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SIMPLIFYING EMBEDDED SYSTEM DEVELOPMENT

THROUGH WHOLE-PROGRAM COMPILERS

WILLIAM PATRICK MCCARTNEY

ABSTRACT

As embedded systems embrace ever more complicated microcontrollers, they

present both new capability and new complexity. To simplify their development,

some lessons of computer application development will translate with additional work.

This thesis offers one such translation. It shows how whole-program compilers –

those that broadly analyze a program’s entire source code – can achieve performance

gains and remove faults in embedded system applications. In so doing, this yields

a novel stackless threading system named UnStacked C. UnStacked C enables

cooperative multithreading without the risk of stack overflows in embedded system

applications. We also propose a novel preemption system called Lazy Preemption.

UnStacked C with Lazy Preemption enables stackless preemptive multithreading

in embedded systems. These remove the possibility of thread stack overflows, but also

significantly reduces the memory required for multithreading in embedded systems.

vii
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CHAPTER I

INTRODUCTION

Computer programming has rapidly evolved over the years. Software development

techniques have changed the way computer programs are written. The tools and

platforms for computer programming have also changed.

Operating systems (OS) have benefited from closer integrations with hardware

platforms, and natural evolutions on their own behalf. Inter-process communica-

tion, network stacks, Bluetooth stacks, multithreading, memory isolation and much

more, have greatly improved operating systems as target platforms for application

developers.

Compilers and Integrated Development Environments (IDE) have changed the

way people write software. It is not unusual for programmers to make typos and have

the IDE or compiler catch the problem before it creates a failure. As well, the ability

to rapidly test an application without the risk of damaging the computer is assumed.

The ability to test out a failing application without risking either the OS or the other

applications running on the same computer, rapidly reduces application development

time.

It is easy to argue that computer programming is easier now than it has ever

1
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been before. All engineering students have at least some exposure to computer pro-

gramming. With high level languages, integrated development environments and

widely available libraries, developers have capabilities that were only imagined in the

last decade. Productivity of programmers has been improved, with time being spent

in actual problem solving as opposed to fixing unintended errors.

1.1 The Problem

Embedded system1 software developers have not reaped the same benefits from the

revolution of computer programming. Integrated development environments for em-

bedded software development are woefully behind their PC counterparts. PC develop-

ers are safely removed from implementation details (e.g. stack depth) but embedded

system developers enjoy no such safety. While some PC development techniques have

transferred, many more have struggled to find a place in the resource-restricted em-

bedded realm. Many of the libraries and OS capabilities simply have not been able to

translate into embedded development. Some examples of this are memory separation

and virtual memory, which have led to development of libraries and systems which

depend on these functionalities. This makes embedded system development lacking

compared to their computer programmer counterparts.

Most embedded system software is written using event-driven2 programming.

This allows developers to utilize much of the system resources while avoiding over-

heads which most computer programmers can conveniently ignore. This often pre-

cludes such niceties as multithreading, complex libraries, and, as a result, the ability

to reuse code. These limitations are often the artifacts of resource restrictions, which

leads to tailoring applications to specific hardware.

1For the purpose of this dissertation, we define embedded systems as computer systems with
a fixed application and often real-time requirements. We specifically exclude systems which are
designed to run multiple applications, such as smart phones.

2Event-driven applications are those which are run specifically off of events and event handlers.
The term is synonymous with interrupt-driven.
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Some embedded systems are simple enough for developers to simply write a

single loop which polls as needed. These types of applications are becoming less and

less common as requirements of embedded systems are continually increasing.

Microcontrollers come in many different configurations, nearly all of which in-

clude support for multiple input/output interfaces (I/O). Most applications require

a microcontroller to be interacting with multiple interfaces simultaneously (i.e. USB,

RS-232, Ethernet, etc.), while still performing its main task. This leads to many

different custom applications with little code re-use. This is exacerbated by incon-

sistent programming interfaces to platform-specific libraries. It forces developers to

craft custom applications for each platform.

The body of research on embedded development is dwarfed by that on com-

puter software development. This is also mirrored in industry. This contrast permits

embedded development to profit from crossover techniques. Not only for the em-

bedded system developers of today, but also for current computer programmers in

becoming the embedded system developers of tomorrow.

PC application development always has an operating system with memory

protection and fault detection included. This allows faults, such as stack overflows, to

be caught at run time — and users are then notified. Not only that, but also detailed

logs are often maintained by the operating system of some application faults. In an

embedded system, storage may not be available to log these faults, making them more

difficult to diagnose. In an embedded system, there may be no operating system (or

a lightweight operating system without such capabilities) to perform the logging of

these faults. In PC application development, these faults are often updated through

software patches or updates. In many embedded systems, field updates or patches

are difficult, expensive or impossible. So in an embedded system, the cost of a fault

on all levels — detecting, diagnosing and repairing — is extremely expensive.

This extreme cost of faults in embedded software leads to a need of a different
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set of tools. These tools must detect more faults prior to running the software. As the

demand on embedded systems has been increasing with the number of interfaces it

supports, it is more important now than ever for such tools. Since hardware platforms

are very diverse in embedded systems, a single hardware solution is not viable – a

software approach is required. Currently, the research into these types of software

tools for embedded system software development have been lacking.

Specifically, current multithreading for embedded systems is implemented in a

similar fashion to a PCs multithreading. This ignores the missing hardware compo-

nents PCs have, which can support fault detection and the software to support logging

said faults. The fault detection schemes which do exist cannot detect most faults,

and the faults that can be detected only occur at run-time. If a fault occurs in an

embedded system at run-time, it is often too late. Instead, some tools or frameworks

are needed to help prevent faults at compile time.

1.2 The Thesis

This dissertation defends the following thesis:

1. A flexible whole-program compiler framework can enable building compilers

that can detect and prevent certain faults, or perform optimizations, in embed-

ded system software at compile time.

2. Cooperative multithreads can be translated by a compiler into event-driven

state machines. These state machines could have lower memory requirements

known at compile time, preventing thread stack overflows.

3. Preemptive multithreads can be translated into similar event-driven state ma-

chines with the same bounding of memory requirements by using Lazy Preemp-

tion techniques.
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1.3 The Solution Approach

Our approach starts with a new framework for manipulating programs enabling whole-

program transformations named C-XML-C. We have used C-XML-C to implement a

series of compiler tools or transforms. Several transforms have been developed to

detect faults, prevent faults and optimize performance.

C-XML-C is evaluated by examples. First we evaluate it by writing several

example transformations in a variety of different programming languages to show

its flexibility and ease-of-use. The next method of evaluation is by implementing

transforms for the latter part of this work, and evaluating them together on existing

real-world embedded applications. The final portion of the test is evaluating the

ability of C-XML-C to compile different types of C source code.

One of these whole-program transforms, named UnStacked C, performs a

novel transformation from cooperative multithreads into event-driven state machines.

We first evaluate its limits on an example application measuring performance, scal-

ability and size. The second evaluation is performed on a set of existing real-world

embedded system applications to evaluate the differences in program and memory

usage.

UnStacked C translates cooperative multithreads into event-driven state ma-

chines. These event-driven state machines do not require separate stacks, instead they

have memory requirements known at compile time.

This whole-program transformation on cooperative threads is then extended

to support preemptive threads. We propose a method to translate preemptive threads

into cooperative threads called Lazy Preemption and add support for it into UnStacked

C. We then evaluate the overhead and effectiveness of this preemption mechanism by

measuring its performance and overhead on an example. We then evaluate its pro-

gram and memory usage on a series of existing real-world applications.

At the time of publication, all source materials, examples and source code will
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be made publicly available.3 This is an effort to try to promote usage and scrutiny

of the work.

1.4 Contributions

This dissertation makes several contributions:

• C-XML-C: A flexible source-to-source C compiler framework which is language

and platform independent. It also includes a series of example compilers to

remove faults and optimize embedded system software.

• UnStacked C: A novel compiler based stackless multithreading system which

bounds and reduces the memory overhead required for multithreads. It removes

certain faults in embedded system software.

• UnStacked C with LP4: An extension of UnStacked C which allows pre-

emptive multithreads to be translated into event-driven state machines with

the same memory bounding and memory usage reduction. This translation also

removes many possible faults.

1.5 Organization of the Dissertation

The dissertation is organized in the following way: Chapter 2 presents a general

background to the problems with preemptive multithreads and stack consumption

in embedded systems. Chapter 3 reviews related research and places our work in

context. Chapter 4 contains an in-depth look at the architecture of C-XML-C. Chap-

ter 5 explains the methodology of a stackless threading system (UnStacked C).

3The source code for C-XML-C and UnStacked C with LP will be available at http://www.
CXMLC.com and http://www.UnStackedC.com upon publication

4There is a patent on memory mapped lazy preemption that has to deal with allowing threads
to delay preemption with a flag. This is not related to this work. Since there is no reference to the
term except for the title of this patent [30] we have co-opted the term lazy preemption.

http://www.CXMLC.com
http://www.CXMLC.com
http://www.UnStackedC.com
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Chapter 6 extends the stackless threading system to support preemptive multithread-

ing(UnStacked C with LP). The dissertation is concluded in Chapter 7.

If a reader is well-versed in preemptive multithreading and stack usage in

embedded systems, than Chapter 2 can be skipped. Readers interested in the details

of C-XML-C can focus on Chapter 4. Readers interested in stackless multithreading

can focus on Chapters 5 and 6.



CHAPTER II

Background

To understand the details of this research, a firm understanding of embedded software

systems is required. In this chapter we will discuss interrupts (Section 2.1), stack

usage (Section 2.2), multithreading (Section 2.3), compilers (Section 2.4) and faults

(Sections 2.1 and 2.3). Each of these subjects could require books of knowledge to

fully understand them; We only cover an overview of the foundations of each. We

will also cover some details of the hardware architecture that influences this research.

2.1 Interrupts and Faults

Interrupts are an important part of many systems. They allow a software system

to respond to true hardware events in a timely fashion. When an interrupt occurs,

it forces the software to branch to a specific location and then execute there. This

location is known as an interrupt vector. In some systems, the interrupt vector is

always a constant value [4], in other systems it is an index to a table that can be

changed or even repositioned at runtime [5]. The function or subroutine that resides

at the interrupt vector is called an interrupt handler. After an interrupt handler is

8
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done executing, it returns, allowing the system to continue executing.

In an embedded system, interrupts are the underlying framework used to im-

plement event-driven state machines. These event-driven state machines can be used

to implement concurrent applications or they can be used to implement blocking func-

tions for multithreaded applications. So whether embedded developers are writing

event-driven programs or multithreaded programs they must deal with interrupts.

Interrupt usage is plagued with many possible pitfalls. The heart of all of these

issues is the sharing of processor resources. This stems from the fact that all interrupts

must share the resources of the processor with the rest of the application. This

includes not only the program space, RAM and CPU time, but also the registers, the

stack, and all peripherals. The sharing of some of these resources: program space, also

known as read-only memory (ROM); program memory, also known as random access

memory (RAM); central processor unit (CPU) time; and general purpose registers1

(GPR) can occur naturally. The CPU is shared naturally since only one instruction

can be executed at once; if an interrupt occurs, it will begin executing the interrupt

as it would the next instruction, returning to that instruction when the interrupt

completes. Registers are shared not only between interrupts and the main application,

but also between different functions. They are shared by each function storing the

registers they are going to use, and then restoring the values back into the registers

before they exit. ROM is shared naturally. Since only one instruction can be executed

at once, only one location needs to be accessed simultaneously. ROM is then shared

by allocating different functions or subroutines in different locations. Most RAM is

shared in a similar fashion; different segments of the program use different portions

of RAM. If the same segment of RAM is shared between interrupts and the main

application, the sharing may not occur naturally. Most of the sharing comes at a

1Registers are very small, very fast temporary storage devices processors use to operate directly
on. General purpose registers are registers which can be used for any purpose. Much of a given
processor’s work is manipulating and performing calculations using the general purpose registers.
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price either in resource consumption or requiring certain precautions to be taken to

avoid different fault scenarios.

A fault is an instance when a system does not execute according to the speci-

fications. In this research we are simply treating the source code as the specification,

and identifying a fault as a situation where the application may not follow the source

code. For example: i = i + 1 should have the effect of incrementing i by one.2 If the

line i = i + 1 ever does not increment i then a fault has occurred.

These faults can be significantly difficult to detect and track down using testing

techniques. Since interrupts can be generated by external stimuli, they force the

execution of the rest of the program to change in new, different and unexpected ways.

For instance, fault A only happens if an interrupt occurs exactly during a specific

instruction. If the instruction is only executed 1% of the time and the interrupt only

occurs once an hour, the fault may never occur during testing. Due to Bernoulli’s

Theorem (also known as the Law of Large Numbers) if thousands of units are run for

24 hours a day, faults will occur in the field at a rough rate of 24% once per day [42].

Prior to discussing all the possible faults, we will first delve into how resource sharing

occurs.

When an interrupt occurs, the context3 of the current running application

must be stored prior to the interrupt being executed and then restored after the

interrupt is completed. Typically, the program counter of the current location in

the application is pushed onto the stack. Sometimes, one or more registers may be

pushed onto the stack by hardware also, but these are the exception. Most registers

must be pushed onto the stack in the software of the interrupt handler. There is

a common optimization: only the registers used by the interrupt handler must be

stored and restored. For general purpose registers, C compilers tend to handle this

2Ignoring the case of overflows. Overflows are usually well understood, and explained in entry
level programming classes. While they can cause faults in some systems, the properties of overflowing
are exploited in other systems. We treat overflows not as a fault, but as an exploited feature of the
language. In essence, the line i = i + 1 really means that it will increment, possibly rolling over.
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nicely, pushing the registers prior to using them and then popping them back off after

execution is completed. This can be seen in Listing 1.

Listing 1 includes an excerpt from a disassembly of an embedded applica-

tion. It includes the preamble and postamble of a single interrupt handler named

vector 16. In the first part, it pushes registers r0 and r1 onto the stack. Then it

uses in to load the status register (number 63 or 0x3f in hexadecimal) into r0 and it

pushes that onto the stack as well. Then it runs the body of the interrupt handler.

After the body it restores (from the stack) the status register, r0 and r1 in the reverse

order. As the interrupt returns, it first restores all of the values of all registers that

it used, in this case it is r0, r1 and the status register.

1 000002fc <__vector_16>:
2 2fc: 1f 92 push r1
3 2fe: 0f 92 push r0
4 300: 0f b6 in r0, 0x3f ; 63
5 302: 0f 92 push r0
6 .............
7 314: 0f 90 pop r0
8 316: 0f be out 0x3f, r0 ; 63
9 318: 0f 90 pop r0

10 31a: 1f 90 pop r1
11 31c: 18 95 reti

Listing 1: Excerpt of an interrupt handler from the disassembly of Blink (a TinyOS
example program) when compiled for an ATMel ATMega128.

When writing interrupt handlers in assembly language, much care must be

taken to ensure that not only are the general purpose registers which are used saved,

but also any registers that may change because of side effects. One common example

is a status register that includes some flags. These flags may change from instructions

which do not reference this register (for instance, an addition may change a carry flag).

Except in the case of very simple interrupt handlers, it is common, when interrupt

handlers are implemented in assembly language, to see all of the general purpose

registers stored in memory at the beginning of an interrupt handler, and then all of

3We define an application or a thread’s context as all of the local variables, states, registers and
temporary values. These are the minimum required to resume program execution where it used to
be. Fundamentally, a context describes where we are at, what we are doing, and what we are doing
it to.
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them restored at the end of the interrupt handler.

In addition to the general purpose registers, peripherals may be shared between

the application and the interrupts. This sharing generally requires storing a different

set of registers, and more often it requires disabling interrupts during critical phases.

The peripherals are not necessarily external devices, it can also be completely inter-

nal portions, such as the hardware multiplier for the Texas Instruments MSP430 [69].

This multiplier is treated as a peripheral and much care must be taken to store the

correct registers in the interrupt handler. So peripherals that can be used simultane-

ously in the interrupt handlers and main application need to store the registers with

the contexts, but also need to disable interrupts during critical sections.

