteriophage T4 holoenzyme formation as a clamp-loader fueled by ATP hydrolysis and a chaperone facilitating the interaction between gp45 and gp43.

Results

Only a hydrolysable form of ATP opens the clamp in the presence of the clamp-loader

Intraprotein stopped-flow FRET

Using presteady-state stopped-flow fluorescence, it is possible to measure rates of fluorescent changes contributing to different spatial and functional states of proteins. In this particular case, a mutant of gp45 (W199F/V163C or W199F/V163C/W92F) was used to quantitate distances between an inherent tryptophan donor (W92) in the subunit interface of gp45 and a coumarin (CPM) acceptor attached to a mutated cysteine (V163C) on the other side of the subunit interface. This site-specific donor/acceptor pair allows for observed changes in FRET to be transformed into changes in distance between the pair. With this method, it was possible to follow alterations in gp45 subunit interfacial distances upon interaction with gp44/62 and ATP. Previous measurements had shown that a fluorescence change associated with clamp opening was absent when ADP or ATPγS was used in place of ATP. Although this suggested that a hydrolysable form of ATP is necessary for further opening of gp45 in the presence of gp44/62, the separation of the donor acceptor pair had not been measured.

Expanding on this study, it was possible to measure the change in distance across the subunit interface of gp45 complexed to gp44/62 in response to various ATP analogs. Changes in
FRET associated with clamp opening for the clamp protein, W199F/V163C-CPM, in the presence of ATP, W199F/V163C-W199F CPM, and 2 mM ATP analog. Errors in distance measurements are typically 10% of the value.

Table 1. Experimental intraprotein FRET distances between W92 and V163C-CPM of gp45

<table>
<thead>
<tr>
<th>Gp45 state</th>
<th>No analog (Å)</th>
<th>ADP (Å)</th>
<th>ATP-γS (Å)</th>
<th>ATP (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40.0b</td>
<td>40.0b</td>
<td>40.0b</td>
<td>40.0b</td>
</tr>
<tr>
<td>B</td>
<td>40.0b</td>
<td>40.0b</td>
<td>40.0b</td>
<td>40.0b</td>
</tr>
<tr>
<td>C</td>
<td>38.5b</td>
<td>38.3</td>
<td>37.2</td>
<td>40.7b</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>>45b</td>
</tr>
</tbody>
</table>

Stopped flow fluorescence experiments were performed and observed experimental values were converted to distances as described in Materials and Methods. Final concentrations were 1 µM gp44/62, 1 µM gp45/V163C/W199F CPM, and 2 mM ATP analog. Errors in distance measurements are typically 10% of the value.

Table values were determined previously.

a No fluorescence change associated with conversion to state D without a hydrolysable form of ATP.

Gp44/62 leaves after formation of the T4 polymerase holoenzyme

Steady-state fluorescence and activity properties of gp43-4FW

Creation of a gp43 devoid of tryptophans was necessary to study the molecular interactions between the donor tryptophans from gp44/62 and a CPM-labeled gp45 mutant. Non-fluorescent 4-fluorotryptophan (4FW) was incorporated in vivo into gp43 replacing the native tryptophan residues needed to create a DNA polymerase holoenzyme system whose only tryptophan residues belonged to gp44/62. Residual fluorescence was observed for gp43-4FW but was decreased to approximately 25% that of gp43 at identical protein concentrations of 200 nM (Supplemental Material Figure S1). This background fluorescence is likely due to tyrosine fluorescence and/or retention of one or more of the 12 native tryptophan residues. Therefore, the minimum yield of 4FW incorporation in the gp43-4FW protein preparation is estimated to be 75%. The ability of gp43-4FW to slow ATP hydrolysis by gp44/62 in the presence of gp45 was verified through a coupled spectrophotometric assay and is in accord with holoenzyme formation.30 Gp45 weakly stimulates ATP hydrolysis by gp44/62 (basal rate of ∼30 nM s−1). Upon addition of DNA, ATP hydrolysis is strongly stimulated (∼300 nM s−1). Addition of gp43 decreases the ATP hydrolysis rate (∼45 nM s−1), presumably by sequestering the holoenzyme complex onto DNA. Addition of gp43-4FW to the gp44/62-gp45-DNA complex reduces the ATP hydrolysis rate to 52 nM s−1, similar to the rate found with native gp43.

The strand displacement assay monitors processive DNA synthesis on the Bio62/34/36mer substrate by testing the ability of the holoenzyme to extend a DNA primer and displace the single strand 36mer.12,13 Extension of a 5′ [32P] labeled 34mer oligonucleotide results in full length 62mer [32P] labeled products. Polymerase that is released from the DNA either by completing synthesis or through dissociation can be trapped in solution by salmon sperm DNA and will not participate in further DNA synthesis. The ratio of strand-displaced full length products to unextended 34mer was used to compare one kinetic property of the two polymerases. Compared to gp43, gp43-4FW displays near wild-type activity with only a 15% decrease in rate of full length DNA products synthesized (data not shown).
Interprotein stopped-flow FRET

Direct measurement of the protein–protein interactions between gp45 and gp44/62 in the presence of gp43 was measured using stopped-flow FRET. A CPM-labeled mutant of gp45 (W199F/S158C/W92F) was shown previously to exhibit a high degree of interprotein FRET between its CPM label and the tryptophans in gp44/62, owing to their close proximity.6 The following stopped-flow FRET experiment was performed essentially as above and now monitors the loss of the FRET signal between gp45-W199F/S158C/W92F-CPM and gp44/62 due to dissociation of gp44/62 from the holoenzyme. In order to control for the interprotein and intraprotein contributions to FRET arising from (1) gp43, the wild-type enzyme was replaced by gp43-4FW and (2) gp45, the tryptophans in wild-type clamp protein were substituted with phenylalanine. Syringe A, containing 1 μM of gp45-W199F/S158C/W92F-CPM, gp44/62, and DNA in assay buffer with 2 mM ATP, was mixed with syringe B, containing either 1 μM gp43 or 1 μM gp43-4FW, and the change in FRET was monitored. In the first case when gp45-W199F/S158C/W92F-CPM, gp44/62, and DNA were mixed with gp43, two increases in fluorescence were seen with observed rates of 48 ± 6 s⁻¹ and 0.65 ± 0.09 s⁻¹ and normalized fluorescence values (F/AD) of 1.112 ± 0.003 and 1.197 ± 0.005 (Figure 1). In the second case when gp45-W199F/S158C/W92F-CPM, gp44/62, and DNA were mixed with gp43-4FW, an increase followed by a decrease in fluorescence was seen with observed rates of 55 ± 8 s⁻¹ and 0.54 ± 0.08 s⁻¹ and normalized fluorescence values (F/AD) of 1.026 ± 0.002 and 1.009 ± 0.004 (Figure 1). The ratio of the first observed rates in the positive direction versus the second observed rates is 55.08 s⁻¹ for gp43 and 55 ± 8 s⁻¹ for gp43-4FW. Although each fluorescence trace was fit to a double exponential with rates of 48 ± 6 s⁻¹ and 0.65 ± 0.09 s⁻¹ for gp43 and 55 ± 8 s⁻¹ and 0.54 ± 0.08 s⁻¹ for gp43-4FW and represent steps 9 and 10 in Figure 9(e), the direction of the second fluorescent change is opposite between the two cases. In both cases, the first exponential change leads to a “chaperone-like” state of gp44/62-gp45-DNA-gp43. The opposite fluorescent change between the two cases in the second exponential is a result of the dissociation of gp44/62 to form the functional holoenzyme, gp45-DNA-gp43.

Stoichiometries of ATP consumption

Investigation of the quenching protocols

It appeared reasonable that the reported discrepancy in the amount and timing of ATP hydrolysis
by the clamp-loader in the presence of the clamp protein might arise in data acquisition. There are two major differences in protocol between our previously reported experiments\(^{30}\) analyzing the ATP requiring reaction cycle for gp44/62 and gp45 and those of Pietroni et al.\(^{34}\) The first is in the nature of the quenching procedure. Ours uses HCl as a quenching agent followed by phenol/chloroform extraction and then neutralization by NaOH/Tris prior to TLC analysis of the reaction solution. Pietroni et al. uses formic acid as a quenching agent followed by chloroform extraction and then neutralization by Tris prior to TLC analysis of the reaction solution. Pietroni et al.\(^{34}\) pointed out that the differing quenching procedures (formic acid versus HCl) on the nature of the DNA substrate in which our system employs a streptavidin blocked biotinylated forked DNA while theirs is a simple biotinylated forked DNA. The second is the nature of the DNA substrate in which our system employs a streptavidin blocked biotinylated forked DNA while theirs is a simple biotinylated forked DNA.

We initially investigated the potential impact of the differing quenching procedures (formic acid versus HCl) on the measurement of the stoichiometry of ATP consumption. A series of transient kinetic experiments were performed using a rapid-quench instrument to accurately define the stoichiometry of ATP consumption as well as to observe the rate for initial ATP consumption, thus minimizing the extent of data extrapolation. In these experiments, a preincubated solution of 2 \(\mu\)M accessory proteins, biotinylated DNA, and streptavidin (final concentration) was mixed versus a preincubated solution of 500 \(\mu\)M ATP containing 50 nM \([\gamma^{32}\text{P}];\text{ATP}\) (final concentration). The reactions were quenched with either formic acid or HCl at times ranging from 0.01 second to five seconds and further processed as previously described.

The resulting time-courses for ATP hydrolysis depicted in Figure 2 show a distinct dependency on the nature of the quenching agents. Specifically, the time-course in ATP consumption using HCl reveals a burst in ATP consumption of 7.6 \(\pm\) 0.5 \(\mu\)M and is consistent with a stoichiometry of four molecules of ATP consumed per clamp loading event. The observed rate constant for the burst phase is 8.5 \(\pm\) 2.3 \(s^{-1}\) and is faster than the rate constant of \(\sim 2 s^{-1}\) previously reported using similar reaction conditions\(^{30}\) as a consequence of increased data collection. In contrast, the time-course in ATP consumption using formic acid as the quenching agent yields a much reduced burst amplitude (7.6 \(\pm\) 0.5 \(\mu\)M \textit{versus} 2.1 \(\pm\) 0.5 \(\mu\)M) (Figure 2) and reproduces the results reported by Pietroni et al.\(^{34}\) However, the observed rate constant

\[\text{Rate constant} = \frac{\text{Burst amplitude}}{\text{Steady state rate}} \]

\[\text{Steady state rate} = \frac{\text{Burst amplitude}}{\text{Burst duration}} \]

\[\text{Burst duration} = \frac{\text{Steady state rate}}{\text{Rate constant}} \]

\[\text{Steady state rate} = \frac{\text{Burst amplitude}}{\text{Burst duration}} \]

Table 2. Summary of transient kinetic measurements for ATP hydrolysis catalyzed by the gp44/62 protein complex in the presence of DNA using differing quenching agents

<table>
<thead>
<tr>
<th>Quench conditions</th>
<th>Burst amplitude ((\mu)M)(^{a,b})</th>
<th>(K_{\alpha s}) (s(^{-1}))(^{d})</th>
<th>Steady state rate ((\mu)M s(^{-1}))(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formic acid(^{a})</td>
<td>2.10 (\pm) 0.5</td>
<td>10.7 (\pm) 5.2</td>
<td>4.5 (\pm) 0.7</td>
</tr>
<tr>
<td>HCl(^{e})</td>
<td>7.6 (\pm) 0.5</td>
<td>8.5 (\pm) 2.3</td>
<td>5.1 (\pm) 0.3</td>
</tr>
<tr>
<td>Formic acid(^{a})</td>
<td>1.5 (\pm) 0.3</td>
<td>14.9 (\pm) 8.6</td>
<td>3.3 (\pm) 0.2</td>
</tr>
<tr>
<td>Formic acid</td>
<td>8.2 (\pm) 1.0</td>
<td>8.2 (\pm) 3.9</td>
<td>4.2 (\pm) 0.5</td>
</tr>
<tr>
<td>then HCl(^{f})</td>
<td>7.4 (\pm) 1.0</td>
<td>12.0 (\pm) 5.0</td>
<td>2.1 (\pm) 1.2</td>
</tr>
</tbody>
</table>

Assays for measuring the ATPase activity of the gp44/62 protein complex were performed in a rapid quench instrument as described in Materials and Methods. Final concentrations were 2 \(\mu\)M gp44/62, 2 \(\mu\)M gp45, 2 \(\mu\)M Bio62/34/36mer, 2 \(\mu\)M streptavidin, 10 mM Mg\(^{2+}\), 500 \(\mu\)M ATP, and 50 nM \([\gamma^{32}\text{P}];\text{ATP}\). Data points were fit to equation (5) which defines both the burst and steady-state rates as well as the magnitude of the burst. A higher burst in ATP consumption is obtained in the burst phase. A higher burst in ATP consumption is obtained using HCl (\(\bullet\)) (7.6 \(\mu\)M) as opposed to formic acid (\(\circ\)) (2.1 \(\mu\)M) as the quenching reagent. The dashed line is both the KinTekSim fit of the data to the reaction sequence shown in Figure 9 through step 7 and the fit to equation (5).