Disabling interrupts is the technique of turning off, or simply disallowing inter-

rupts to occur. It is done using hardware on the processor which delays the interrupts

until they are enabled once again. As shown in Listing 2, disabling and re-enabling

interrupts can be done in assembly. It would seem that disabling interrupts is a

panacea. If done correctly, briefly disabling interrupts can protect against many

types of faults.

1 Disable_Interrupts:
2 CLI;
3

4 Enable_Interrupts:
5 SEI;

Listing 2: ATMega Assembly code for enabling and disabling interrupts.

Typically, interrupts must be disabled and then restored as opposed to disabled

and enabled. This is shown in Listing 3. Disabling (lines 1-6) involves checking to

see if interrupts are already disabled (line 3) and storing that result (line 5) prior

to disabling interrupts (line 4). When restoring interrupts (lines 7-9), only enable

interrupts (line 8) if they were already enabled in the previous disabling. This return

value of disable int is saved by the calling function, and then that value is passed

to the restore function. This allows interrupt disabling to nest, without creating
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a problem with interrupts being accidentally enabled when they are required to be

disabled.

1 int disable_int(){
2 int status;
3 status = are_interrupts_enabled();
4 DINT(); //Disables interrupts in hardware
5 return status;
6 }
7 void restore(int status){//Takes an argument of previous interrupt status
8 if(status)EINT();
9 }

Listing 3: Pseudocode for disabling and restoring interrupts

Keeping interrupts enabled is very important for application accuracy. In many

interrupt handlers timers may be read, and if an interrupt is delayed for too long the

timer value will have changed. Another possible problem is that interrupts can queue

up so that they do not execute in the order they occurred. There is a priority that

is preassigned to all interrupts so that when they do execute, they execute in order.

Typically, there is a vector number for each interrupt and that number is the priority

(lower value is a higher priority) [4]. So when they execute at the same time, the

highest priority executes first, then the next highest, and so on. This means that

if an interrupt with a lower priority occurs first and then a second interrupt with

higher priority occurs while interrupts are disabled, the interrupts will be executed

in a different order then the causal events occurred. It is also possible that the same

interrupt could occur twice while it is being disabled, so that the first (or the second

depending on the hardware) interrupt is essentially lost.

Many processors contain configurable interrupt priorities to override the nat-

ural vector priority so that some of the interrupt priority problems can be fixed.

This priority control does not fix the temporal problems that disabling interrupts can

cause. So it is important to correctly disable/restore interrupts in some sections of

an embedded application to prevent faults, but that must be balanced with the need

for timely and accurate interrupts to prevent other faults.

If interrupts are not disabled when memory or variables are shared between



14

interrupts and the main application, two possible data faults4 can occur. The first

fault occurs when a variable needs multiple words to represent its value. This is

called a multi-word data fault. This can either be a single number, or a structure of

multiple values. The second type of data fault is a temporal data fault, which loses

the computation of either the main application or the interrupt handler because the

accesses occur at the same time.

2.1.1 Multi-word Data Faults

A multi-word data fault is shown in psuedocode in Listing 4. This psuedocode assumes

that the increment operation can be performed directly on memory (removing other

possible faults) and that all of these instructions are atomic. An atomic instruction

is one that cannot be split in the middle into multiple sub operations. This means

that an interrupt cannot occur in the middle of an operation, only before or after

an operation. The multi-word data fault can happen when an interrupt occurs after

the first byte is incremented and a roll-over occurs, but before the second byte is

incremented.

1 //Allocate count as 2 words (a 16 bit number)
2 WORD count 2
3 sub inc(){
4 Increment count[0]
5 //If there is a roll-over, then data faults can occur until line 7
6 if(roll-over){
7 Increment count[1]
8 }
9 return

10 }
11 sub main(){
12 start:
13 call inc()
14 goto start;
15 }
16 sub interrupt(){
17 //save context
18 if(count <= 10){
19 //Error, do something special
20 }
21 //restore context
22 return_from_int
23 }

4What we call data faults are sometimes refered to as data race conditions [80]
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Listing 4: Psuedocode for multi-word access data fault.

Listing 5 shows the trace of how the program is expected to run, but Listing 6

shows how a data fault can occur. The trace shown in Listing 5 successfully rolls over

the count, from 255 to 256, without causing any faults, because an interrupt did not

occur during the at-risk section (when time is eight and nine). It is easy to identify

the time of the fault by looking at the values of count [0] and count [1] over time. In

Listing 6 we see the cumulative value of count go from 254, to 255, to 0 and finally

to 256.5 The trace in Listing 6 differs starting at time 9 when the interrupt occurs.

1 time instruction count[0] value count[1] value
2 1 goto start count[0]=254 count[1]=0
3 2 call inc() count[0]=254 count[1]=0
4 3 Increment count[0] count[0]=255 count[1]=0
5 4 test roll-over count[0]=255 count[1]=0 No Rollover in last add
6 5 return count[0]=255 count[1]=0
7 6 goto start count[0]=255 count[1]=0
8 7 call inc() count[0]=255 count[1]=0
9 8 Increment count[0] count[0]=0 count[1]=0

10 9 test roll-over count[0]=0 count[1]=0 Rollover in last add
11 10 Increment count[1] count[0]=0 count[1]=1
12 11 return count[0]=0 count[1]=1

Listing 5: Execution Trace without a fault code. Software operating correctly.

1 time instruction count[0] value count[1] value
2 1 goto start count[0]=254 count[1]=0
3 2 call inc() count[0]=254 count[1]=0
4 3 Increment count[0] count[0]=255 count[1]=0
5 4 test roll-over count[0]=255 count[1]=0 No Rollover in last add
6 5 return count[0]=255 count[1]=0
7 6 goto start count[0]=255 count[1]=0
8 7 call inc() count[0]=255 count[1]=0
9 8 Increment count[0] count[0]=0 count[1]=0

10 9 Interrupt occurs
11 10 test count <= 10 count[0]=0 count[1]=0 //Test count is 0, so
12 Fault occurs, count should either be 255 or 256
13 11 return_from_int count[0]=0 count[1]=0
14 12 test roll-over count[0]=1 count[1]=0 No Rollover in last add
15 13 return count[0]=1 count[1]=0

Listing 6: Execution Trace with a multi-word data fault code. Software operates
incorrectly.

This problem can be extremely difficult to track down, since it will only occur

when an interrupt occurs in a two instruction window. Since it occurs so rarely, it may

5The effective value of the two byte number count is calculated by multiplying 256∗count [1] and
adding that to count [0]. In the case of count [0] = 0 and count [1] = 1 the cumulative value of count
is 256.
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not be caught in testing. The real issue is that to the interrupt, the value appears to

be correct, while really it is not. To prevent these faults in the source code, disabling

and restoring of interrupts must be added only around the critical region. A critical

region is a portion of the application where a fault may occur. The changes required

to prevent the data fault are shown in Listing 7.

1 //Allocate count as 2 words
2 WORD count 2
3 WORD istatus 1
4 sub inc(){
5 istatus = interrupt_status()
6 DISABLE_INT
7 //Start of critical section
8 Increment count[0]
9 //If there is a roll-over, then data faults can occur here until after the second

increment
10 if(roll-over){
11 Increment count[1]
12 }
13 //End of critical section
14 RESTORE_INT(istatus)
15 return
16 }
17 sub main(){
18 start:
19 call inc()
20 goto start;
21 }
22 sub interrupt(){
23 //save context
24 if(count <= 10){
25 //Error, do something special
26 }
27 //restore context
28 return_from_int
29 }

Listing 7: Psuedocode for multi-word access data fault: fixed with a critical section

2.1.2 Temporal Data Faults

The pseudo instructions from the previous examples oversimplified the problem. Most

modern microcontrollers use load-store architectures, which typically require separate

instructions to read the data from memory (loading) then modify it with other in-

structions. They finally store back the registers to memory [58]. These architectures

do not have the same atomicity in their operations on memory that our previous ex-
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amples did.6 Since load-store architectures require multiple instructions to accomplish

the same thing, these operations are no longer atomic. These systems are susceptible

to another data fault known as a temporal data fault.

These temporal data faults occur when a processor loads a variable into its

registers, modifies it and prior to writing it back, an interrupt occurs, which overwrites

the previous value. After the interrupt completes, when the application then writes

the value, it will simply overwrite any changes that the interrupt handler made. An

example program to demonstrate these faults is shown in Listing 8.

1 WORD count 1
2 Main(){
3 start:
4 load count, r1 //Load count into register 1
5 increment r1 //increment register 1
6 store r1, count //Write register 1 to count
7 goto start
8 }
9 Interrupt(){

10 //Store context
11 load count, r1 //Load count into register 1
12 if(r1 > 200){
13 load #0, r1 //Load a 0 constant into register 1
14 store r1, count //Write register 1 to count
15 }
16 //restore context
17 }

Listing 8: Pseudo code for load-store temporal data fault

The fault occurs if an interrupt happens between the load and the store instruc-

tions in main. It is only a fault if count is greater than 200. For instance, if count is

250 and an interrupt occurs between the load and store instructions in main, then the

interrupt will write count=0 out to memory and then main will write count=251.

If the interrupt was supposed to reset the count (for instance when a physical event

happened) then it may not do so. The fixed source code that protects the critical

section is shown below in Listing 9.

1 WORD count 1
2 Main(){
3 start:
4 istatus = interrupt_status()

6No architectures have perfect atomicity in all statements in C, so temporal data faults can take
place in any processor architectures.
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5 DISABLE_INT
6 //Start of critical section
7 load count, r1 //Load count into register 1
8 increment r1 //increment register 1
9 store r1, count //Write register 1 to count

10 //End of critical section
11 RESTORE_INT(istatus)
12 goto start
13 }
14 Interrupt(){
15 //Store context
16 load count, r1 //Load count into register 1
17 if(r1 > 200){
18 load #0, r1 //Load a 0 constant into register 1
19 store r1, count //Write register 1 to count
20 }
21 //restore context
22 }

Listing 9: Pseudo code for load-store temporal data fault - with protection

Temporal data faults can occur far more frequently in C since the compiler

has some latitude to implement optimizations [39]. One of the most common opti-

mizations occurs when a compiler loads a variable at the beginning of the function,

but does not write the value until the function exits. For instance, the code shown

in Listing 10 may never get past the loop. This is because the compiler can choose

to load test var when main starts, and then never read it from memory again. In

this case, it is not an issue with the width of the data, since it is irrelevant if the

access to the variable is atomic or not.

1 int test_var=0;
2 int main(){
3 while(!test_var){
4 //Loop here
5 }
6 //Start application
7 }
8 void interrupt(){
9 test_var = 1;

10 }

Listing 10: C code for possible fault

To understand the specifics of this fault, we need to understand how the com-

piler may choose to implement the source code. Listing 11 shows one possible opti-

mization choice a compiler could conceivably choose to implement. In this case, it

chose to convert line 3 of Listing 10 into lines 3 and 4 of Listing 11. This optimization

occurs often, a compiler chooses a variable and stores its value in a register. Since
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registers are faster to read, it will execute the loop significantly faster than if it had

to read from memory every iteration. Since the interrupt only writes the variable

test var and main only reads the register r0, the loop will never exit.

1 int test_var=0;
2 int main(){
3 register r0 = test_var;
4 while(!r0){
5 //Loop here
6 }
7 //Start application
8 }
9 void interrupt(){

10 test_var = 1;
11 }

Listing 11: Possible optimized C code which can create the fault

To fix the fault, two main changes should be made. The compiler must be

notified that the value of test var can be changed at any time.7 The compiler

is notified that test var can be changed at any time by the keyword volatile.

The volatile keyword essentially turns off certain optimizations which could create

the temporal data faults. The updated code is shown in Listing 12 with interrupts

disabled.

1 volatile int test_var=0;
2 int main(){
3 int status;
4 status = disable_int();
5 while(!test_var){
6 restore_int(status);
7 status = disable_int();
8 }
9 restore_int(status);

10 //Start application
11 }
12 void interrupt(){
13 test_var = 1;
14 }

Listing 12: C code fixed from data fault

It is important to only mark variables as volatile if it is actually required,

since many optimizations will be removed around any computations where this vari-

7Since test var is only being used as a flag, it is possible that interrupts do not need to be
disabled during accesses, since there is no chance of data fault (if the interrupt executes during a
read, the value is simply a flag so even a partial write could count as a complete write). This is
a nuanced point and for the sake of correctness versus speed it should be ignored and protected
accordingly.
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able is involved. If this is abused, it can significantly slow down performance along

with a significant increase in the compiled code size. A simple example of source code

is shown in Listing 13. If the variables x, y, z and total are marked as volatile

it takes longer and it is larger8 as shown in Table I.

1 #define MAX 10
2 volatile int x,y,z;
3 volatile double total;
4 int main(){
5 asm("nop");
6 for(x=0;x<MAX;x++)
7 for(y=0;y<MAX;y++)
8 for(z=0;z<MAX;z++)
9 total += 1;

10 asm("nop");
11 }

Listing 13: Simple C benchmark to measure the impact of volatile

Code Space Execution Time

Without Volatile Variables 76 222.9 ms
With Volatile Variables 83 230.34 ms
Percent Increase 9.21% 3.34%

Table I: Simple C benchmark results for the impact of volatile

The results of Table I show that marking variables as volatile have a distinct

impact on program execution time and code space. Each loop iteration must load the

counter out of memory prior to incrementing its counter and then storing the value

after the fact. These operations occur in each iteration and take time to execute.

These operations also take up code space. These overheads mean that care should be

exercised in deciding which variables to mark as volatile.

These data faults have quite a bit in common. They both require accessing the

same memory locations in both interrupts and the main application. So simple rules

can be put together to detect them. Since assembly code is not portable, we will only

focus on detecting these faults in C. Since C does not have normal load and store

operations, when we talk about a write, we mean a C statement where the variable

8The program was compiled for the ATMega88 using WinAVR version 20080610. The exact
execution time was measured using AVR Simulator @ 4MHz inside of AVR Studio version 4.14 build
589.
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in question is on the left-hand side. When we talk about a read, we are referring to

a C statement where the variable is on the right-hand side. These simple rules are

shown below [29]:

1. If an interrupt writes a variable, then all accesses (reads and writes) in the main

application must be protected.

2. If an interrupt only reads a variable and the main application writes it, then all

writes to this variable in the main application must be protected.

3. If a variable is written in neither the application nor the main loop, then it can

be read in both safely (i.e. constants).

4. If a variable is only accessed in the main application or only in the interrupts,

but not both, then all accesses are safe (assuming only one interrupt can execute

at a time).

To protect variables against these data faults, the shared variables must be

marked as volatile, as well as disabling interrupts during the protected accesses.

On certain platforms some accesses are atomic (as in faults that can never occur on

certain platforms), but this is the exception. It is better to write portable code in

the general case instead of marginally faster, platform specific code. For instance, it

is a common misconception that an “int” or a “word” in C is a physical word9 in the

processor. This is not always the case. For instance, in AVR-GCC and AVR-LIBC,

which is the compiler and standard library respectively for AVR 8-bit microcontrollers,

it defaults to 16-bit ints and 16-bit words [77]. This means that “word” level access

in C is not necessarily atomic. No operation in C can be assumed as atomic, unless

written in assembly.10Even in cases where the physical word is the same size as the

C word, accesses are not necessarily atomic, and cannot be relied upon to protect

9A physical word is the width of a given register on the processor. It is important to know,
because that is usually the limit of operations that can possibly be atomic for a given processor.
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against faults. Worse yet, relying on a compiler to generate atomic accesses means

that the compiled results may change with compiler optimization level and even

compiler version.

It is better to have safe and portable applications than to have one optimized

specifically for one single platform, so we discourage any developer from going outside

of these rules. One counter-example to these rules are flag variables that are set once in

the interrupt handler: these may not cause a fault in certain cases. If the protections

around this variable are in place and no fault is possible, then around this one variable

some optimizations may not take place, but the program will still run predictably (if

not at maximum speed). If the protections around this variable are not in place and

a fault is possible then speed is achieved at the cost of correctness. These rules may

over-generalize the problems, but since undetected faults carry a high risk and are

often too nuanced for developers to reliably detect, we believe it is better to simply

focus on checking along these rules.