Figure 2. The presteady-state time-course in ATP hydrolysis in the presence of DNA using formic acid or HCl as the chemical quench was determined as described in Materials and Methods. HCl quenched samples were then extracted with phenol/chloroform and neutralized. Formic acid quenched samples were extracted with chloroform. The inlayed time-course magnifies the first 0.4 second of the larger plot to detail the burst phase. Final concentrations were 2 \(\mu\)M gp44/62, 2 \(\mu\)M gp45, 2 \(\mu\)M Bio62/34/36mer, 2 \(\mu\)M streptavidin, 10 mM Mg\(^{2+}\), 500 \(\mu\)M ATP, and 50 nM \([\gamma^{32}\text{P}];\text{ATP}\). Data points were fit to equation (5) which defines both the burst and steady-state rates as well as the magnitude of the burst. A higher burst in ATP consumption is obtained using HCl (\(\bullet\)) (7.6 \(\mu\)M) as opposed to formic acid (\(\circ\)) (2.1 \(\mu\)M) as the quenching reagent. The dashed line is both the KinTekSim fit of the data to the reaction sequence shown in Figure 9 through step 7 and the fit to equation (5).
A higher burst in ATP consumption is obtained with HCl (double-quench) as opposed to only chloroform () (1.5 μM) as the quenching reagent.

Further transient kinetic experiments were then performed to evaluate the reason for the differences in burst amplitudes apparently dependent upon the choice of quenching reagents. We hypothesized that the increased acidity of the HCl relative to formic acid quench might cause the complete release of the bound ADP and Pᵢ hydrolysis products. To test this concept, we repeated the above experiments in which the solution of accessory proteins and DNA were mixed versus a solution of ATP and quenched with formic acid, but the aliquot from each time point was further quenched with HCl, extracted with phenol/chloroform and then neutralized by the addition of NaOH/Iris, i.e. a “double-quench” procedure. As depicted in Figure 3, the time-course for the control generated using solely the formic acid quench is biphasic, yielding a burst in ATP consumption of 1.5 ± 0.3 μM with an associated rate constant of 14.9 ± 8.6 s⁻¹, and a steady-state rate of 3.3 ± 0.2 μM s⁻¹. These values overlap those reported above. The time-course for ATP consumption using the double-quench procedure is also biphasic, but a significantly higher burst in ATP consumption (8.2 μM versus 1.5 μM) is observed consistent with additional Pᵢ being released from the CHCl₃ and CHCl₃/phenol-extractions, the protein and DNA were mixed versus a solution of ATP hydrolysis are in satisfactory agreement with those reported above using HCl as the quenching agent (Table 2).

A second difference between the two quenching procedures arises in the choice of reagents in the extraction procedure: chloroform or chloroform/phenol combination. To determine whether the HCl quench or the phenol-extraction procedure was responsible, a rapid-quench experiment in which the Pietroni et al. procedure⁴ was used with phenol included in the extraction gave the results shown in Figure 4. The time-course is biphasic with a higher burst in ATP consumption relative to the Pietroni method (7.4 μM versus 2.8 μM). The burst rate constant (12.0 ± 5.0 s⁻¹) and steady-state rate (2.1 ± 1.2 s⁻¹) overlap with those listed in Table 2. The presence of phenol and not increased acidity (HCl versus formic acid), therefore, is necessary to release Pᵢ/ADP from a specific complex within the reaction cycle. In both the CHCl₃ and CHCl₃/phenol-extractions, the proteins appear as gelatinous precipitates at the organic/H₂O interface, and are not readily accessible in the case of the CHCl₃ extraction, to further manipulation to capture additional hydrolysis products. We note in data not shown that the steady-state rate for continuing ATP hydrolysis at longer times is subject to inhibition by the accumulation of ADP as observed previously.¹⁵
A key issue is whether phenol catalyzed hydrolysis of ATP rather than the ATPase activity of the clamp-loader is responsible for the increased level of ATP hydrolysis in the presteady-state phase. If phenol were the catalyst, one might expect that rate constant for the burst of ATP consumption as well as the continuing steady-state rate for ATP hydrolysis to be exaggerated relative to the formic acid/chloroform procedure. The uncatalyzed hydrolysis of ATP was evaluated in a series of experiments in which a mixture of non-labeled and radiolabeled ATP was allowed to age for a maximum of 30 minutes in either (1) HCl alone, (2) HCl and phenol/CHCl₃ prior to neutralization, or (3) HCl, phenol/CHCl₃, and neutralization with NaOH/Tris. The above conditions were examined experimentally by TLC and the percentage of ATP hydrolyzed was calculated. In all cases, the results were essentially identical with relatively no change in the amount of ATP hydrolyzed between the various conditions over the time of our experimental measurements. This control experiment eliminates any concern that phenol or HCl causes background ATP hydrolysis and artificially increases the experimental burst data shown in Figures 2–4 with the various quenching and extraction procedures examined.

Finally, analogous transient experiments were performed by monitoring ATP consumption in the absence of DNA. The time-course generated using formic acid alone or followed by quenching with HCl (double-quench) is linear and has a poorly defined burst (Figure 5), in agreement with results originally reported by Pietroni et al. In contrast, as above, the time-course generated using our double-quench procedure is biphasic. The burst amplitude is 3.9 ± 0.5 μM, yielding a stoichiometry of two ATP being hydrolyzed during the interaction of gp44/62 with gp45 in the absence of DNA as previously reported showing the need for phenol/CHCl₃ to release the hydrolysis products. The burst rate (2.3 ± 0.9 s⁻¹) is better defined than previously by shorter quench times.
Figure 7. Pulse-chase kinetic analyses of ATP consumption by the bacteriophage T4 accessory proteins in the presence and absence of DNA. The steady-state time-course in ATP hydrolysis in the presence of Bio62/34/36mer (- - -) using cold ATP chase was determined as described in Materials and Methods. Final concentrations were 2 μM gp44/62, 2 μM gp45, 2 μM Bio62/34/36mer, 2 μM streptavidin, 10 mM MgCl2, 500 μM ATP, and 50 nM [γ-32P]ATP. The steady-state time-course in ATP hydrolysis in the absence of DNA (●●●) using cold ATP chase was determined as described in Materials and Methods. Reactions were allowed to proceed for five seconds (Δt1) before addition of the cold chase. Aliquots of the reactions were then quenched at times ranging from five to 65 seconds (Δt2).

(Figure 5). Similar steady-state rates were observed for either the formic acid quench (0.48 ± 0.03 s⁻¹) or the double-quench (0.57 ± 0.07 s⁻¹) procedures.

Pulse-chase kinetic analysis

Examination of the stoichiometry of ATP hydrolysis in the presence of DNA

The difference (2 versus 4) in the equivalents of ATP hydrolyzed by the clamp-loader in the absence and presence of DNA prompted us to examine whether the two remaining ATP sites exchanged bound ligand with solution before turnover. In a pulse-chase procedure, a large excess of unlabeled ATP (cold trap chase) is introduced into the solution mixture after ATP turnover by gp44/62 has reached the steady-state. The partitioning of the gp44/62.2ATP complex (where labeled ATP occupies the remaining two ATP-binding sites) to form products (ADP) or to release substrate (ATP) can then be measured, because unlabeled chase ATP dilutes any dissociated substrate. Consequently, gp44/62.2ATP will be unlabeled and the ADP/Pi products are undetectable in the assay system.

Figure 6 describes the experimental procedure for the pulse-chase experiments. It is important to establish that introduction of the unlabeled ATP chase sufficiently dilutes out the labeled ATP pulse. Figure 7 provides an example of a steady-state time-course for ATP hydrolysis by the accessory proteins in the presence of DNA using the cold trap chase technique in which Δt1 is held at five seconds and Δt2 is varied. Clearly, dilution by the ATP chase is sufficient, because the apparent steady-state rate of ATP hydrolysis after the addition of chase is essentially zero (0.03 ± 0.02 μM s⁻¹). Extrapolation to time zero yields an apparent burst in ATP consumption of approximately 16 μM reflecting the time at which the chase was introduced. The ATP consumed during the five seconds prior to introduction of the cold chase can be calculated from the pre-steady-state and steady-state rates for ATP hydrolysis (present and published values) and is approximately 16 μM. The agreement between these data collectively indicates that all four ATPase sites have turned over twice within five seconds. Because in the pulse-chase studies the ATPase activity of gp44/62 is effectively quenched and the hydrolysis products released by dilution with chase and not an acid quench protocol, the consistency in the collective acquired data further rules against artifactual hydrolysis of ATP induced by the HCl quench phenol/chloroform combination.

Recall that gp44/62 hydrolyzes two molecules of ATP in the absence of DNA while in the presence of DNA as shown above, all four ATPase sites rapidly hydrolyze ATP. The question remains as to whether all four ATPase sites partition to form ADP in the absence of DNA, or whether the remaining two ATPase sites freely exchange ligand with solution during or after the initial hydrolysis of the first 2 ATP equivalents. Pulse-chase experiments were performed to evaluate the stoichiometry of ATP consumed by the gp44/62 complex interacting with the gp45 protein in the absence of DNA. Figure 7 illustrates the steady-state time-course for ATP hydrolysis by the accessory proteins in the absence of DNA using the cold ATP chase again with Δt1 held constant at five seconds and Δt2 being varied. The flat time-course for the cold chase again reflects that dilution is sufficient to abolish the apparent steady-state rate; extrapolation of the time-course to zero time gives a value of 3.7 ± 0.2 μM. If all four sites in the gp44/62 complex hydrolyzed labeled ATP without exchange with the cold chase, then this value should have been at least 8 μM. Consequently, after hydrolysis of the initial two molecules of [γ-32P]ATP, the remaining two [γ-32P]ATP molecules are exchanged with the cold ATP from solution.

The interpretation of these experiments could potentially be compromised if the high concentration of ATP and Mg2⁺ in the chase acts as a quenching agent by denaturing and/or inactivating the enzyme. Control experiments were thus performed to evaluate if the gp44/62 protein was active in the presence of 20 mM ATP. In these experiments, 5 μM Bio62/34/36mer was added to the reaction ten seconds after the addition of cold chase. Aliquots of the reaction were quenched...
Figure 8. The presteady-state time-course in ATP hydrolysis in the absence of DNA measured through pulse-chase or chemical quench conditions as described in Materials and Methods. The inlayed time-course magnifies the first 1.0 second of the larger plot to detail the burst phase. Final concentrations were 2 mM [γ-32P]-ATP. Reactions were allowed to proceed for 0.01 20 seconds (Δt1) before addition of the cold chase. Aliquots of the reaction were then quenched with formic acid (●) or HCl (- -) seven seconds later (Δt2). Samples quenched with formic acid were treated with CHCl3, and samples quenched with HCl where then treated with phenol/CHCl3 and neutralized with NaOH/Tris. Data points were fit to equation (5) which defines both the burst and steady-state rates as well as the magnitude of the burst. An identical burst in ATP hydrolysis in the absence of DNA measured through acid (●). Identical burst rates (0.01 20 seconds) were also obtained in either case.

A third pulse-chase experiment was carried out where Δt1 was varied and Δt2, fixed at seven seconds, sufficient for any bound labeled ligands to proceed through the reaction cycle or dissociate. The objective was twofold: firstly to more accurately define the stoichiometry of ATP turnover and secondly, to determine whether the gp44/62·ADPP complex is formed reversibly. If the latter holds, then the presence of kinetic barriers to its further progress along the reaction cycle might result in significant partitioning of the labeled complex back to labeled ATP. This would be manifest in a decreased amount of P1 product at Δt2 under conditions of the pulse-chase study relative to P1 product formed in studies using only a direct quenching procedure. Consequently, a series of transient pulse-chase experiments were carried out to investigate the amplitude of the transient phase as well as the associated presteady-state rate. Moreover, note the release of the hydrolysis products was by cold chase and not by phenol which was omitted from the formic acid quenching protocol. Consequently, a series of transient pulse-chase experiments were carried out to investigate the amplitude of the transient phase as well as the associated presteady-state rate. For comparison, the series included the standard HCl quench procedure.