2.1.3 Interrupt Complexities

In our previous discussions, we have been referring to interrupts with the idea that

only one interrupt can occur at any time, and that it will not be interrupted by any

other interrupts. In reality there are several different conditions where interrupts

can fire inside of other interrupts. The simplest case of this is when one interrupt

is executing and another interrupt executes. This is called interrupt nesting. If

interrupts can preempt (or interrupt) each other, than another rule is required:

5. If interrupts can nest and an interrupt writes a variable and that variable is ac-

cessed in another interrupt, then all accesses to this variable must be protected.

10Using assembly language does not make data accesses atomic, but when using assembly the data
accesses are all explicitly made. This means that developers are aware of what is a single instruction
and therefore atomic.
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This rule means that any time one interrupt can preempt another interrupt the

reads and writes of any variables shared between them must be protected from each

other. This idea can be translated into an even more complicated system of interrupts

by looking at the rare case when an interrupt can preempt itself. An interrupt that

can self-nest is known as being reentrant. Reentrant interrupts are extremely rare in

production systems and are usually unintended [62]. An additional rule is needed to

support data fault protection in systems with reentrant interrupts. If interrupts can

be reentrant and an interrupt writes a variable, then all accesses in that interrupt

must be protected. Since reentrant interrupts are usually unintended, we will not

include this rule in our list of rules.

Another type of interrupt is one that cannot be disabled, and this is known

as a non-maskable interrupt (NMI). NMIs are often reset vectors and error vectors.

The problem with them is they cannot be disabled so normal precautions cannot

apply. If an application must have NMIs, then writing them in assembly langurage

with minimal shared variables is strongly suggested. NMIs can be artificially created

in software on platforms that have a priority interrupt controller. The application

could choose to only disable interrupts below a certain level, leaving higher interrupts

enabled so they can act as NMIs. These artificial NMIs suffer the same complexities

as traditional NMIs.

2.2 Stack Usage in Embedded Systems

A vast majority of embedded systems require a stack allocated in RAM. The stack

stores not only the return addresses of the currently executing function, but also any

local variables and temporary values which a function requires. On some architec-

tures, it also includes the previous stack frame on it.

Prior to explaining what goes into a stack, we must first understand some
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general architecture ideas. A stack pointer points to an address in RAM that is the

current working location of the stack. It can grow by either increasing or decreasing

the address, depending on hardware architecture. On some platforms stack operations

are controlled by the callee11, on others the stack operations are controlled by the

caller.12 These operations are responsible for cleaning up the stack after a function

is called. For the purposes of this discussion, we talk about this as the callee being

responsible for cleaning up after itself. One other important hardware idea is that

in all architectures there is a program counter. A program counter is a register that

contains the address of the next instruction. When a function is called, the program

counter is stored on the stack so that it can be restored when the function returns.

A stack frame is a subset of the stack that contains all of the local variables,

temporary values and return values of a given function. To help explain what is in a

stack frame, see the source code in Figure 1.

Figure 2 shows the stack frame of the calculate routine. The calculate

routine simply performs some calculations on the three arguments and returns the

results. There are four main parts to this stack frame. The first part of the stack

frame contains all of the arguments. These arguments are setup by the caller with

the proper value. The next part of the stack frame is the return address. The return

address is the address of the program counter that the function will branch to when

it ends. The stack must also store any registers which will be used by the function.

These registers may be used by the caller, so their values should be restored prior to

branching to the return address.

The final part of the stack frame are the local variables. Not all local variables

are defined by the developer; the compiler has the option to add temporary variables

needed for calculations. For example, the compiler may translate the source code

for calculate into something like Listing 14. This shows how the compiler may

11A callee is a function that is called by another function.
12A caller is the function who called the other function.
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1 void calculate(int x, int y, int z){
2 int area;
3 area = x * y * z + y / z;
4 return area;
5 }

Figure 1: Source code of a function named
calculate doing arithmetic.

Figure 2: Stack frame of the function
calculate

need to create a temporary variable, temp1, to hold a value. Some processors can

perform a single math operation per instruction. That means if a single line of

source code requires multiple calculations to implement it, then it will require multiple

instructions and possibly temporary values to implement in machine language. Other

processors require many instructions to perform a single calculation. For instance, an

8-bit processor performing a 16x1613 multiplication requires many more instructions

than it would for an addition. Between these sets of instructions, temporary values

are usually required. Often times registers are used for this purpose, but other times

there are more values than the registers can hold.

1 void calculate(int x, int y, int z){
2 int area;

13The notation 16x16 signifies that both of the multiplicands are 16-bit numbers.
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3 int temp1;
4 temp1 = y / z;
5 area = x * y;
6 area = area * z;
7 area = area + temp1;
8 return area;
9 }

Listing 14: A possible implementation of the function calculate that a compiler
might choose.

The examples from Figures 1, 2 and Listing 14 show possible stack frames,

but it is important to realize that the stack frames will change depending upon

architecture and compiler options. For example, different processors have different

hardware capabilities. This includes not only the size and number of registers, but

also the ability of the platform to perform C statements. This stems from the fact that

in most architectures, a single line, or statement, in C code takes multiple instructions

to execute. The interim values in these instructions cannot always fit inside of the

registers, so more temporary variables must be allocated.

Compilers can change the amount of stack space they use per function. For

instance, a compiler may optimize out a temporary variable in one version and not

in a different version of the same compiler. Sometimes compilers will use more or

less stack space if optimizations are turned on. For instance, a compiler may create

a temporary variable to hold some interim calculation which will then speed up the

execution of the program, since it does not need to recalculate that interim value

multiple times.

1 int one(){
2 //Start operation
3 two();
4 //Other operations
5 return result;
6 }
7 void two(){
8 //two.s operations
9 three();

10 }
11 void three(){
12 }

Listing 15: Example code of three functions calling each other.

Since each function needs a stack to execute, when they call other functions,
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that pushes the stack out deeper. For instance, Listing 15 contains three functions.

Function one calls function two and function two calls function three. When

only function one is running, the call stack looks like Figure 3(a). When functions

two and three are running the call stacks can be viewed in Figures 3(b) and 3(c)

respectively. Notice when function two is executing, the stack frame for function

one must be stored in a separate location. When function three is executing, the

stack frames for both functions one and two must also be stored. This means that

the average stack usage is not important. The only stack usage we must be concerned

about is the maximum, or worst case, stack usage.

(a) View of stack
when program just
started.

(b) View of stack af-
ter first function invo-
cation.

(c) View of the deep-
est call depth.

Figure 3: Stack frames of a single program in multiple states.

Compilers can also manipulate the call stack, but it is generally done to improve

execution performance. One such technique is called function inlining. Function

inlining is the act of replacing a function call with the body of the function to be
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called. This can improve performance and can remove the need to actually create

another stack frame. Depending on the function, it may still require additional stack

space (i.e. for temporary values). This stack space is then allocated by manipulating

the stack pointer.

Besides calling other functions, functions may also manipulate the stack them-

selves for a variety of reasons. One reason a function might manipulate the stack is to

allocate a user selectable amount of memory. Typically, applications require dynamic

amounts of memory for a variety of reasons. Memory is usually allocated outside

of the stack using a function called malloc14 and then freed via a function called

free. Instead of these normal memory allocation techniques, it is possible to allocate

memory from the stack by using a function called alloca. Alloca15 operates by

pushing the stack out further, allowing the user to use this space. The memory is

freed automatically when the function returns. In general, calls to alloca can be

dangerous and should be used with caution. In an embedded system, calls to alloca

should be avoided since it removes any bounding on the stack size.

Another reason that a function might directly manipulate the stack is because

it has a variable number of arguments, or that it is calling a function with a variable

number of arguments. The last reason a function may manipulate the stack is done

in multithreading libraries. To achieve multithreading, direct manipulations must be

done to swap stacks. Swapping stacks is done to switch from executing one thread,

which has its own stack, to a different thread, which has a different stack. These

manipulations must be done in assembly, since there is no way to swap stacks directly

in C.

Compilers generally do not provide any output on the stack frame requirements

for each function. Even if they did, they still do not provide a call graph. A call graph

14Malloc and free are part of the standard library that is used to allocate and free dynamic
memory outside of the stack [25]. These are a part of the standard library in C.

15Alloca allocates dynamic memory from the stack [23]. It is freed automatically when the
calling function returns.
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Figure 4: A simple call graph.

is a graph with a node for each function, and a directional edge from each caller to

a callee. An example of a call graph that corresponds to Listing 15 can be found in

Figure 4. Since neither the stack frame nor the call graph are provided by compilers,

the stack requirements for a given program are not known.

Stack usage is complicated by interrupts. Since interrupts can begin executing

at any time, they push the stack out further. If the interrupts nest then the stack

gets pushed further still. This means that the interrupt call graph and stack frames

must also be considered when allocating the stack [63]. Stack requirements are both

a function of the interrupts themselves and any functions they call. They also change

based upon the enabling or disabling of interrupts throughout a given program [63].

Multithreaded systems have a much larger stack problem than event-driven

systems. In event-driven systems, all events share a single stack. In a multithreaded

system, each thread must allocate its own stack. This means that the call graphs

must be taken into account for each thread individually. To help explain the impact

of a separate stack, we will first explain how multithreading is implemented.

Multithreading is implemented, at its core, by using a yield routine. A yield

routine is also known as a stack swapping routine. This routine typically pushes

all of the registers onto the stack (along with the program counter) and then swaps

stacks. This allows one thread to call this yield routine, and have another thread start

executing. After swapping stacks, it pops all of the registers and the program counter

off of the stack, resuming the context and continuing executing where it was before.

This is done through a yield function [50] as shown in psuedocode in Listing 16.

Since the routine only does stack operations, it is safe to call from multiple threads



30

simultaneously. The scheduler only needs to setup the last stack and new stack

variables to manage the accesses to the rest of the system.

In a multithreaded system, a scheduler controls the order of execution of

threads. A scheduler is a piece of software that decides which thread should run

next. It performs this by running immediately prior to any stack swapping opera-

tions. This examples is ignoring the details of scheduling because it is not important

to this research.

After the yield routine runs, the previously running thread has its entire

context pushed onto the stack so it contains a full context. Then the top of the stack

is stored into the variable last stack. Since the rest of the context is already

pushed onto the stack, only the pointer to the top of the stack needs to be stored.

After the stacks are swapped, the stack pointer now points to a different context

(another thread that called yield some time earlier). The registers are then popped

off of the stack in the opposite order; restoring the values. The previous values

(which were restored) are from a time previously when this thread called yield.

The program counter is already pushed onto the stack when the yield function is

called, so it does not need to be pushed on separately. Once the yield function

returns (popping the program counter from the stack), and the new program counter

is in place, the next thread context is fully restored and it continues to execute where

it left off.

1 yield(){
2 //Here the scheduler runs if needed
3 push General_Purpose_Registers
4 push Status_and_Special_Registers
5 last_stack = stack_pointer_register
6 stack_pointer_register = new_stack
7 pop Status_and_Special_Registers
8 pop General_Purpose_Registers
9 }

Listing 16: Pseudocode for Context Switching

Figure 7 contains details of the stack swapping operations between two threads

named foo and bar. These Figures show the processor registers and both stacks as
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a stack swapping operation occurs between the two threads. Thread foo is currently

running and thread bar is ready to run. Figure 5(a) shows the system prior to

running yield. Figures 5(b), 5(c), 6(a), 6(b), 6(c) and 7(a) show the swapping

operations in detail. Finally, Figure 7(b) shows the thread bar executing after the

stack swapping is complete.

The routine yield implies cooperative threading. To add preemption, a separate

interrupt can be set up to force an execution of the yield routine. Interrupts preempt

the main application’s execution and threads are part of the main application. So

interrupts will preempt any threads that do not have interrupts disabled, and if one

of the interrupts calls yield, it will force a context switch16 to a different thread.

In a single threaded or event-driven system the stack is often allocated so that

it will have the remainder of free RAM. If the stack grows too much it causes a stack

overflow. A stack overflow is when the stack continues to grow to the point where it

begins to overwrite other memory. In embedded systems, RAM is typically limited,

so stack space is in competition for the limited RAM with the application itself. Stack

overflows are actually common in embedded systems. Labrosse said that “whenever

someone mentions that their application behaves strangely, insufficient stack size is

the first thing that comes to mind” [43]. Lamie also talks about stack overflows:

“The results are very unpredictable, but most often include an unnatural change in

the program counter” [21].

Since stack overflows can create such havoc in an embedded system there are

some things in place on PCs to help prevent them already. The best way to detect and

handle a stack overflow is in hardware with a memory management unit (MMU) [58].

An MMU can detect when the stack usage requests a new page, and can therefore

know exactly when the stack is running out of space. Since most embedded systems

16In a multithreaded system, a context switch is exactly the same as a stack swap. A stack, when
it is not currently executing, is referred to as a context. This is because all of the current registers
and other portions of running logic are pushed onto the stack prior to swapping.
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(a) Running foo not yet entered yield

(b) Inside of foo entered yield

(c) foo’s general purpose registers have been pushed onto the stack.

Figure 5: Stack swapping operations of the yield between threads foo and bar.(page
1 of 3)
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(a) foo’s status registers have been pushed onto the stack.

(b) Stack pointer now points to bar.

(c) bar’s status registers have been popped from the stack.

Figure 6: Stack swapping operations of the yield between threads foo and bar.(page
2 of 3)
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(a) bar’s general purpose registers have been popped from the stack.

(b) yield has returned into the function named bar. Now bar can continue executing.

Figure 7: Stack swapping operations of the yield between threads foo and bar.(page
3 of 3)
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do not have an MMU, a different approach must be taken.
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2.2.1 Stack Sizing

There are several different approaches for determining the stack size. The first ap-

proach is to make an educated guess based upon the source code of the program. The

second approach is to measure the current stack size used in a single execution. The

third approach is to measure the maximum stack depth used in a single execution.

The final approach is to statically analyze the program to determine the maximum

theoretical stack consumption of every possible execution.

To make an educated guess a developer should determine the call graph and

guess at the results. This means that a developer must have an extremely in-depth

understanding of not only how many local variables they used along with the call

graph, but also how much stack space the temporary values the compiler will use.

If any libraries are used, their stack requirements should be understood too. This is

not practically possible, but Labrosse notes that a margin of 1.5 - 2x any estimates

should be used to ensure stack safety [43]. In more general terms, Ganssle describes

“the standard, scientific way to compute the proper size for a stack: Pick a size at

random and hope” [41].

This issue with stack usage is that interrupts create non-determinism in the

execution of the program. Interrupts are not guaranteed to execute at specific times;

They execute based upon external stimuli which leads to non-repeating program

executions. This non-deterministic execution leads to a non-deterministic stack con-

sumption.

An approach better than an educated guess is to measure the actual stack

usage at a given time. There are two methods to reading out the stack usage. The

first method includes instrumenting the source code with checks to read out the stack

pointer at known times (i.e. at interrupt handlers or on context changes) [64]. The

second method is by running a debugger and setting break points throughout the

source code and inspecting the stack pointer when the debugger hits those break
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points. The problem with either of these approaches is that we are only looking at

the stack usage at specific times, not at the maximum stack usage of this run.

If a debugger is already going to be used, then getting the maximum stack usage

of a single execution is not too difficult. First initialize the stack to some known value.

Then run the program for some extended amount of time (or through some set of

inputs, etc.) and then look at the stack space itself. One can inspect which values

of the stack have not changed, and that is the stack space which went unused [22,

41, 43, 64]. Some integrated development environments (IDE) take advantage of this

technique and automate this method for the developer [55]. This method still cannot

take into account all of the possible execution paths of an embedded system. For

instance, an error condition may be extremely rare (and not come up in testing),

but will require 100 bytes more stack space than the maximum seen in testing. This

would lead to a stack overflow only during the rare conditions, which could occur in

a production system.