The results are depicted in Figure 8 and are nearly identical with the HCl/Phenol/CHCl3 treated samples (Figure 5). The data are biphasic with a burst amplitude of 5.3 ± 0.4 μM and a rate constant of 1.8 ± 0.4 s⁻¹ for those treated with HCl at Δt2 and a burst amplitude of 4.4 ± 0.5 μM and a rate constant of 2.3 ± 0.7 s⁻¹ for those treated with formic acid at Δt2. The burst amplitude is consistent with the anticipated value of 4 μM (2 × 2 μM gp44/62), and the observed rate constant for both the pre- and steady-state phases is in satisfactory agreement. There is no evidence, therefore, for a decreased level of P1 throughout the observed time-course as a consequence of the pulse-chase/quench procedure relative to direct quenching so

Table 3. Simulated rate ranges for bacteriophage T4 DNA polymerase holoenzyme assembly

<table>
<thead>
<tr>
<th>Step</th>
<th>Species formed</th>
<th>Forward rate constanta</th>
<th>Reverse rate constantb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gp45†gp44/62(4ATP)</td>
<td>160</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>gp45†gp44/62(4ATP)</td>
<td>240 μM⁻¹ s⁻¹</td>
<td>90 s⁻¹</td>
</tr>
<tr>
<td>3</td>
<td>gp45†gp44/62(2ATP)</td>
<td>2 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>gp45†gp44/62(2ATP)DNA</td>
<td>120</td>
<td>5 s⁻¹</td>
</tr>
<tr>
<td>5</td>
<td>gp45†gp44/62(2ATP)DNA</td>
<td>180 μM⁻¹ s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>gp45†gp44/62DNA</td>
<td>7 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>gp45†gp44/62DNA</td>
<td>0.5 1.0 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>gp45†gp44/62DNA</td>
<td>300</td>
<td>15 s⁻¹</td>
</tr>
<tr>
<td>9</td>
<td>gp45†gp44/62DNA</td>
<td>400 500 μM⁻¹ s⁻¹</td>
<td>10 s⁻¹</td>
</tr>
<tr>
<td>10</td>
<td>gp45†DNAgp43</td>
<td>0.5 3 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>gp45†gp44/62DNA</td>
<td>0.2 0.3 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>gp45†gp44/62DNA</td>
<td>0.08 0.12 s⁻¹</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>gp45†gp44/62DNA</td>
<td>0.01 0.05 s⁻¹</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a Steps are shown in Figure 9(c).
b The range of rate constants provides satisfactory simulations of the data described here and include those values from previous reports. c,d Values outside this range significantly affect the quality of the simulation.

c These steps are assigned as not applicable because addition of a reverse rate constant decreased the quality of the fit or are assumed to be irreversible.

d These steps are assigned as not applicable because addition of a reverse rate constant decreased the quality of the fit or are assumed to be irreversible.
Figure 9. Representation of the bacteriophage T4 DNA polymerase holoenzyme assembly process. (a) Details the opening of the clamp in step 3 as measured by FRET between W92 and CPM attached to V163C of gp45 and highlights the importance of ATP hydrolysis in opening the subunit interface of the clamp wide enough to be loaded onto DNA. (b) A proposed structural representation of the holoenzyme assembly process. Steps 1, 3, 4, 6, 8, and 10 are depicted. Red boxes highlight the important conclusions from this paper namely the hydrolysis of ATP in step 3 to open the clamp, the hydrolysis of ATP in step 6 to close the clamp around DNA, and the dissociation of gp44/62 from the holoenzyme in step 10. (c) The sequential ATP driven reaction cycle for loading of the gp45 clamp by the gp44/62 clamp-loader onto DNA followed by the capture of the gp43 polymerase and dissociation of the clamp-loader. Individual rates are an average of simulated rates from this paper as well as those found previously. Steps are identified by numbers 1-13 and individual states of holoenzyme assembly are designated by letters A-K.
no conclusion may be drawn about the reversibility of the gp44/62-gp45-ADP·Pi complex.

Kinetic simulation of experimental FRET and ATP quench data

Experimental stopped-flow FRET traces and rapid-quench ATPase data were simulated when indicated in the corresponding figure legends using KinTekSim applied to the kinetic sequence shown in Figure 9(c). The range of rate constants characteristic of each step from these and earlier data are listed in Table 3 and are from this and previous studies. The interprotein stopped-flow FRET experiment between gp45 and gp44/62 used to detect the dissociation of gp44/62 from the multiprotein complex at step 9, Figure 9 was simulated using a partial mechanism which included steps 8–10. The reactions quenched with HCl, extracted with phenol/CHCl₃, and neutralized with NaOH in the absence and presence of DNA shown in Figures 2 and 5 were simulated using KinTekSim. In the absence of DNA, the rapid quench data from Figure 5 was simulated using steps 1–3 in Figure 9. In the presence of DNA, the rapid quench data from Figure 2 was simulated using steps 1–7 in Figure 9. Rate constants were individually varied to determine the best fit of the simulated rates to the experimental data. Irreversible rates were assigned when the inclusion of a reverse rate constant decreased the overall quality of the simulation. Note that ADP is not explicitly shown in the kinetic sequence because its dissociation rate has not been defined.

Discussion

We are able to reconfirm and expand on the molecular mechanism of holoenzyme formation in bacteriophage T4. Our current structural representation of holoenzyme assembly is depicted in Figure 9 along with the accompanying kinetic sequence. It highlights the significant findings from this paper which include: (1) the need for ATP hydrolysis to open the clamp sufficiently wide for its facile loading onto a primer/template DNA, (2) the role of the clamp-loader as a chaperone which leaves the multicomponent complex after the clamp and the polymerase are properly aligned, and (3) the requirement of sequential hydrolysis of two molecules of ATP by the clamp-loader before and after interaction with DNA for a total of 4 equivalents.

We had previously proposed a model for the ATP-dependent process of clamp-loading catalyzed by the gp44/62 protein complex. In this model, the gp44/62 protein complex acts as a molecular motor by transferring the chemical energy derived from the hydrolysis of ATP into mechanical energy required to load the clamp onto duplex DNA. The dynamics of this model were based in part upon results which quantitatively evaluated the stoichiometry and kinetics of ATP hydrolysis during the process of clamp loading and holoenzyme assembly. Transient kinetic analyses of the ATPase activity of the gp44/62 clamp loading complex revealed that all four bound ATP molecules are hydrolyzed during the process of clamp loading. Further kinetic studies indicated that ATP hydrolysis is sequential in which two molecules of ATP are consumed during the association of gp44/62 with gp45 (step 3) prior to association with DNA (step 4). By inference, the remaining two molecules of ATP were proposed to be hydrolyzed upon association of the formed gp44/62-gp45 binary complex with DNA. Once clamp loading is complete, the T4 DNA polymerase rapidly associates with the gp45 "clamp protein" to form the holoenzyme complex in an ATP-independent process.

Four equivalents of ATP are hydrolyzed by gp44/62 during holoenzyme assembly

Although the dynamics of the ATPase reaction cycle model have been further corroborated by a variety of augmenting functional studies, a recent report by Pietroni et al. had cast doubt upon this model. A modified kinetic scheme was proposed based upon differences in the stoichiometries of ATP consumption during the process of clamp loading, so that ATP is not consumed during the interaction of gp44/62 with gp45, and only one ATP equivalent is consumed during clamp loading onto duplex DNA.

In these present studies, we used a higher concentration (2 μM) of accessory proteins and DNA than earlier to provide a more accurate determination of the stoichiometries and rate constants in ATP consumption during the process of clamp loading. Secondly, we endeavored to obtain data points during the burst phase to minimize extrapolation errors. Finally, we performed a direct comparison of differing quenching reagents (HCl versus formic acid) and extraction procedures (CHCl₃ versus phenol/CHCl₃) in order to evaluate whether this was a possible source for the reported discrepancies in ATP stoichiometries.

We have been able to reproduce the two sets of published data reported for the ATP driven reaction cycle of clamp-loading using either the formic acid or HCl quench protocols. Whereas the time-course for ATP hydrolysis by gp44/62 with the formic acid quench procedure gives a poorly defined burst of ATP in the absence of DNA and approximately one ATP equivalent rapidly hydrolyzed in the presence of DNA, the same time-course with the HCl quench procedure shows 2 and 4 equivalents of ATP consumption in the absence and presence of DNA, respectively. Through a series of experiments systematically varying the constituents of the quench solution, we have traced the differences in behavior to the need for phenol to denature the gp44/62-gp45-ADP·Pi species for product release (Figures
The added fact that either the double-quench procedure (formic/CHCl₃ acid followed by HCl/phenol/CHCl₃) or the inclusion of phenol in the formic acid quench method release additional P_i (and presumably ADP) strongly supports this interpretation. The possibility that phenol catalyzes the conversion of a gp45-gp44/62-ATP species to hydrolysis products is discounted by the results of the pulse-chase experiments cited below. Moreover, because there is good agreement between the equivalents of ATP bound and those that hydrolyze in the presteady-state there must be negligible concentration of gp45-gp44/62-ADP·P_i during active turnover (steady-state).

Because gp44/62 initially binds four molecules of ATP,31 there are at least two possible explanations to account for the finding of only 2 equivalents of ATP being hydrolyzed in the absence of DNA. Two models that can be distinguished by steady-state pulse-chase experiments include: (1) the gp44/62 “tetramer” displays half-of-the-sites reactivity such that the enzyme hydrolyzes all the initially four bound ATP but in two independent events one of which is fast relative to subsequent kinetic steps and the second may set the rate limiting step; (2) the gp44/62 tetramer hydrolyzes two of the four bound ATP during association of the clamp, but in the absence of DNA, the remaining 2 equivalents of ATP are rapidly exchanged with the solution pool before hydrolysis. Our data (Figure 7) are consistent with the second model, suggesting that bound DNA may prevent exchange from these sites and also corroborates the stoichiometry of ATP hydrolysis observed in the rapid-quench experiments.

The pulse-chase study depicted in Figure 8 which includes both pre- and steady-state phases tracks the liberation of labeled P_i as a consequence of rapidly diluting the labeled ATP with unlabeled ATP acting as a quench, so that only labeled ATP bound to gp44/62 at the time of the chase addition may convert to labeled P_i. The fact that the time-course in which phenol was deliberately omitted from the formic acid/CHCl₃ quenching protocol (which now simply stops further turnover) overlapped data for the HCl/phenol/CHCl₃ quench procedure eliminates the possibility that phenol increases the hydrolysis of ATP bound to gp44/62. The agreement between the chemical quench and pulse-chase studies with respect to ATP equivalents hydrolyzed throughout their overlapping time-courses indicates there is no measurable amount of gp44/62·ADP·P_i, that dissociates via reversible formation of the gp44/62·ATP complex. We cannot, however, conclude that the hydrolysis is not reversible.

Some light may be shed on to the question as to why phenol is needed to release totally the P_i (and presumably the ADP) hydrolysis products from the gp44/62-gp45-ADP·P_i, species by the finding that P_i does not inhibit the ATPase activity of gp44/62.35 One interpretation of this result is that the dissociation of P_i from a gp44/62·ADP·S is coupled to a conformational change that greatly decreases the affinity of the enzyme’s site for the ligand. Whether both product ligands are sequestered within a sterically inaccessible complex can only be unequivocally solved by knowing the actual structure of this species.

The key rapid-quench data in Figures 2 and 5 can be readily simulated by KinTekSim using the applicable kinetic steps. The range of rates providing satisfactory fits of the collective data58,32 are depicted in Table 3. The average of rate constants from Table 3 is shown above the arrows in Figure 9(c). The two steps involving ATP hydrolysis (steps 3 and 6) are rapid relative to the succeeding steps (7, 11, and 12) allowing their detection through biphasic kinetics. Although the data interpretation by Pietroni et al. is compromised by their failure to observe the ATP hydrolysis steps, nevertheless, their values for the kinetic steps (1, 3–6) are in satisfactory agreement with ours. In pulse-chase experiments conducted by Pietroni et al. where ATP serves as a quenching agent, ~1 hydrolyzed equivalent of ATP was found and probably corresponds to step 3 because the rapid loss of gp45 from an unblocked primer template DNA (step 12) would prevent observation, as noted,39 of the hydrolysis event in step 6. Ironically, the collective data is in close agreement with previous work from the von Hippel laboratory that had been amended.31

Linking ATP hydrolysis to clamp opening

Expanding on an earlier study by Alley et al.,5 we recently triangulated through various FRET pairs situated at the clamp protein subunit interface the conformation of gp45 at the various stages of the clamp-loader/clamp reaction cycle,6 which is illustrated in Figure 9(a) and (b). The transition from gp45P_2 to gp45P_3 is accompanied by an increase in intrasubunit distance from ~28 Å to ~40 Å to readily accommodate duplex DNA (~30 Å); addition of DNA closes gp45P_3 in a series of steps to an out of plane conformation (gp45P_9) orthogonal to the groove of DNA. Finally, addition of gp43 closes gp45P_9 to an in-plane conformation (gp45P_5), leaving 11 Å between subunits.6 The overall sequence includes a step involved with the hydrolysis of ATP linking that event to clamp opening/closing. We now measured the magnitude of the opening of the subunit interface of gp45 in the presence of gp44/62 and different ATP analogs. The opening of the clamp (step 3 in Figure 9) is not observed when either ADP or ATPyS is used in place of ATP, suggesting that it is the hydrolysis and not the binding of ATP which leads to the opening of the clamp. These findings are consistent with the detection of ATP hydrolysis in clamp opening/loading onto DNA by the rapid-quench experiments and conformational changes in the gp44/62·gp45 complex that occur as a consequence of ATP hydrolysis.37
The role of gp44/62 includes a chaperone activity

The release of gp44/62 from the holoenzyme was suggested to occur during step 10 (Figure 9) due to the loss of a significant amount of interprotein FRET.\(^5\) By utilizing this property, we were able to measure directly the rate of dissociation of gp44/62 from the multiprotein complex, gp44/62-gp45-DNA-gp43, revealing a role for gp44/62 as a molecular chaperone. Previous results identified gp44/62 as a chaperone\(^3\) and a molecular motor,\(^3\) but the exact timing of its departure had not been identified conclusively. The inability to fluorescently label gp44/62 as a functional entity required an alternate way of measuring interprotein FRET.