The final approach to sizing stacks is to use software to statically analyze

the program to determine the required stack space. This approach was developed

by Regehr et al. [63]. In our previous work on building TinyThread, we used their

technique to calculate the required stack size for threads in TinyOS [50]. There are

really two separate techniques which can be used. The first technique is to assume

that the interrupts cannot become reentrant and that all the interrupts can preempt

each other. This means a simple sum of all of the interrupts stack requirements

gives the total interrupt stack requirements. This added to the stack requirements

of the main application would give the required stack [12, 22]. The second technique

requires checking to see when interrupts are enabled and disabled and evaluating the

maximum required stack space [63]. This technique gives a smaller, more accurate

stack requirement, but it requires specific knowledge of the interrupt preemption

setup of a given embedded system to be correct. If these assumptions are not correct,
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than the stack sizing will create sizes too small and stacks can overflow.

Statically analyzing a program to get the stack size is more difficult than many

tools would leave you to believe. The first issue is recursion. Unless the recursion is

bounded, the stack cannot be analyzed. Yang et al. mention that microcontrollers

make limited use of recursion, so this is not a problem [78]. Recursion is detected

by both of these tools and the user is notified accordingly (this includes indirect

recursion) [63, 50]. The second issue is manual stack manipulation by functions. This

is usually done through alloca or through an array sized by an argument — these

would manipulate the stack in a dynamic fashion which cannot be statically analyzed

unless looking backwards at all of the routines which called said function. Manual

stack manipulation is extremely rare in any systems, and even more rare in embedded

systems so this issue is not a problem.

1 void A(){
2 B();
3 C(1);
4 }
5 void B(){
6 C(0);
7 }
8 void C(int x){
9 if(x){

10 D();
11 }else{
12 //do nothing
13 }
14 }
15 void D(){
16 }

Listing 17: Source code showing how a call graph can lead to stack overestimation.

Static analysis can have limitations, such as naively looking at the worst case

condition for every function. Listing 17 shows an example application where the worst

case stack frame appears to be:

StackframeA + StackframeB + StackframeC + StackframeD

This can be from the stack analyzer being overzealous because when C is called from
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Figure 8: A call graph of an application missing the indirect calls.

B it does not push the stack frame out for D. So the worst case stack frame may

actually be:

Maximum(StackframeA + StackframeB + StackframeC ,

StackframeA + StackframeC + StackframeD)

This means that the worst case stack frame of C does not occur when it is

called from inside of B.17

Another common problem of static analysis is the use of indirect functions.18

It is generally possible to instrument these programs to detect the posting of tasks

by a real-time operating system (RTOS), but it must be specifically written to sup-

port whatever idioms the compiler uses to implement the attaching of tasks to the

RTOS [63, 50]. The problem with this approach is that each operating system may

have a different method of attaching tasks to their program, this means that the

compilers may end up using different idioms.

17This conditional stack consumption is very common in nesC code since it generates dispatch
tables for event handlers when a parameterized interface is used.

18Indirect function calling is when an application stores a functions address in a variable, and then
indirectly calls whatever function is stored in that variable.
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Figure 9: A call graph with links added to the indirect calls by adding links from
indirect calls to any uncalled functions.

One solution to the function pointer problem is to make a list of uncalled

functions inside of the stack analyzer, and then assume that all of the functions can

be called from all of the function pointer locations throughout the program. Figure 8

shows a call graph of a given program that uses indirect calls, but those calls are

missing from the call graph. This approach is used to add the missing links as shown

in Figure 9. This approach might be slightly overzealous in the sizing of stacks, but

it will not under size the stacks with one small exception. If a function is called both

by function pointer and directly by the application, then the stack analysis can fail

to recognize a possible growth in the stack size. One possible true call graph with all

indirect links shown in Figure 10 could possibly lead to errors since the indirect call

may have deeper stack requirements then initially assumed.
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Figure 10: A call graph with all links correctly added. Notice the indirection calls a
function which is also called directly elsewhere in the program.

2.3 Multithreading

Multithreading is the idea of running multiple threads of execution at the same time

whom all share memory. Multithreading is generally classified as cooperative and

preemptive. Cooperative threads run until the given thread decides to yield, either

implicitly because it makes a blocking call,19 or explicitly through a yield. In

preemptive multithreading, the above is true and it is extended by an upper bound

on time. If a preemptive thread does not yield within some time frame, it is preempted

and taken off of the currently executing stack.

Multithreading allows programmers abstractions to share the processor doing

seemingly multiple activities concurrently, but it does so with risk. As with interrupts,

shared variables between threads can create faults. If a variable is shared between

cooperative threads only temporal faults are possible. This risk can be mitigated by

marking the variables as volatile, which will force writes prior to the processor

yielding [39].

19Blocking calls are calls to functions which typically starts an operation and puts the thread to
sleep until that operation completes.
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When using preemptive multithreading, both temporal and multi-word faults

can occur. Since preemption is typically not disabled by a thread (thereby defeating

the purpose of preemption), protection of shared resources is typically done using a

mutex lock of some kind. Mutexes are locks which allow only a single thread to hold

at a time. If a second thread attempts to lock a mutex, it will block until the first

thread releases it. This allows accesses to a shared resource to be controlled by the

mutex.

Even in the face of these complexities in sharing variables and resources, pre-

emptive threading is the standard threading technique in both the PC and embedded

multithreading systems. The reason preemptive multithreading is popular on PCs is

because a single misbehaving thread is less likely to take down the entire system. Em-

bedded systems follow suit for the same reasons, but we believe this is also because

of the momentum of the PC development community. Preemptive multithreading

creates the most benefits for a trade off [66]. Since hardware is ever-improving these

trade-offs make more sense over time.

2.4 Compilers

Compilers are applications that take in source code and convert it into machine

code20 [6]. Compilers are fairly complicated with many books written on the subject.

They must parse the source code files and build up an abstract syntax tree (AST).21

An AST contains the source code elements in a tree data structure so that it is easier

for the machine to reason with it. It contains all of the usable information of the

source code, but it is missing portions not important to generating machine code (i.e.

comments, whitespace, etc.). This AST is then converted into an object code.

If there are multiple files of source code, then each file is compiled individually.

20This is specific to C compilers. There are many other types of compilers that output byte code
or similar things. Since our focus is on the C language, we will ignore these details.

21Abstract syntax trees are also called Parse Trees in other literatures [6].
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This generates an object file full of object code (often having the “.o” file extension).

These objects are then linked by a tool called a linker [6]. The linker merges multiple

object files and fills out the missing information for any references between the object

files. Library files can also be passed to the linker, to include references to any routines

used by the other object files. Figure 11 shows a flowchart of a typical compilation

process.

Figure 11: This flowchart shows how files get compiled when using normal compilers.

2.4.1 Whole-Program Compilers

Whole-program compilers are compilers that merge all of the files together in the

source code, or the AST stage [54]. This is shown in Figure 12. Whole-program

enable different types of analysis and optimizations to be performed on programs.

Since the files are all compiled together, there is no way for incremental compilation

to be used; If a single file changes, then all files must be recompiled. This is in

contrast to the normal compilation process, where only the changed file needs to be

recompiled since the rest of the files are in object format already.

Another problem with whole-program compilers is interaction with libraries.

To have a true whole-program compilation, the source code of the libraries are re-
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Figure 12: This flowchart shows how files get compiled when using whole-program
compilers.

quired. In some cases library source code is not required, but then it is only a

whole-application compilation, not a whole-program compilation. In this research

we focus on whole-program compilations, although some of the work would translate

naturally into whole-application compilations.

2.5 Summary

In this chapter, we reviewed the use of interrupts and their interactions in embedded

systems. We reviewed the complexities associated with determining stack size. We

also reviewed three types of faults: stack overflows, temporal data faults and multi-

word data faults. The latter two can occur when any data is shared between the

interrupts and the main applications. They can also occur between any two preemp-

tive threads. We also explained how to protect against these faults using interrupt

disabling and mutexes for interrupt and thread sharing respectively.



CHAPTER III

Related Work

The related research can be broken into two major groups — compiler frameworks

and multithreading systems. The compilers related work found in Section 3.1 will

situate the context for C-XML-C. The context for UnStacked C and UnStacked

C with LP will be setup by Section 3.2. Prior to getting into the multithreading

systems, we will first talk about compilers.

3.1 Compilers

There are several different efforts to produce transforming compilers. These can be

broken into two main categories. The first category includes source code processors

that are used to obtain information or facts from the source code. These are used for

analysis, and are not used for code regeneration. The second category includes source

code processors that manipulate and transform the program in source code form.

Low Level Virtual Machine (LLVM) falls somewhere in between the two cate-

gories [46]. It is used to compile languages into a Low Level Virtual Machine, during

which it can manipulate and analyze the program. This can perform some of the

45
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same operations as C-XML-C, but it only outputs LLVM code. There is a C backend,

which can output C code instead of LLVM bytecode, but there are many limitations.

This does not lead to a good method of manipulating a program in situ. Instead

many optimizations are lost that the compiler may have performed, since the source

code is first translated into a translation unit prior to modification.

Another example of similar projects that can fall in both categories is the GCC

Plugins Project [24]. This is an add-on for the popular GNU Compiler Collection

(GCC) that allows developers to add run-time plugins to GCC. This sounds like an

ideal scenario, with the exception that it does not document an API, nor does it have

any intention to maintain API stability of any kind. In fact, many GCC developers

talk about this as a feature to dissuade commercial interests from writing plugins [59].

There are several projects which only analyze the source code. TUanalyzer is

a source code analyzer for checking C++ templates [31]. It uses a GCC feature to

dump its Translation Unit (TU) which includes much of the Abstract Syntax Tree

(AST). It uses the output of this to analyze templated source code.

Another pair of similar projects are CPPX [17] and XOgastan [2]. CPPX

translates C/C++ source code into Graphical eXchange Language(GXL). GXL is an

XML format for storing graphical information [37]. XOgastan similarly translates

the AST into XML. It uses GCC to dump the TU and then converts that into XML.

Both of these are useful for extracting information for source code analysis, but neither

contains enough information to regenerate the source code.

Another source code to XML translator is the GCC-XML project. It has no

built-in support for function bodies, so it only outputs type information and function

declarations. In our first attempt at building C-XML-C we added support for function

bodies but it still does not have enough information to regenerate the source code.

One source to source translation framework is called Stratego [73]. Stratego

is not only a translation framework, but also a language for performing said transla-
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tions. It is interesting because it is not limited to the C language. Instead, Stratego

transformations can be performed on multiple programming languages. It limits de-

velopers because the new transforms must be written in the language Stratego and

they must understand Stratego’s AST of the application to modify it.

One source to source translating framework that can regenerate the source

code is called CIL [54]. CIL allows developers to create AST translations on actual

C source code. It is written in OCaml and requires developers to use OCaml to write

transformations. It also requires developers to regenerate AST components for any

new code they want to inject. So in essence it requires developers to understand the

AST, and to be able to generate said AST to be able to translate it.

Meister et al. have extended CIL to support the generation of the AST in

eXternal Data Representation (XDR) and eXtensible Markup Language (XML) [51].

Their work is comparing the processing of source code translated into XDR and XML

formats. They show that source code in XDR is roughly 10 times smaller than source

code in XML format. They also show how it is significantly faster to parse XDR

than it is to parse XML. We based our C-XML-C on their XML generator, but we

decided not to use XDR for translating the source code. We used XML since it has

ubiquitous support across programming languages and it is human readable. Neither

of these are the case for XDR. We sacrifice compile time efficiency for ease of use and

flexibility.

Yang et al. have developed a way to remove the call stack and save RAM [78].

Their approach is to inline all of the functions. Normal inlining replaces the call to a

function with the entire function body. Instead of inlining the functions they call their

operation lifting. First they copy the function into the caller. Then every additional

call, they use goto statements to enter and return from this function body. Their

inliner only copies a given function once, and then uses branch statements to execute

it from different locations. The general idea is that all functions can be lifted into the
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main function, so that the compiler can perform intrafunction optimizations, which

it performs better than interfunction optimizations. Then it lifts local variables from

the stack into the global memory. It operates on single threaded programs.

Yang et al. implement this in CIL as a source to source translation, similarly to

UnStacked C. It reduces stack consumption by a single threaded application, where

UnStacked C reduces stack consumption by threads in a multithreaded application.

Besides these similarities the transformation itself is orthogonal to UnStacked C,

since it only transforms a single thread down to a smaller stack size. In a multi-

threaded system it is functionally an aggressive inliner, and assumes that each func-

tion is only executed from the main routine — so it would fail to inline anything that

is used from multiple threads.

3.2 Multithreading

A number of articles have been published in the area of concurrent programming [26,

74, 75, 27, 10], and in particular, focused on the debate between event-driven and

multithreaded programming [76, 1, 45]. In this section, we will review some of the

salient pieces of work as they relate to the ideas we present in this dissertation.

Adya et al. [1] discuss the essential differences between event-driven program-

ming and multithreaded programming. They clarify the distinction in terms of how

tasks are managed and how the stack is managed. Event-driven programming in-

volves cooperative task management and manual stack management, while typical

(preemptive) multithreaded programming involves preemptive task management and

automatic stack management. They present a system of cooperatively scheduling

tasks (fibers in Windows), while managing the stack automatically. Adya also de-

fines stack ripping the act that developers must go through when writing procedural

programs in event-driven system. Instead of using a stack to manage the execution
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of these procedural operations, they must manually rip the stack into global state

variables.

3.2.1 PC Centric Multithreading

Capriccio [74, 75] is a system for servers that completely eschews the event-driven

paradigm, and instead adopts the position that support for multithreaded program-

ming can be more efficient. To efficiently manage the space allocated for thread stacks,

this system uses a special method called linked stacks. The linked stacks are based

on the observation that in the common case, most threads only use a small portion

of the stacks allocated at any given time. The stacks are managed such that they

can dynamically grow and shrink depending on runtime needs of individual threads.

Capriccio is scalable to 100,000 threads in an application.

The staged event-driven architecture (SEDA) [76] takes an opposing view in

that threads are hidden from applications. Instead, services are decomposed into

stages, each of which contains a thread pool. Stages are non-blocking and are event-

driven. Control transfer from one stage to another is managed using a queue, which

serves as an execution boundary. The stages are designed to be self-contained modules

with little data sharing across stages. This makes reasoning about SEDA behavior

simple. Programmers do have to deal with learning to program in the event-driven

paradigm.

Tame [45] is a system that enables programmers to write event-based programs

in C++ without having to worry about stack ripping. The Tame system provides a set

of primitives in libraries that allows programs to be written as though they were using

threads. As such, this work is quite similar to ours in that the Tame primitives result

in code that looks similar to UnStacked C code. The Tame primitives translate

what look like blocking method calls to simple event-driven continuations. The big

difference between Tame and UnStacked C is that our system does not require the
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programmer to use new syntax and new idioms: existing multithreaded C code can

simply be recompiled into UnStacked C.

Stackless Python [71] is a modified version of Python which does not store any

state information on the C stack. Stackless Python adds a type of microthread which

are usually stackless and scheduled cooperatively in terms of a C stack. Newer versions

of stackless python adds some additional functionalities to support preemption and

using the C stack only when necessary.

3.2.2 Small Embedded Systems

TinyOS [35] is a popular operating system for networked embedded sytems. Programs

for TinyOS are written using nesC [29], a dialect of C that provides a component-

oriented veneer suited for building sensor network applications. TinyOS is purely

event-driven, and explicitly eschews multithreading. All operations that would nor-

mally block, such as messaging, sensing, etc., are implemented as split-phase opera-

tions following a classical event-driven paradigm. As a result, all TinyOS program-

mers have to deal with stack ripping.