In this case, we utilized the native tryptophans within gp44/62 as the fluorescent donors and detected energy transfer to a coumarin acceptor attached to a mutant of gp45 devoid of any tryptophan residues. We minimized the interprotein FRET contribution arising from gp43 by replacing tryptophan with 4FW. Incorporation of 4FW into gp43 resulted in a DNA polymerase holoenzyme in which the appreciable tryptophan donors for interprotein FRET resided in gp44/62. In this way, we were able to monitor the distance changes between gp45 and gp44/62 and correlate the decrease in fluorescence in Figure 1 as the dissociation of gp44/62 from the holoenzyme. The fraction of remaining tryptophan residues in gp43-4FW, furthermore, allowed us to identify formation of a multiprotein complex at state J (Figure 9), through the similarity in the observed rates as well as in the degree of fluorescent increase when comparing gp43 and gp43-4FW. The ratio of the normalized change (relative to gp44/62) in fluorescence intensity (23%) found in step 9 correlates well with the residual tryptophans in gp43 (25%). Although similar rates are observed for gp43 and gp43-4FW in step 10, the opposite magnitude of the fluorescent change allowed us to conclude that the disappearance in FRET was due to the dissociation of gp44/62 from the holoenzyme complex. Gp44/62 acts catalytically to load gp45 onto DNA, confirming earlier speculation that gp44/62 did not remain a part of the functional holoenzyme.\(^5,6\)

The molecular rearrangements in gp44/62 required to perform its chaperone function have yet to be identified but are expected to be complex. Gp44/62 is a large protein complex (123 kDa) yet must allow gp43 to interact with gp45 in the formation of a functional holoenzyme.\(^3\) This rearrangement happens in the absence of ATP hydrolysis or binding and is presumed to occur through protein affinity only. Crosslinking data between gp45 to both gp44/62 and gp43 identifies only one face of gp45 that interacts with both proteins.\(^37\)–\(^40\) The movement of gp44/62 along one face of gp45 fostering gp43 binding has yet to be structurally determined, so that the gp44/62-gp45-DNA-gp43 complex identified here may be only one intermediate in the formation of gp45-DNA-gp43.

Different roles for ATP in formation of a holoenzyme in different organisms

This mechanism of ATP utilization in bacteriophage T4 DNA polymerase holoenzyme assembly differs from that in both E. coli and eukaryotes. Although all three systems utilize ATP to form the holoenzyme, the timing and amount of ATP hydrolysis differs. Numerous biochemical studies of the loading mechanism in E. coli suggest that ATP binding is sufficient for opening the clamp (β) and that hydrolysis of two or three molecules of ATP occurs after the clamp is loaded onto DNA.\(^37\)–\(^42\) This differs from the bacteriophage T4 system in which ATP hydrolysis by the clamp-loader is required to open the clamp before interaction with DNA, although both systems hydrolyze ATP to close the clamp protein and recycle the clamp-loader. This as well as other differences between these two systems suggest that although the overall mechanism for holoenzyme assembly is similar, significant differences arise in the details of assembly.\(^12\) The clamps from the two systems have different oligomeric structures, and further evidence suggests that the overall stability of the clamps in solution and on DNA differ.\(^33\) Gp45 is a partially open trimer is solution,\(^33\) while the β clamp appears to be a closed dimer.\(^31\) Gp45 on DNA dissociates with a rate of \(\sim 0.1 \text{s}^{-1}\) (step 13 in Figure 9(c)), while β requires the assistance of δ to unload it off of DNA at a rate of 0.01 s\(^{-1}\).\(^44\)

It is intriguing that the partially open gp45 clamp from bacteriophage T4 requires the hydrolysis of ATP by the clamp-loader for further opening to facilitate its loading onto DNA, while a closed β clamp only requires ATP binding to the clamp-loader to derive a conformational change that opens the clamp. Both ATPyS and ADP will suffice to drive a segment of the reaction cycle in which the β clamp protein of E. coli is apparently closed around the DNA substrate.\(^19\) Recent crystal structures of the E. coli clamp-loader and a part of the clamp-loader complexed with the β clamp indirectly define the role of ATP in a proposed structural mechanism of holoenzyme formation in E. coli consistent with an ATP-binding mechanism that opens the clamp.\(^7,8\) In this mechanism, Jeruzalmi et al. suggest that hydrophobic residues within the subunit interface act to hold the β clamp closed in solution but under strain.\(^7\) Binding of ATP to the clamp-loader causes a conformational change that acts to trap one β monomer in an open conformation through a “spring-like” mechanism.

Although the eukaryotic holoenzyme assembly mechanism has not been as thoroughly examined as both the T4 and E. coli systems, current studies suggest that it may share similarities to both. Biochemical characterizations of the clamp-loader (RF-C) and clamp (PCNA) in yeast have shown that utilization of four molecules of ATP is necessary for effective loading of the holoenzyme, although hydrolysis is only needed for RF-C.
dissociation, similar to that of E. coli. Binding of ATP to RF-C proceeds sequentially through the initial binding of two molecules of ATP followed by conformational changes to allow the subsequent binding of two additional molecules of ATP. ATP can facilitate formation of both the RF-C-PCNA and RF-C-PCNA-DNA complexes, suggesting that the hydrolysis of ATP is necessary only to release RF-C to from a PCNA-DNA complex. Low resolution structural studies of the holoenzyme assembly mechanism from humans show a slightly different picture. A large conformational change was observed by transmission electron microscopy and atomic force microscopy after hydrolysis of ATP by the RF-C-PCNA complex allowing both RF-C and PCNA to adopt an open conformation.

This event was observed before addition of DNA and was not observed in the presence of ATP at similar ATP concentration may occur even between eukaryotic organisms.

Materials and Methods

Materials

Oligonucleotide primers and substrates were prepared as previously described. The forked Bio62/34 mer primer template forked DNA block with streptavidin, was used as the DNA substrate in all experiments. 7-Diethylamino-3-(4-maleimidylphenyl)-4methylcoumarin (CPM) and streptavidin were obtained from Molecular Probes (Eugene, OR). ATP and ATP at 22°C were purchased form New England Biolabs (Beverly, MA). 4FW, MgCl₂, and Mg(OAc)₂ are from Sigma (St. Louis, MO). All other materials were obtained from commercial sources and were of the highest available quality. The assay buffer used in all kinetic experiments consisted of 25 mM Tris OAc (pH 7.5), 150 mM KOAc, and 10 mM MgOAc.

Protein purification and labeling

Incorporation of 4FW into gp43 was performed according to a procedure described previously. pET-26b-43[D219A] (4exo) was transformed into a E. coli auxotrophic cell strain containing the ADE3 prophage (W3110DE3) and grown in medium with a limiting amount of tryptophan until they reached a stationary phase (OD₆₀₀nm = 0.8). Cells were then cooled to room temperature and IPTG and 4FW were added to final concentrations of 0.25 mM and 60 mg l⁻¹, respectively, to induce protein expression. Cells were incubated at 22°C with shaking for an additional six hours. Purification of gp43-4FW and exonuclease deficient gp43 was performed similarly as described previously. The final protein concentration of gp43-4FW was determined by using an extinction coefficient corrected for the 4FW substituted position: 103,229 M⁻¹ cm⁻¹ at 265 nm rather than 125,900 M⁻¹ cm⁻¹. The ability of gp43-4FW to shut down ATPase activity was verified as described earlier.
4100 M⁻¹ cm⁻¹, respectively. R₀ is the Förster distance at which the transfer efficiency is 50%, and R is the distance between the donor and acceptor. R₀ for gp45 W199F/V163C was calculated previously to be 31 Å. The energy transfer values (E₀) obtained experimentally are an average of the distances between the tryptophan donor and the CPM acceptor at all three subunit interfaces. We have assumed before that two of the subunit interfaces are closed (E₀) and do not change while the third interface is opened (E₀) during the holoenzyme formation process. Using this assumption, we can calculate the amount of E₀ for the open interface from equation (3) using 0.95 for E₀ determined previously:

\[E₀ = 3E₁ - 2E₄ \]

The interaction between the clamp and clamp-loader was also followed by stopped-flow spectroscopy. Inter-protein FRET between the donor tryptophans in gp44/62 and the acceptor, CPM, on gp45 was monitored using the fluorescence parameters described above. Excitation at 290 nm followed changes in fluorescence, and thus distances, between gp45 and gp44/62 throughout holoenzyme assembly.

ATP hydrolysis measurements

All assays monitoring the hydrolysis of [γ⁻³²P]ATP by gp44/62 were performed as previously described, using a rapid-quench instrument. A typical pre-steady-state ATPase assay was performed by mixing a preincubated solution of 4 μM gp44/62, 4 μM gp45, and 10 mM Mg²⁺ in the absence or presence of 4 μM Bio62/34/36mer and 4 μM streptavidin with 1 mM ATP, 100 mM [γ⁻³²P]ATP, and 10 mM Mg²⁺. At various time intervals (Δt = 0.01 60 seconds), a 15 μl aliquot was quenched with the addition of either 15 μl of 0.7 M formic acid or 15 μl 1 M hydrochloric acid, then extracted with 100 μl phenol/CHCl₃, and neutralized with 3 M NaOH in 1 M Tris. After neutralization, the pH for each sample was approximately 7.5. Aliquots quenched with formic acid were extracted with either chloroform or phenol/chloroform.

A double-quench procedure was used in some cases and included an initial formic acid quench as described above followed by removal of 100 μl of each sample quenched in 100 μl HCl and extracted and neutralized as above. The samples were analyzed using thin-layer chromatography to separate [³²P] from non-hydrolyzed [γ⁻³²P]ATP using PEI-F cellulose TLC plates developed with 0.6 M potassium phosphate buffer (pH 3.5). TLC images were obtained with a Molecular Dynamics PhosphorImager. Product formation was quantified by measuring the ratio of [³²P] product and unhydrolyzed [γ⁻³²P]ATP substrate. The ratios of product formation were corrected for substrate in the absence of enzyme (zero point). A radioactive impurity spot that did not migrate from the origin was corrected for as described in Supplemental Materials. Corrected ratios are then multiplied by the final concentration of ATP (500 μM) used in each assay to yield the total concentration of ATP hydrolyzed. Controls were performed to measure the effect of HCl; HCl plus phenol/CHCl₃, prior to neutralization; HCl plus phenol/CHCl₃, followed by neutralization with NaOH/Tris on the hydrolysis of labeled ATP over a period of 30 minutes. The samples were analyzed as described above.

Pulse-chase experiments

Pulse-chase experiments were performed by mixing a preincubated solution of accessory proteins in the absence or presence of Bio62/34/36mer/streptavidin with ATP with the following modifications. In steady-state experiments, the reactants were mixed and allowed to react for five seconds prior to the addition of the cold chase (final concentration of 1 mM ATP and 20 mM Mg²⁺). Aliquots of the reaction were then quenched at five second time intervals after the addition of cold chase using HCl as the chemical quench and processed as above. Transient pulse-chase experiments were performed as described above with the exception that the cold chase (1 mM unlabelled ATP with 20 mM Mg²⁺) was added through the “quenching syringe” (third syringe). After a delay of seven seconds, the reaction was quenched through the manual addition of 100 μl 1 M HCl or 0.7 M formic acid. The HCl quenched samples were then extracted with 100 μl of phenol/chloroform and then neutralized by the addition of approximately 35 μl of 3 M NaOH/1 M Tris.

Data analysis

Steady-state rates in ATP hydrolysis measured under pseudo-first order reaction conditions were fit to equation (4):

\[y = mt + b \]

where m is the slope of the line, b is the y-intercept, and t is time. Data obtained from transient time-courses in ATP hydrolysis were fit to equation (5) which defines a burst in product formation followed by a steady-state rate:

\[y = A e^{kt} + Bt + C \]

where A is the burst amplitude, k is the first order rate constant, B is the steady-state rate, t is time, and C is a defined constant. Stopped-flow traces and rapid-quench data were simulated using KinTekSim version 2.035 using the mechanism shown in Figure 9(c). The simulated rates were optimized and individually varied to determine the importance of individual rates to the overall fit of the data. The rate constants shown in Figure 9(c) are an average of the simulated rates from previous reports and the simulated rates described here.

Acknowledgements

This research was supported in part by National Institutes of Health Grant GM13306-37 (S.J.B.) and American Cancer Society Grant IRG-91-022-06-IRG (A.J.B.). We would like to thank Peter von Hippel and Paola Pietroni for their review of our results and discussions on the bacteriophage T4 DNA polymerase holoenzyme assembly process.

References