Several systems have been proposed that challenge the TinyOS position on

events vs. threads for building embedded system applications. Protothreads [20] are

a way of programming embedded systems running the Contiki operating system [19]

using a limited form of stackless threads. They are limited in that Protothreads do

not support automatic local variables, and state shared across multiple threads must

be stored globally. In spite of this disadvantage, the big advantage of Protothreads

over other threading solutions for embedded systems is its extremely small memory

footprint. Protothreads are implemented in headers via the C preprocessor. In its

output, UnStacked C uses a similar technique as that used by Protothreads.

Our previous work is TinyThread [50], a full-functional threading API for

TinyOS that enables programmers to write cooperatively-threaded programs. This
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library is much more heavyweight than protothreads since each thread requires its

own stack. Stacks in TinyThread are automatically managed, which means that

programs can use local variables, and high-level synchronization constructs across

threads. Although the thread library is accompanied by a tool that provides tight

estimates of actual stack usage, the memory requirement places a severe limitation

on the number of threads that can be accommodated on typical sensor hardware. We

have implemented a modified version of TinyThread that significantly reduces the

memory overhead while retaining its flexibility found in Chatper 5.

TOSThreads [44] extends TinyThread with a new API and preemption. It adds

runtime loading of threaded applications, but it breaks TinyOS safety in that TinyOS

event-driven commands can be potentially be preempted if they are called from a

thread. It uses message passing to provide a layer of isolation between multithreaded

code and event-driven code, but this is not enforced by the compiler, so faults can

(and do) occur. This message passing excessively uses function pointers, which breaks

stack analysis. So the automatic stack sizing from TinyThread no longer works. That

being said, it is now the default threading platform in TinyOS. In Chapter 6 we fix

its problems using UnStacked C with LP.

Y-Threads [56] is a lightweight threading system which attempts to break each

thread into two separate stacks. The first stack is the blocking portion of the thread,

and the second part is the non-blocking or shared version of the stack. Since the

shared portion of the program does not block, no shared stack storage is required.

This inspired the blocking attribute in UnStacked C found in Chapter 6. In contrast

with UnStacked C, Programmers must select which portions of the program are

blocking (and therefore require stackspace).

Shared-stack cooperative threads [32] are particularly close in spirit to UnStacked

C. Shared-stack threads operate exactly like regular cooperative threads, except all

threads execute on the same system stack. When a thread blocks, it pushes all the
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registers onto the stack, then copies that stack to elsewhere. To resume a thread,

its stack gets copied back into the system stack, then the registers get popped and

execution continues. This means that any pointers to automatic variables will not

be valid unless a thread is running. UnStacked C functions in a similar fashion in

terms of only storing the blocking portion of the continuation, but without the need

to copy the stack and without the explicit register operations.

TinyVT [65] is a TinyOS extension that includes a cooperative thread to event

compiler. TinyVT is designed to allow users to write their TinyOS event-driven code,

in a procedural fashion. It enables users to write a single function with multiple wait

statements and have it be transformed into multiple events. Similar to Protothreads,

this does not enable building of functional primitives nor hiding the event-driven

system, but it does allow procedural programming.

Some preliminary research has been done by Bernauer et al. to convert threads

into events [9, 8]. Their work is based upon the idea that cooperative threads can be

translated into events. They [8] translated, by hand, some cooperative threads into

event-driven code. In their more recent work [9], they explain more details of their

translation by hand. They talk about how they plan to make a tool like TinyVT,

except it can work off of C code instead of nesC. This is similar to UnStacked C,

in that they are building up nested structures mirroring call graphs. It differs in that

they are forcing all of the once local variables to be global variables, and making only

a single instance of each thread possible. This means that dynamic threads will not

be possible, nor will multiple instances of the same thread. As of this publication,

it is only a concept with no automatic transformation produced. Also similarly to

TinyVT they are forcing developers to implement an event-driven set of routines

for each blocking routine. Also they only have the capability of making cooperative

threads, since they lack Lazy Preemption.

t-kernel [33] is another operating system for wireless sensor networks. It pro-
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vides virtual memory and preemptive scheduling on a microcontroller. It accomlishes

this through a binary translation, which replaces all of the branch operations and

many memory accesses with calls into the kernel – so it can validate operations prior

to executing. This allows t-kernel to move pages of memory in and out of flash as

needed. It also allows t-kernel to detect pointer errors, invalid instructions and bad

array indexes.

Based on those features alone, t-kernel appears to solve many problems, but

it does so at a cost. First off it shares the stack between the application and the

kernel itself, meaning that multiple threads are not possible. Applications must be

specifically written for t-kernel, and they will take significantly (roughly 2-2.5 times)

longer to execute. The preemption they speak of is a timer they use to detect a

failed application. This will then preempt the current application (forcing an exit)

and letting the kernel execute. This is accomplished through all of the kernel calls

inserted throughout the application. This is similar to the implementation of Lazy

Preemption where we insert tests for preemption inside of loops at the source level.

t-kernel performs a much more in-depth modification, and performs its modification

on the binary.

3.2.3 Multi-Thread Scheduling in Real-Time Systems

There are two main categories of multithread schedulers, namely cooperative and pre-

emptive scheduling. To simplify the multithread scheduling landscape we will start

by only addressing fixed priority scheduling. Fixed priority schedulers are multi-

thread schedulers in which the priority of a given thread is constant for the life of the

thread [49]. A scheduler is said to be preemptive if a thread of a can be preempted

or task switched with a different thread. So the main body of research describes this

type of scheduler to be a Fixed Priority Preemptive Scheduling (FPPS) [49].

FPPS, or preemption in general, can create a series of problems. Lee et al.
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have shown that preemption creates unpredictable temporal variations when used in

systems with cache [48]. There has been significant research upon the impact on

cache systems [60, 61]. Mutual exclusion is not guaranteed, so additional protections

must be added [79]. It can also create problems with timing, since the execution can

be interrupted.

On the opposite side of the fixed priority scheduling spectrum, we have Fixed

Priority Non-preemptive Scheduling (FPNS) [47]. FPNS runs each task to comple-

tion. One such example is TinyOS [35]. Since only one FPNS task can be executing

at a time, one stack can be shared. This naturally gives each task exclusive access

to all resources, but there is no way to allow a task to yield to any other tasks. This

reduces schedulability [79]. Schedulability is the ability to schedule tasks according

to meeting deadlines.

In between these two extremes there is a middle ground, namely Fixed Priority

Deferred Preemption Scheduling (FPDS). Burn et al. proposed FPDS as threads that

will execute exclusively until they “voluntarily suspend” [14]. Burn goes on to call

this cooperative threading, since instead of forcibly preempting a thread it relies on

the thread to yield on its own [13].

FPDS has been researched at length and it treats each thread as a group of

multiple non-preemptive subjobs [11]. Each of these jobs executes until completion,

then it yields to the scheduler. Holenderski et al. recognized that “FPDS is a gener-

alization of FPPS and FPNS, where FPPS can be modeled by FPDS with arbitrarily

short subjobs ... and FPNS by FPDS with tasks consisting of a single subjob” [36].

One important component of FPDS is that the programmer of each task (or thread)

must manually add in these ”preemption points”.

FPDS, or cooperative threading as we refer to it, requires developers to insert

these preemption points to control the granularity. Klues et al. showed how much

cooperative threading can slow down an application [44]. They inserted yield points
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throughout a compression routine, and found if a yield is called every iteration of

every loop, the computation takes 213% longer. They then tuned it by having it

yield every n iterations, and could find a good point. They argue that the need to

tune each task to each platform unneccesarily burdens the programmer.

This problem has been solved by Holenderski et al. [36]. They offer FPDS

with optional preemption points. These are implemented by checking a flag, and if

it is set, then yield. These allow developers to manually mark each iteration of a

loop with an optional preemption point. This gains the schedulability of preemptive

threads without the risks. Bergsma et al. implements this work in the real-time Linux

kernel [7].

These optional preemption points are the core of Lazy Preemption. Instead of

putting the onus on the programmer to insert these optional points, we perform these

at the compiler level inside of a source to source translation.



CHAPTER IV

C-XML-C

Compilers are known for their complexity. The theory and steps needed to compile

software is typically taught to Computer Science undergraduate students, but few

write any modifications or improvements to compilers. Some might attribute this to

a lack of education or understanding, but we attribute this to a lack of a framework

to develop and modify compilers.

Take for example text editors made for software development. Several editors

exist with syntax highlighting and source checking capabilities. Many include plugin

frameworks and other extension capabilities [70]. The ideas of extensibility allows

new ideas to be evaluated without having to understand and reproduce much of the

existing codebase. Many times, when extensions have become popular enough, the

text editor adds the functionality from the extensions [57]. That process allows text

editors to rapidly evolve new features and capabilities without any risk.

The evolution of text editors is in stark contrast to how slowly compilers

change. Compilers and their respective programming languages evolve slowly, or

at least, only in large steps. The evolutions in programming languages can be seen

when an entirely new language develops. One of the reasons this is common is that

56
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it takes so much work to implement a compiler, making one small change does not

justify the time.

This work focuses on the C language, since it is prevalent in many different

systems and has a complex standard which defines it. We present a complete frame-

work to add modifications to the C language, without forcing developers to learn a

specific language and without having to learn an API. We do this by providing a

compiler that translates C source code into XML and then back into C source code.

This allows developers to run the compiler, manipulate the resulting XML and then

produce modified source code on the output.

4.1 Implementation

C-XML-C contains three main components, a compile manager which controls the

order and execution of all other components, a parser which translates the code into

XML and a generator which translates the XML back into source code. The compile

manager controls the compilation process and accepts gcc style arguments, allowing

it to replace gcc in existing makefiles. The parser is CIL patched so it outputs the file

data to an XML file [51]. We also applied merged patches from Cooprider et al. that

adds supports for TinyOS and embedded systems in general [16]. The generator is

written in Python and performs the XML to C translation. It is called by the compile

manager after any required transforms are complete.

4.1.1 Compile Manager

The compile manager uses CIL to merge all the files into a single file for transformation

and then compilation. It is flexible enough to allow multiple transformations to

be strung together in any order. It ties the other components together through a

configuration file. This configuration file controls the compilation process.
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1 [Pass1]
2 command = stackswap.py functionlist.txt %1 %2
3 debug = True
4 [Pass2]
5 command = threadsafe.py functionlist.txt %1 %2
6 clean = True
7

8 [Output]
9 #Command in the output is the compiler to be used

10 command = gcc -O3 -fomit-frame-pointer
11 #platform is the c-xml to be used (i.e. native, avr or msp430)
12 platform = native
13 #cxmlc is an optional argument to the base path to cxmlc
14 path = ../../

Listing 18: Config.ini: An example configuration file for the Compile Manager

The configuration files offer flexibility in the compilation process. They are

INI files which can contain not only the configuration but also comments.

As shown in Listing 18, there are two main portions: the output and the

passes. There are two passes in this configuration file (shown on lines 1 through 6).

Each pass must have a command string. This string is the command line transform

to be executed. Notice on lines 2 and 5 the command strings contain a % 1 and a

%2. These are replaced by the input file and the output files respectively. The other

options for each pass are debug and clean. Debug writes the standard out of the

transform, and clean is explained below.

The output section controls the output command. The output command

is the command-line program, usually a compiler, used for preprocessing and for

the final compilation. It also includes the platform, which selects which C-XML

transform because the C-XML transforms differ slightly when cross-compiling1 for

different platforms. Included is an 8-bit (avr), a 16-bit (msp430) and either 32 or

64-bit based upon the machine compiling. The path string should represent the path

to the C-XML-C installation, which contains the C-XML and XML-C programs.

The Compile Manager runs the preprocessor on each individual C file prior to

merging. Next it converts the merged C files into XML. It then executes the passes

1Cross-compiling is compiling an application to run on a different platform than your compiler
is running on.
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in order. Since a previous transform may have manipulated the XML file outside of

the normal structure, some transforms require a clean or unmodified XML file. Clean

XML files maybe required in case two sequential transforms do not interact poorly.

This is controlled by the clean flag as shown on line 6 of Listing 18. A detailed

flowchart of this algorithm is shown in Figure 13.

Figure 13: This flowchart shows the Compile Managers execution.
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4.1.2 Parser

CIL already includes many features which our parser inherits. Since CIL can parse

both GCC specific and MSVC specific code so can C-XML-C.2 We use GCC’s pre-

processor to preprocess the source code. Merging the program prior to linking allows

C-XML-C to combine multiple C files into a single XML file. This enables whole

program transformations.

CIL already simplifies C code into a subset of C so that the code is uniform [54].

For example, all looping and conditionals are converted into a consistent pattern. All

of these features are inherited by the parser.

1 int main(){
2 int i;
3 int k=0;
4 for(i=0;i<10;i++){
5 k++;
6 }
7 i=0;
8 while(i<10){
9 k++;

10 i++;
11 }
12 return 0;
13 }

Listing 19: Input.c: An example C file with two simple loops

1 <statement>
2 <infiniteLoop>
3 <block>
4 <statement>
5 <if>
6 <guard>
7 <expression kind="binaryOp" operator="lessThan">
8 <expression kind="lvalue">
9 <lvalue>

10 <base kind="variable">
11 <variableUse name="i" id="140" isGlobal="false" isAddressTaken="false"

isUsed="true"/>
12 </base>
13 </lvalue>
14 </expression>
15 <expression kind="constant">
16 <constant kind="int">
17 <value>10</value>
18 </constant>
19 </expression>

2We have only tested C-XML-C with GCC. Minor modifications to the Compile Manager would
need to be made to support MSVC style arguments on the command line, but the core C-XML,
XML-C and the transforms would not have to be changed.



61

20 <type kind="int"/>
21 </expression>
22 </guard>
23 <thenBranch>
24 <block/>
25 </thenBranch>
26 <elseBranch>
27 <block>
28 <statement>
29 <break>
30 <location file="example.c" line="4" byte="34"/>
31 </break>
32 </statement>
33 </block>
34 </elseBranch>
35 <location file="example.c" line="4" byte="34"/>
36 </if>
37 </statement>
38 <statement>
39 -- Skipped 46 lines --
40 </statement>
41 </block>
42 <location file="example.c" line="4" byte="34"/>
43 </infiniteLoop>
44 </statement>

Listing 20: Output.xml: An excerpt from an XML AST from the simple C example

For example, Listing 19 contains an input file with two loops. The first loop

is a for loop and the second is a while loop. In Listing 21 we can see that both

of these loops become identical in the transformed C code. This is one of the many

simplifications that CIL provides. The actual XML AST of the loop itself can be

seen in Listing 20. Both loops are exactly identical with the exception of different

line numbers in the location tags.

1 /*printout =*/
2 int main(){
3 int i;
4 int k;
5 {
6 k = 0;
7 i = 0;
8 for(;;){
9 {

10 if(((i) < (10))){
11 }else{{
12 break;
13 }
14 }
15 k = ((k) + (1));
16 i = ((i) + (1));
17 }
18 }
19 i = 0;
20 for(;;){
21 {
22 if(((i) < (10))){
23 }else{{
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24 break;
25 }}
26 k = ((k) + (1));
27 i = ((i) + (1));
28 }
29 }
30 return 0;
31 }
32 }

Listing 21: Output.c: An example C file after it is passed through C-XML-C. The
indenting was fixed manually for presentation.

4.1.3 XML-C

XML-C processes a given XML tree, then generates valid source code. It operates as

a visitor on the XML AST building C source code output as it runs. It is written in

Python and can be easily extended to support new types of tags. XML-C maps each

XML object type to a specific function (of the same name). All of these functions

are registered in a large dispatch table which executes the correct one based upon

the incoming node in the AST. This allows new objects to be added if a transform

requires it. 3

4.2 Usage

In most cases, developers need to setup the config file, choose or write a transfor-

mation, and run the compile manager as if it were the compiler. When writing new

transforms, developers can run example programs to get example XML. They can use

those examples to figure out how to programmatically achieve their transformation.

It is important to note that the XML is the complete abstract syntax tree

(AST) of the source code. It also includes extra information, such as line and column

numbers. The XML to C translation does require that the input files be valid XML,

3None of the transforms that we implemented required any additional object types added to
XML-C, but it is trivial to do so. This could be done to support modifications to C itself, or
possibly other extensions to translate other languages into C. These are outside of the focus of our
work, but possible in the framework.
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but it does not check the validity of the AST. It will still generate source code, but

the source code may not be valid.

This lack of error checking enables developers to shortcut XML tags to assist in

transformations. We added an XML tag that has not been shown in previous examples

that developers can use to simplify their code generation. In other source-to-source

translators, to insert blocks of code into an AST, developers have to regenerate a

valid portion abstract syntax tree. Instead of having to regenerate new portions of

the AST, with C-XML-C they can insert a PRE tag, which signifies preformatted

output. The text in these blocks will pass directly to the output.

1 <CBody>
2 <Types>
3 <Type id="1" name="int"/>
4 </Types>
5 <PRE>
6 int error_state=0;
7 </PRE>
8 <FunctionDecl column="5" line="13" returntype="1">
9 <FunctionArgs column="13" line="13"/>

10 <FunctionBody column="15" line="13">
11 <PRE>
12 {if(error_state&gt;0){printf("Running main with error_state in %d\n",error_state)

}}
13 </PRE>
14 <Statement>
15 <FunctionCall column="4" line="14">
16 printf
17 <FunctionArgs column="10" line="14"/>
18 <TEXT column="11" line="14">
19 &quot;Hello World.\n&quot;
20 </TEXT>
21 </FunctionArgs>
22 </FunctionCall>
23 <SEMICOLON column="28" line="14">
24 ;
25 </SEMICOLON>
26 </Statement>
27 <ReturnStatement column="4" line="15">
28 return
29 <NUMBER column="11" line="15">
30 1
31 </NUMBER>
32 </ReturnStatement>
33 </FunctionBody>
34 </FunctionDecl>
35 </CBody>

Listing 22: XML file after top level statements have been parsed

Listing 22 shows a PRE tag on lines 11-13 which shows what would normally

require the developer to create over a dozen XML nodes to replace it. Instead devel-
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opers can insert PRE tags. This allows developers to ignore the details of the AST

itself, and focus on what is important to their modifications.

4.3 Transforms

Since C-XML-C uses XML to store its ASTs, transforms can be implemented in any

language that can read and write files. There are many different APIs for accessing

XML files. One such API that most programming languages support is called the

Document Object Model (DOM) [3]. The DOM is a consistent API for accessing,

manipulating and creating XML documents. In the following transforms, we leverage

this API for manipulating the ASTs of C programs. We provide several example

transforms in several different programming languages.

In this dissertation we present eight different transforms. Most were written in

Python, but others were written in eXtensible Stylesheet Language Transformations

(XSLT) [40], Java and C#. A list of the transforms, the language of implementation

and the number of lines of code can be found in Table II.

4.3.1 XSL Callgraph

Deriving the callgraph of a program can be very useful. It can show direct and

indirect recursion. It can also uncover hidden source code dependencies. A callgraph

is a graph where each function is a node. There is a directional arrow to the callee

from the caller. Call graphs are explained in detail in Section 2.2. A call graph is a

common requirement for many more complex transformations and code analysis.

1 void b(){
2 }
3 void c(){
4 }
5 void a(){
6 b();
7 }
8 void d(){
9 a();
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Transform Name Programming Language Lines of Code

Callgraph XSLT 14
Tail Recursion Python 170
Volatile Fix C# 350
Forced Function Inlining Java 300
Thread Safety Python 200
Stack Swap Python 250
Indirect Call Removal Python 400
UnStacked C with LP Python 500

Table II: List of all included transforms.

10 b();
11 c();
12 d();
13 }
14 void main(){
15 d();
16 a();
17 }

Listing 23: Example program for Callgraph analysis

Since the intermediate source code is stored as XML, we can use Extensible

Stylesheet Language (XSL) to implement a transform. Listing 23 shows a simple C

program which we can run through C-XML-C and it generates a seven kilobyte XML

file. After running through the XSL transform shown in Listing 24 it generates an

output shown in Listing 25. The output XML file can easily be parsed and loaded by

any application. It also can be humanly read.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3 <xsl:template match="/">
4 <CallGraph>
5 <xsl:for-each select="//functionDefinition">
6 <xsl:element name="{@name}">
7 <xsl:for-each select="descendant::functionCall/name/expression/lvalue/base/

variableUse">
8 <xsl:element name="{@name}" />
9 </xsl:for-each>

10 </xsl:element>
11 </xsl:for-each>
12 </CallGraph>
13 </xsl:template>
14 </xsl:stylesheet>

Listing 24: Callgraph Extensible Stylesheet code

1 <?xml version="1.0"?>
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2 <CallGraph>
3 <b/>
4 <c/>
5 <a>
6 <b/>
7 </a>
8 <d>
9 <a/>

10 <b/>
11 <c/>
12 <d/>
13 </d>
14 <main>
15 <d/>
16 <a/>
17 </main>
18 </CallGraph>

Listing 25: Callgraph output

XSL is a declarative language that takes XML files as its input and outputs

a single XML file. XSL transforms are XML documents themselves as shown in

Listing 24. Most XSL transforms start by matching the root document as shown in

Lines 3 and 13 of Listing 24. Nodes which do not start with “xsl” are passed directly

to the output. We use this to generate the new root object named CallGraph on

Lines 4 and 12 in Listing 24. Then we use a for loop to iterate through all the XML

objects that are of type functionDefinition on Line 5. For each of these objects,

we create an element which takes the name of the object (a functionDefinition)

attribute named name on Line 6. Inside of each functionDefinition we search

for a specific pattern of objects named functionCall, name, expression,

lvalue, base, variableUse on Line 7. This pattern matches the XML form

of a direct function call. We then generate an XML object off of the variableUse’s

attribute named name on Line 8, which forms the links in our call graph.

The XSL Callgraph transform is the only example that does not modify the

output. All of the other transforms in this chapter modify the output XML file so

that it changes the way the source code compiles. This transform can be used as a

building block for other transforms.
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4.3.2 Tail Recursion

Tail recursion optimization is a common optimization many compilers can perform.

A tail recursive function is one that calls itself only as the last operation performed.

Since the function is only recursive at the end of the routine, the previous stack

frame is not required and can be replaced with the next stack frame. Compilers often

implement this optimization, since the only operation that needs to change is that

instead of a call instruction, simply goto the beginning of the routine instead.

1 void factorial_i(double number, double * product){
2 if(number <= 1){
3 return;
4 }else{
5 *product *= number;
6 factorial_i(number - 1, product);
7 }
8 }
9

10 double factorial(double number){
11 double result = 1;
12 factorial_i(number, &result);
13 return result;
14 }

Listing 26: Example of tail recursion before any optimizations

Listing 26 shows a proper tail recursion [15] implementation of a factorial. For

proper tail recursion, a return value cannot be used. Instead of using a return value,

a product argument is used. Factorial i performs tail recursion since it only calls itself

at the end of itself.

1 void factorial_i(double number, double * product){
2 start:
3 if(number <= 1){
4 return;
5 }else{
6 *product *= number;
7 number = number - 1;
8 product = product;
9 goto start;

10 }
11 }
12

13 double factorial(double number){
14 double result = 1;
15 factorial_i(number, &result);
16 return result;
17 }

Listing 27: Example of tail recursion optimization
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Listing 27 shows the output of the transformed source code. Notice the label

added on line 2. Lines 7, 8 and 9 replace the originally recursive call. Lines 7 and 8

overwrite the arguments with new argument values and Line 9 branches back to the

beginning.

We implemented the tail recursion transform in about 170 lines of python code.

No libraries outside of the python standard libraries were required. It is implemented

as a simple two pass process using a visitor [28]. The first pass checks to find which

routines implement tail recursion. The second pass performs the transformation.

Our visitor object executes in a recursive fashion. It calls an enter method

as it enters each node, prior to processing any of the child nodes. It then calls an

leave method after processing all of the child nodes. The visitor that implements

the first pass is shown in Listing 28.

It performs a set of pattern matching as it is called on each node. It performs

this pattern matching as it transitions into different states as it finds specific types

of nodes. In the leave method, it restores the previous states, so that the state

machine can naturally unwind on lines 36-42 of Listing 28. The trickiest part of the

whole algorithm is detecting tail recursion versus regular recursion. After a function

is found to be recursive in lines 28 and 29, the state is set to CHECKING. All the

checking state does is look for instruction objects. If any instruction objects

are found, then the call is not the last instruction in the function, and it is not tail

recursive (lines 55-58).

1 class SearchVisitor(visitor):
2 IDLE, INFUNCTION, INBODY, INCALL, INNAME, CHECKING = range(6)#FSM for search
3 def __init__(self):
4 self.state = self.IDLE #Current state of search
5 self.lastworking = [] #Stack of name of searching function (gcc extension)
6 self.last = [] #Stack of previous state values
7 self.working = "" #name of current function
8 self.calls = [] #List of recursive functions
9 def enter(self, node):

10 self.last.append(self.state) #Allow the state to be restored upon leaving
11 #this fixes problems if a child function is defined inside of another (gcc extension)
12 self.lastworking.append(self.working)
13 if(self.state == self.IDLE): #looking for a function
14 if(node.nodeName == "functionDefinition"):
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15 self.working = node.getAttribute("name")
16 self.state = self.INFUNCTION #Entering a function
17 elif(self.state == self.INFUNCTION):
18 if(node.nodeName == "result"): #Check for return value
19 if(node.getElementsByTagName("type")[0].getAttribute("kind") != "void"):
20 self.state = self.IDLE #basically if the function does not return void, then

ignore
21 if(node.nodeName == "functionCall"):
22 self.state = self.INCALL #We found a function call
23 elif(self.state == self.INCALL):
24 if(node.nodeName == "name"):
25 self.state = self.INNAME #We found the name of the called function
26 elif(self.state == self.INNAME):
27 if(node.nodeName == "variableUse"):
28 if(self.working == node.getAttribute("name")):
29 self.calls += [self.working]#Found a recursive function
30 self.state = self.CHECKING
31 elif(self.state == self.CHECKING):
32 if(node.nodeName == "instruction"): #recursive call is not the last instruction
33 print "%s is not proper tail recursion :(" % self.working
34 if(self.working in self.calls):
35 self.calls.remove(self.working)
36 def leave(self, node):
37 #restore the last state
38 laststate = self.last.pop()
39 if(self.state == self.CHECKING):
40 if(laststate == self.IDLE):
41 self.state = laststate
42 self.working = self.lastworking.pop()

Listing 28: Implementation of first pass of a visitor searching for tail recursive
functions

4.3.3 Volatile Fix

The next simple transform marks global variables as volatile if they are accessed

by the main loop and inside of an interrupt. It also issues a list of all shared vari-

ables. In embedded systems, if a global variable is written in the main loop and

then accessed in an interrupt, a data fault can occur. The keywork volatile forces

each access to actually read/write RAM as opposed to leaving them in registers [39].

The volatile keyword alone does not fix possible shared data faults in preemptive

threading systems, but the list of shared variables it prints out can lead developers

toward finding and fixing possible faults.

Listing 29 shows how a variable, whose operations are already atomic, can have

an incorrect output in the main loop. In that example, it is possible that the main

loop never reads the variable as one, since it is cached in a register. The volatile
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keyword does not make the variable accesses atomic, so other considerations for in-

terrupt accesses are required. For this example we only focused on the volatile

keyword.

1 void factorial_i(double number, double * product){
2 start:
3 if(number <= 1){
4 return;
5 }else{
6 *product *= number;
7 number = number - 1;
8 product = product;
9 goto start;

10 }
11 }
12

13 double factorial(double number){
14 double result = 1;
15 factorial_i(number, &result);
16 return result;
17 }

Listing 29: This source code shows how a possible data fault can occur as the result
of an interrupt if the flag is not marked volatile

Our volatile fix transform is implemented in C#. It only uses the standard

C# libraries in about 350 lines of source code. It is implemented in two passes with

a visitor. The first pass detects all of the possible volatile faults and the second pass

adds the volatile keywords.

4.3.4 Force Function Inlining

Functions can be inlined by compilers so that they are expanded as if they were

preprocessor macros. C includes the keyword inline to enable the compiler to inline

a function, but the inlining of the function is not guaranteed. Instead of relying on a

compiler that may or may not force inline a given routine, we implemented a transform

that performs forced function inlining. Listing 30 shows a simple increment routine

that calls an add routine. Listing 31 shows the inlined expansion of the add routine.

1 inline int add(int a, int b){
2 return a+b;
3 }
4

5 int increment(int x){
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6 return add(x,1);
7 }

Listing 30: A simple incrementing routine

Our transform performs two passes on the source code. The first pass uses a

visitor to search through the source code for the inline keyword while simultane-

ously building a call graph. The second pass processes the call graph to replace any

instances of the inlined functions with an equivalent expansion.

1 int increment(int x){
2 return ({
3 int inlined_retval1;
4 int inlined_a; int inlined_b;
5 inlined_a = a;
6 inlined_b = 1;
7 inlined_retval1 = inlined_a + inlined_b;
8 inlined_retval1;
9 });

10 }

Listing 31: Example of force inlined incrementing routine

Notice in Listing 31, that the outputted source code is valid, but it may confuse

a following transform. Instead, a developer would want to clean the XML file prior

to applying any other transform. This would force the expression-statement4 to be

broken into multiple sequential statements.

This transform was implemented in 300 lines of Java. It uses only standard

class libraries, without any external dependencies.

4.3.5 Thread Safety

In multithreaded programming, thread safe code is code that operates correctly when

called simultaneously from multiple threads, or contexts of execution. Thread safety

is not only an issue with a single routine being executed from multiple threads simul-

taneously, but also a library where multiple calls may interact with each other. Unless

a library is written specifically with thread safety in mind, it is likely not thread safe.

4An expression-statement is a statement that takes place inside of an expression.
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If it uses any global variables, it is likely not thread safe. To help with this problem

we have written a transform that can fix many common thread safety issues.

If a library is not thread-safe, than it can only have one thread calling into

it at a time. One way to create that safety requirement is to lock a mutex prior to

accessing any of the library routines and then unlocking the mutex after each library

routine exits. When a second thread attempts to lock an already locked mutex, it

must block until the mutex becomes unlocked. This is a common method of making

sure that only a single thread can execute any of the libraries’ functions at a time.

Our thread safety transform takes a group of functions (i.e. a library) and

makes them thread safe. It make a wrapper function for each one, that wraps the

functions in a single mutex so that the functions cannot execute concurrently. This

transform can be run in two different ways. The first way uses a single global mutex

to protect all of the routines from executing concurrently as shown in Listing 33, as

transformed from the original routines shown in Listing 32.

1 int add(int a, int b){
2 return a+b;
3 }
4

5 int sub(int a, int b){
6 return a-b;
7 }

Listing 32: A pair of simple routines

In line 6 of Listing 33 a global mutex is created and initialized. The original

functions add and sub (Listing 32 lines 1 and 5) have been renamed to thread safe add

and thread safe sub (Listing 33 lines 1 and 15) respectively. It then generates

a new add in lines 7-13 of Listing 33. This new add locks the mutex (line 9), calls

thread safe add (line 10), unlocks the mutex (line 11) and returns the proper

value (line 12). A similar method is used to implement the new sub routine in

lines19-25.

1 int thread_safe_add( int a, int b){
2 return a + b;



73

3 }
4

5 #include <pthread.h>
6 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
7 int add(int a, int b){
8 int safe_return;
9 pthread_mutex_lock(&mutex);

10 safe_return = thread_safe_add(a,b );
11 pthread_mutex_unlock(&mutex);
12 return safe_return;
13 }
14

15 int thread_safe_sub( int a, int b){
16 return a - b;
17 }
18

19 int sub(int a, int b){
20 int safe_return;
21 pthread_mutex_lock(&mutex);
22 safe_return = thread_safe_sub(a,b );
23 pthread_mutex_unlock(&mutex);
24 return safe_return;
25 }

Listing 33: Example of a global mutex protecting a pair of routines from multiple
threads executing the routines simultaneously

Another way to run this transform is to make multiple functions allowed to

be run simultaneously, but only one instance of each function may be executed as

shown in Listing 34. The noticable differences between the global mutex and the

single mutex is that each function requires its own mutex as shown in lines 8 and

21 of Listing 34. The rest of the code remains unchanged. In this mode, multiple

functions can be executed simultaneously, but only a single instance of each function

can occur simultaneously.

1 int thread_safe_add( int a, int b){
2 return a + b;
3 }
4

5 #include <pthread.h>
6 int add(int a, int b){
7 int stack_return;
8 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
9 pthread_mutex_lock(&mutex);

10 stack_return = thread_safe_add(a,b );
11 pthread_mutex_unlock(&mutex);
12 return stack_return;
13 }
14

15 int thread_safe_sub( int a, int b){
16 return a - b;
17 }
18

19 nt sub(int a, int b){
20 int stack_return;
21 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
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22 pthread_mutex_lock(&mutex);
23 stack_return = thread_safe_sub(a,b );
24 pthread_mutex_unlock(&mutex);
25 return stack_return;
26 }

Listing 34: Example of a mutex for each routine protecting against multiple points
of execution running the same function simultaneously

This enables embedded developers to integrate libraries into their multithreaded

system without worrying about thread safety. This also avoids the programmer of

performing this same task manually.

This transform is about 200 lines of Python source code. It is configurable on

the command line which mode to run in, and takes an argument for the file name

containing a list of functions to make thread safe. This allows users to simply change

a configuration file and run on any application. This transform is done in a single

pass through the XML AST.

4.3.6 Stack Swap

Another transform which is structurally similar to thread safety is stack swapping.

We define stack swapping as a single thread running and switching to a different

stack for a single call to a function, then swapping stacks back after the function

returns. This is important for library vendors, since they cannot guarantee that an

application’s compiler will have allocated enough stack space for the given library.

This is especially important when a library may need to make recursive calls or calls

into other libraries with large stack requirements. Often embedded systems interact

with PCs. They often communicate with custom drivers or libraries. While many

programs are compiled with modern compilers, some programs are written in an

alternate fashion such as with LabVIEW. These alternate programming tools may

not necessarily allocate a large enough stack space [38].

This transform wraps functions similarly to the thread safety transform. It

creates a wrapper for each function that allocates and switches to a separate thread
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prior to executing. It also copies all of the arguments into a global structure so that

they can be accessed from the new stack. The resulting transform is not thread safe,

but can be made so using the thread safety transform. Listing 35 shows the source

code prior to transform and Listing 36 shows output of the transforms.

1 int add(int a, int b){
2 return a+b;
3 }

Listing 35: A simple routine prior to stack swapping

1 struct stack_struct_add{
2 int stack_return;
3 int a;
4 int b;
5 }stack_struct_add_v;
6

7 void stack_swapped_add(){
8 {
9 stack_struct_add_v.stack_return = ((stack_struct_add_v .a) + (stack_struct_add_v .b));

10 return;
11 ;
12

13 }
14

15 }
16

17 int add(int a, int b){
18

19 {
20 #include <ucontext.h>
21 ucontext_t current, child;
22 //Setup the new context
23 void * malloc(size_t size);
24 void * newstack = malloc(SIGSTKSZ);
25 getcontext(&child);
26 child.uc_stack.ss_sp = newstack;
27 child.uc_stack.ss_size = SIGSTKSZ;
28 //Here force it to return to the caller
29 child.uc_link = &current;
30 makecontext(&child, stack_swapped_add, 0);
31 stack_struct_add_v.a = a;
32 stack_struct_add_v.b = b;
33

34 //Swap the context
35 swapcontext(&current, &child);
36 //we return then we are complete
37 free(newstack);
38 return stack_struct_add_v.stack_return;
39 }
40

41 }

Listing 36: A simple routine swapping to a separate stack prior to executing

The stack swap transform is about 250 lines of Python code. It completes the

transform in a single pass of the XML AST, making multiple modifications as it runs.
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4.3.7 Indirect Call Removal

This transform removes indirect calls from a given application. This transform groups

function pointers together and makes dispatch tables which execute all of the possible

values. It replaces function pointers with indexes into these dispatch tables, and it

replaces indirect calls to function pointers with these dispatch tables. This allows a

more accurate call graph to be represented. This also, in turn, allows other tools such

as stack analysis and UnStacked C to be used in cases where it normally could not

be. It also permits a compiler to inline a function in spite of function pointers.

This transform is broken into two main stages. The first stage detects the

additional call graph members from function pointers. The second stage performs

the transform on the AST.

Detecting function pointers in a call graph can be done through an analysis

of all of the pointers in a system. Milanova et al. [52] implements a simple FA

pointer analysis initially proposed by Zhang [81] to complete the call graph in the

face of function pointers. FA pointer analysis is flow and context insensitive, and can

yield some false positives. We implemented an algorithm similar to the one Milanova

proposed. This means that we must build a graph of all of the relations between

all of the variables in the system, including all of the function arguments and return

values. Once this directional relationship graph has been built, we can start from

the function pointer dereferences and work backwards to determine all of the possible

values a given pointer can have at any given time.5

This transform iterates through all variable accesses and identifies which vari-

ables pass values to each other. Each set of variables that can possibly be written to

another variable is directionally linked. Then each constant value that is in the right

hand side of any equation that writes into one of these variables is noted for that

5To achieve this, then entire program’s source code must be accessible. This includes standard
library functions.
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variable and all of the variables it is linked to. This forms a list for each variable, all

of the possible constant values. In the case of function pointers, it builds up a list

of all possible function pointers a given indirect call could possibly have, and then

builds a dispatch table for that specific position.

An example input is shown in Listing 37 has two sets of function pointers.

There are two groups of function pointers in the system. We analyze the entire

system and the transform built up two dispatch tables and replaced the indirect calls

with the dispatch tables. This can be seen in Listing 38. Notice how the types of all

of the variables have not been changed, instead we only modify the constant value

inputs into the function pointers and add calls to the dispatch tables at the correct

locations.

1 #include <stdio.h>
2

3 void f1(void){
4 printf("ft1\n");
5 }
6 void f2(void){
7 printf("ft2\n");
8 }
9 void f3(void){

10 printf("ft3\n");
11 }
12 void g1(int x){
13 printf("g1:%d\n",x);
14 }
15 void g2(int x){
16 printf("g2:%d\n",x);
17 }
18 void g3(int x){
19 printf("g3:%d\n",x);
20 }
21 typedef void (*func1)(void);
22 typedef void (*func2)(int);
23

24 func1 hide(func1 x){
25 return x;
26 }
27

28 func1 list1[10];
29 int list1count = 0;
30 func2 list2[10];
31 int list2count = 0;
32

33 void post1(func1 f){
34 list1[list1count++] = f;
35 }
36 void post2(func2 f){
37 list2[list2count++] = f;
38 }
39
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40 int main(){
41 printf("Hello...\n");
42 post1(f1);
43 post1(hide(hide(hide(f2))));
44 post1(f3);
45 post2(g1);
46 post2(g2);
47 post2(g3);
48

49 while(list1count--){
50 (*list1[list1count])();
51 }
52 while(list2count--){
53 (*list2[list2count])(list2count);
54 }
55 printf("done...\n");
56 return 0;
57 }

Listing 37: Input file which contains two pools of function pointers

1 void dispatch_834 (int dispatcher){
2 switch (dispatcher){
3 case 1:
4 f3 ();
5 break;
6 case 4:
7 f1 ();
8 break;
9 default: /* case 2: */

10 f2 ();
11 break;
12 }
13 }
14

15 void dispatch_836 (int dispatcher, int x){
16 switch (dispatcher){
17 case 3:
18 g3 (x);
19 break;
20 case 5:
21 g1 (x);
22 break;
23 default: /* case 6: */
24 g2 (x);
25 break;
26 }
27 }
28

29 int main (){
30 func1 tmp;
31 func1 tmp___0;
32 func1 tmp___1;
33 int tmp___2;
34 int tmp___3;
35 {
36 printf ("Hello...\n");
37 post1 ((void *) 4);
38 tmp = hide ((void *) 2);
39 tmp___0 = hide (tmp);
40 tmp___1 = hide (tmp___0);
41 post1 (tmp___1);
42 post1 ((void *) 1);
43 post2 ((void *) 5);
44 post2 ((void *) 6);
45 post2 ((void *) 3);
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46 for (;;){
47 tmp___2 = list1count;
48 list1count = ((list1count) - (1));
49 if (!tmp___2){
50 break;
51 }
52 dispatch_834 ((unsigned int) (*(list1[list1count])));
53 }
54 for (;;){
55 tmp___3 = list2count;
56 list2count = ((list2count) - (1));
57 if (!tmp___3){
58 break;
59 }
60 dispatch_836 ((unsigned int) (*(list2[list2count])), list2count);
61

62 }
63 printf ("done...\n");
64 return 0;
65 }
66 }

Listing 38: Output file which contains no function pointers

We have successfully tested this transform on large scale TinyOS applications

to remove the indirection caused by threads and its message passing interfaces. This

allows stack analysis to be run on these threaded TinyOS systems. It also allows the

indirect calls to be inlined.

4.3.8 Other Transforms

The other transform, UnStacked C with LP, will be discussed in detail in Chap-

ters 5 and 6. It is a complex transformation that translates multithreaded source

code into event-driven state machines. Its implementation is more complicated since

it modifies not only variable allocates, but also all function invocations, signatures

and bodies.

4.4 Compiler Test

There exists a body of source code which is known to break compilers. This test

suite is known as the GCC C-Torture Test Suite [67]. This has been built by people

submitting source code that is known to break compilers. C-XML-C passed 34329
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tests out of more than 60,000 tests. GCC6 itself only passed 45086 of the tests. The

reason C-XML-C failed for many of the tests is because many of the tests attempted

to use C-XML-C for partial compilation as opposed to whole-program compilation

(which is the only method of compilation it supports). In any event, passing 34329

tests is a strong indication that many different types of C source code will compile

correctly inside of C-XML-C.

4.5 Summary

C-XML-C is a compiler framework for creating whole-program C compiler extensions in

any language. We have implemented many different transformations which are useful

to embedded system developers. Thread safety, stack swapping, call graph analysis

and volatile fix can assist embedded system developers in making their system simpler

and safer. Tail recursion, force function inlining and indirect call removal can perform

different optimizations which are useful to embedded system developers.

These diverse and complex transforms show the flexibility of the C-XML-C

framework. In contrast, the CIL paper itself only talks about three different trans-

forms it performs on the source code. Instead we offer eight transforms. Each of

these was implemented in less than a day of work, with the exception of UnStacked

C and Lazy Preemption. Since these transforms can be written in any programming

language, developers can quickly make translations in the language they are most

comfortable – enabling more experimentation and exploration in compilers.

6Tests were run with GCC version 4.4.5 compiled for x86 64-linux-gnu.



CHAPTER V

UnStacked C

Multi-threaded programming and event-driven programming are the popular ap-

proaches for building concurrent systems. While there are several instances in the

literature where the two approaches have been presented as opposing forces, Adya

et al [1] provide a nice treatment of identifying the essential differences. The most

important difference, it turns out, is the way the context execution stacks are man-

aged: manual in the case of event-driven programming, and automatic in the case of

threaded programming.

The two approaches have distinct advantages and disadvantages. Event-driven

programs tend to be very efficient in terms of memory footprint. However, writing

event-driven programs is hard: the programmer has to manually rip the stack, and

maintain state across multiple tasks. Because the programmer has to manually deal

with maintaining state across tasks, each individual task does not need to maintain

its own stack. Multi-threaded programs, by contrast, are easier to write and compre-

hend. The program is expressed as a sequence of actions, without regard for implicit

points where one task may yield to another. The stack is managed automatically by

the thread scheduler. The big disadvantage with this approach is that the memory

81
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requirements of threaded programs are usually much larger than their event-driven

counterparts, since each thread has to maintain its entire context while it is blocked.

Note that when we talk about multithreading in the context of this chapter, we

are talking about cooperative threads. We will address preemptive threads in Chapter

6. Cooperative threads, in contrast with preemptive threads, only yield the processor

to other competing threads at well-defined points in the execution. These points are

either explicitly defined by the programmer through a yield, or more commonly by

calling some other routine that will block. Common blocking routines are blocking

I/O routines or protection primitives (e.g., mutex or semaphore operations).

While the memory overhead of cooperative threads may not be a big problem

for PC applications, the overhead does become a significant handicap when imple-

menting software either for embedded systems (where memory is a scarce resource),

or for high-concurrency servers that run thousands, even millions, of threads. As it

stands, if the amount of available memory is insufficient for the threads that an appli-

cation will need, the available alternative is to program the system in an event-driven

style. Event-driven programs are hard to write, and even harder to read and reason

about [74]. It would be nice to enjoy the benefits of threading without its memory

overhead.

This is the primary contribution we make in this chapter. We present UnStacked

C: a source-to-source translator that enables C programmers to write code in a multi-

threaded fashion, but executes using event-driven semantics. The translator converts

regular C code that uses cooperative threads into tasklets. Since these tasklets fol-

low event semantics, they do not need to store their stack, and hence their memory

overhead is substantially reduced. At the same time, the readability of the program

is not compromised: programmers can use most regular C constructs.

Outside of the embedded systems community, some C programmers have looked

for ways to get to the “million-thread mark”, and thus far, there is no way to achieve
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it [34]. Our system enables programmers to write applications using stackless threads,

and can: in fact, we reach and exceed that million-thread goal.

5.1 UnStacked C Translation Strategy

At its heart, UnStacked C is a C-XML-C transform that takes as input C code using

cooperative threads, and produces an output code that uses stackless continuations.

The continuation-based code is semantically equivalent to the original code, but be-

cause individual thread stacks are no longer necessary, it has a much smaller memory

footprint than the multithreaded code. UnStacked C is based upon three different

implementation strategies.

1. Our initial strategy for the continuations in UnStacked C is based on Duff’s

Device [18], which is also the strategy used by Protothreads [20] and Tame [45].

2. We also have an operational mode which can generate jump tables directly using

goto statements to labels throughout the code, instead of using Duff’s Device.

3. We also can use GCC’s “labels as value”[68], which is a C extension that allows

a pointer to hold an address and to goto it without a call in C.

We will compare these three methods of continuations inside of UnStacked C.

5.1.1 Translation Rules

Here, we describe the rules that we use for translating cooperatively-threaded code

into stackless continuations. Throughout this section, we will use the code example

in Listing 39 to illustrate the rules we describe.

1 Echo Server implemented using a thread library:
2 int echo(int port) {
3 int listenfd, *connfdp, clientlen;
4 struct sockaddr_in clientaddr;
5 pthread_t tid;
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6 listenfd = open_listenfd(port);
7 while (1) {
8 clientlen = sizeof(clientaddr);
9 connfdp = malloc(sizeof(int));

10 *connfdp = accept(listenfd,
11 (SA *) &clientaddr, &clientlen);
12 pthread_create(&tid, NULL, thread, connfdp);
13 }
14 }
15

16 Data structure to store context for continuation:
17 typedef struct UnStackecho {
18 uint8_t state;
19 union {
20 struct { int port; } args;
21 int retval;
22 } ops;
23 struct {
24 int listedfd, *connfdp, clientlen;
25 struct sockaddr_in clientaddr;
26 pthread_t tid;
27 } locals;
28 union { UnStackaccept accept; } children;
29 } UnStackecho;
30

31 Echo server translated to UnStacked C:
32 int echo(UnStackecho * ctx) {
33 switch(ctx->state){ default:
34 ctx->locals.listenfd = open_listenfd(ctx->ops.args.port);
35 while (true) {
36 ctx->locals.clientlen = sizeof(ctx->locals.clientaddr);
37 ctx->locals.connfdp = malloc(sizeof(int));
38 //Calling accept
39 ctx->children.accept.args.sockft = ctx->localslistenfd;
40 ctx->children.accept.args.addr =
41 (SA *) &ctx->locals.clientaddr;
42 ctx->children.accept.args.addrlen = &ctx->locals.clientlen;
43 ctx->children.accept.state = INIT;
44 ctx->state = 1;
45 case 1:
46 if (accept(&ctx->children.accept) != 0)
47 return 1;
48 *ctx->locals.connfdp = ctx->children.accept.ops.retval;
49 pthread_create(&ctx->local.tid, NULL, thread, ctx->local.connfdp);
50 }
51 return 0;
52 }
53 }

Listing 39: A simple Echo Server implemented using a thread library and then
translated to UnStacked C

Function Signatures

Every function in the input program is modified in two ways to support stackless

continuations. First, the function signature is modified to return an eight-bit signed

integer (Line 32 in Listing 39). This new return value is used to signal the resulting

state of the routine. In particular, the state of a routine is used to properly make
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the determination of where that routine continues at a later point in the program’s

execution. Worth stressing, the state returned here is simply whether or not the

routine is blocked. This return value does not capture either the thread state or the

re-entry point in the function. Second, in addition to the entry point, each function

also needs to “remember” where it left off in terms of its context. In order to provide

this, we modify the signature of each function to replace its argument list with a

single new argument (Line 32 in Listing 39). This new argument is a pointer to a

structure that contains all of its context. The context includes the current state of the

function. In addition, the context also includes the values of all of its local variables,

and the context(s) of any blocking child function call(s).

Context for Blocking Calls

For every blocking function, a structure is generated that can maintain its context

(Lines 17–29). The context structure stores the following information about the

function while it is blocked:

• Current state of the function. (Line 18) This state value is used to determine

the entry point of the function upon continuation.

• Arguments to the function. (Line 20) Since the function call is no longer guar-

anteed to be made exactly once (re-entrancy because of blocking child calls),

the arguments to each function are maintained in the context structure within

the function. This way, regardless of the number of times a method is invoked,

the arguments need never enter the system stack.

• Values of all non-static local variables. (Line 23–27) Since blocking functions

are translated into continuations, the values of local variables must be stored

for the duration that the function is blocked waiting on a child blocking call.
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• Contexts of all blocking child function calls. (Line 28) For each blocking child

function call that a parent function makes, the parent maintains a separate

context. These child contexts are all part of the parent function’s context. In

order to optimize the storage space required for these child contexts, we store

them in a union (since only one blocking child function can be active at any

time anyway).

• Return value. (Line 21) Since the signature of the function has been modified

to return the state of the function, we now store the return value in the context.

assn-stmt

var function-call

foo arg-listi

var

j

Figure 14: AST for i = foo(j); in C

Blocking Function Calls

When translated from multithreaded code to event-driven state machines, blocking

function calls have to be transformed into non-blocking (split-phase) calls. In essence

the translation “rips the stack” automatically. For example, consider the blocking

call to accept() on line 10 in the threaded version of echo() in Listing 39. This

call is translated in UnStacked C through a series of steps:
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assn-stmt

var

ctx->children.foo.ops.args.x j

var

assn-stmt

var

ctx->state 1

constant

stmt-
sequence

case-stmt

function-call

foo arg-list

var

if-stmt

if exp then stmt

return 1

assn-stmt

var

i ctx->children.foo.ops.retval

var

assn-stmt

var

ctx->children.foo.state 0

var

Figure 15: AST for i = foo(j); after translation to UnStacked C

1. The state of the current function (caller) is changed to mark the current location

(Line 44), and a label is placed in the code prior to the blocking call (Line 45).

This label will enable execution to resume from this point the next time this

function continues.

2. The state of the child blocking call is set to 0 (Line 43).

3. The arguments to be sent to the child function are populated in the context

structure (Lines 39–42).

4. The call to the child function is made, with a reference to the portion of the

context structure that corresponds to this child function as argument (Line 46).

If the call to the child function returns any value other than 0 (meaning that

the child function is blocked), then the calling function will block as well and

return 1 at this point (Line 47). On the other hand, if the child function

does not return a blocking state, then the current function will proceed with

execution.
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Main Routine

In order for any function in the input program to make a call to any blocking function,

this calling function must itself be blocking. Therefore, the main() routine in the

program must not make any blocking calls. If it does the translation converts the

main() routine into a blocking function. Then a new main with a scheduler inside

of it must know to execute the main() thread immediately.

Order of Operations

When ripping the stack the way we do, one very important thing to consider is how

that affects the order in which operations are executed. This problem manifests itself

in several different scenarios. Consider the following assignment statement,

1 i = foo(j);

This assignment statement has multiple actions in the same statement. First,

the function foo() needs to be evaluated, and then the return value is assigned to i.

If foo() is a blocking operation, there needs to be special attention paid to this line.

The blocking operation foo() needs to be made in accordance with the translation

rule above. Consequently this code is translated as follows:

1 ctx->children.foo.ops.args.x = j;
2 ctx->children.foo.ops.state = 0;
3 ctx->ops.state = 1;
4 case 1:
5 if (foo(&ctx->children.foo) != 0)
6 return 1;
7 i = ctx->children.foo.ops.retval;

Visualize this in terms of the abstract syntax tree (Figure 14) traversal required

for this translation to occur correctly. It is not possible to figure out that foo() is a

blocking operation at the point of traversing the assn-stmt node in the AST. It is only

when the traversal has moved down past this node, and into the function-call node for

foo() that this determination can be made. At this point therefore, the traversal

has to back-track to the assignment statement and split this single statement into
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a compound statement that looks like the AST presented in Figure 15. In essence,

when a blocking operation is one of many expressions occurring in a single statement,

that blocking operation needs to be stripped off to precede the remaining statements.

There is more. Consider the following statement,

1 i = foo(j) + bar(k);

where foo() is a blocking operation. This code, when translated to UnStacked

C, becomes the following (just like in the previous example):

1 ctx->children.foo.ops.args.x = j;
2 ctx->children.foo.ops.state = 0;
3 ctx->state = 1;
4 case 1:
5 if (foo(&ctx->children.foo) != 0)
6 return 1;
7 i = ctx->children.foo.ops.retval + bar(k);

However, what if foo() was non-blocking, but bar() was blocking? Simply

applying the rule of moving bar() before the rest of the statement is not going to

work: the execution of foo() now will come after bar(), violating the order of

operations in the original program. The execution of foo() In this case, therefore,

the correct translation should be as follows:

1 ctx->children.foo.ops.retval = foo(j);
2 ctx->locals.tmp = ctx->children.foo.ops.retval;
3 ctx->children.bar.ops.retval = k;
4 ctx->children.bar.ops.state = 0;
5 ctx->state = 1;
6 case 1:
7 if (bar(&ctx->children.bar) != 0)
8 return 1;
9 i = ctx->locals.tmp +

10 ctx->children.bar.ops.retval;

Variables

A key feature of UnStacked C is that the stack is not used for maintaining local vari-

ables in blocking operations. Instead these variables are maintained in the contexts

of these blocking operations. Global variables are not touched in this translation.

Similarly with static variables. The AST of the program is traversed to transfer the
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local variables from blocking functions into context structures that correspond to each

blocking function.

While the declarations of local variables are transferred to context structures,

the initialization statements are retained in the same place, and only names of the

variables are changed:

1 int i = 7;

is translated to:

1 ctx->locals.i = 7;

Here again, order of operations matters. If the right hand side of the assignment

is a blocking function call, then that blocking function is moved above the assignment.

5.2 Implementation

UnStacked C is implemented as a C-XML-C transform. It is written in Python and

performs its transformation in two passes of the AST. During the first pass it analyzes

the AST. The second pass performs the transformation.

The first pass gathers information about all of the functions in the system. One

core piece of information gathered is whether a given function is marked as blocking.

Another piece of information gathered is the call graph. Also all local variables and

arguments are gathered. After the first pass completes, we can analyze the call graph

and the blocking functions to determine which functions in the system must block

(since they call another blocking function). We can then generate all of the possible

blocking context data types.

The second pass inserts all of these blocking context data types prior to the

first modified function, as a way to ensure that they are declared prior to usage. Next

it transforms each blocking function call’s declaration to match the new function
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signature. Finally it transforms each blocking function call’s function body in the

order that they originally appeared.

5.2.1 Modes of Operation

There are several different configurable portions of UnStacked C. These configura-

tion options allow developers to integrate UnStacked C into many different environ-

ments. They also allow developers to attempt to gain different levels of performance

by using different options at compile time, without needing to change the source code.

It is important to note that currently, all of these modes require the complete source

code of the application.

There are three main modes of different UnStacked C function body trans-

forms.

1. The first one was shown in Listing 39. It uses Duff’s device but precludes the

use of switches in the rest of the system. This means that if a user has a simple

switch case, CIL may transform it into a series of if statements. If the switch

statement is more complicated then CIL will leave it in place, so that the final

compiler can make a jump table. If CIL leaves the switch statement in place

in a blocking function, then the transform will fail. This led to using different

transforms.

2. The second type of function body transform uses a GCC extension known as

label as values [68]. This extension allows one to store a label in a variable, and

they branch to it later on. We translate the same function initially shown in

Listing 39 with the labels as values and show the results in Listing 40. When

using Labels as Values, we have only made five changes compared to the Duff’s

device transformation. The first change is to the type of the state variable, now

it is a void *. It is show on line 3 of Listing 40. Line 28 shows the child’s state
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being reset to NULL prior to execution. Line 18 shows a distict difference where

a single goto is used to branch to the label stored if it is not NULL.

Line 29 shows the label value being stored into the state using the && operator.

The last change can be found on line 30 and it contains the new label.

1 Data structure to store context for continuation:
2 typedef struct UnStackecho {
3 void * state;
4 struct {
5 struct { int port; } args;
6 int retval;
7 } ops;
8 struct {
9 int listedfd, *connfdp, clientlen;

10 struct sockaddr_in clientaddr;
11 pthread_t tid;
12 } locals;
13 union { UnStackaccept accept; } children;
14 } UnStackecho;
15

16 Echo server translated to UnStacked C using Label as a Value:
17 int echo(UnStackecho * ctx) {
18 if(ctx->state)goto *(*ctx->state);
19 ctx->listenfd = open_listenfd(ctx->ops.args.port);
20 while (true) {
21 ctx->locals.clientlen = sizeof(ctx->locals.clientaddr);
22 ctx->locals.connfdp = malloc(sizeof(int));
23 //Calling accept
24 ctx->children.accept.args.sockft = ctx->localslistenfd;
25 ctx->children.accept.args.addr =
26 (SA *) &ctx->locals.clientaddr;
27 ctx->children.accept.args.addrlen = &ctx->locals.clientlen;
28 ctx->children.accept.state = NULL;
29 ctx->state = &&UnstackedC_echo_1;
30 UnstackedC_echo_1:
31 if (accept(&ctx->children.accept) != 0)
32 return 1;
33 *connfdp = ctx->children.accept.ops.retval;
34 pthread_create(&ctx->tid, NULL, thread, ctx->connfdp);
35 }
36 return 0;
37 }

Listing 40: The Echo Server translated using Labels as Values

3. The last mode is in between the other two translation modes: generating a

branch table to jump to specific labels as shown in Listing 41. Like Duff’s

device, it only needs to store a single byte for state, and like the Labels as

Values it uses labels throughout the source code. The branch table can be

found on line 18 of Listing 41. Lines 29 and 30 show the new state value and

labels respectively.
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1 Data structure to store context for continuation:
2 typedef struct UnStackecho {
3 void * state;
4 struct {
5 struct { int port; } args;
6 int retval;
7 } ops;
8 struct {
9 int listedfd, *connfdp, clientlen;

10 struct sockaddr_in clientaddr;
11 pthread_t tid;
12 } locals;
13 union { UnStackaccept accept; } children;
14 } UnStackecho;
15

16 Echo server translated to UnStacked C using custom branch table:
17 int echo(UnStackecho * ctx) {
18 if(ctx->state == 1)goto UnstackedC_echo_1;
19 ctx->listenfd = open_listenfd(ctx->ops.args.port);
20 while (true) {
21 ctx->locals.clientlen = sizeof(ctx->locals.clientaddr);
22 ctx->locals.connfdp = malloc(sizeof(int));
23 //Calling accept
24 ctx->children.accept.args.sockft = ctx->localslistenfd;
25 ctx->children.accept.args.addr =
26 (SA *) &ctx->locals.clientaddr;
27 ctx->children.accept.args.addrlen = &ctx->locals.clientlen;
28 ctx->children.accept.state = 0;
29 ctx->state = 1;
30 UnstackedC_echo_1:
31 if (accept(&ctx->children.accept) != 0)
32 return 1;
33 *connfdp = ctx->children.accept.ops.retval;
34 pthread_create(&ctx->tid, NULL, thread, ctx->connfdp);
35 }
36 return 0;
37 }

Listing 41: The Echo Server translated using a generated branch table

Since developers have a choice we ran several tests to determine the switching

time. We calculated the individual context switching time of a thread while varying

the number of yields in a function. We measured the time it takes for 1000 iterations

of a loop to complete. Dividing the measured time by 1000 gives us a good approx-

imation of the context switching costs. It will also take into account any scheduling

costs, but those will be constant across the different techniques.

These results were measured on a 16bit Microchip PIC24FJ1 and a 64bit AMD

Athlon.2 Other processors or optimization levels will likely yield different results.

1The program was compiled for the PIC24FJ128GA010 using Version 3.24 of Microchip’s C30
compiler with the -Os optimizations turned on. It was run using the MPLAB SIM30 version 4.30
at 4MHz.

2The program was compiled using GCC 4.4.5 with the -O3 optimizations on an AMD AthlonTM64
X2 Dual Coe Processor 3600+
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These results provides some guidelines to users if more optimizations are desired.

First we consider the PIC24FJ results. Figure 16 shows the context switching

time and Figure 17 shows the additional program size for each additional yield point.

Not shown in these graphs is the additional 3 bytes of RAM each context frame of the

Labels as Values method uses. It appears that all three methods end up optimizing to

the same size and speed if there is only one yield point. The second yield point shows

a distinct difference where the Labels as Values method appears to use significantly

larger amounts of code space. This is because it must load the full address into the

state and then branch to it. Notice how the amount of time goes down significantly

as the number of yields in a given function increases. This is due to the fact that any

initial overhead it incurs in indirectly branching to an address is overcome eventually

when enough yield points exist in a single function.
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Figure 16: Context switching times in a PIC24 of different transformation methods.

For functions which have many yield points, Labels as Values appears to be the

clear winner, with Duff’s device and the generated branch tables as a second. As far

as program space goes, Duff’s device appears to vary the most, since it isn’t a simple

linear addition of programming space but it appears that the compiler is switching

between jump table implementations.
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Figure 17: Program size of different transformation methods in a PIC24.

The results for the AMD CPU give a very different set of results. Figure 18

shows the execution performance of the different methods. In this case, the gener-

ated branch tables give the fastest results, with Duff’s device appearing to decrease

performance when the number of yields is five or greater. The costs for the different

transform methods on the AMD is shown in Figure 19. On the AMD CPU, the cost

of the different methods is fairly similar, with Duff’s device appearing to secure the

smallest overheads of any of the methods.
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Currently UnStacked C defaults to using generated jump tables since it al-

lows developers to use any C compiler they want and still be able to use switch

statements. Since the values in Figures 16 and 17 are based upon one compiler and

one hardware platform, it is entirely possible that other hardware platforms will per-

form differently. The transform method is selectable on the command line and in the

C-XML-C config.ini file.

5.2.2 C Extensions

Every threading framework has a different set of low level primitives. UnStacked

C can work inside of all of these frameworks by adding a handful of hooks to the

language through attributes. This allows UnStacked C to understand the already

existing names. Attributes in C are a common way of extending capability without

breaking compatibility. We introduce two new attributes which we use to support

stackless threading in C. These two attributes are yield and blockingcall.

The first attribute we added is named yield. It is used to mark a function

which causes the routines to yield to the scheduler, or to the next thread. Some

operating systems call it something like yield or yieldTask. Others call it
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suspendCurrentThread or something similar. One restriction of UnStacked

C is that whatever the yield function is, it must take no arguments and return no

values. We have found no cases where an unconditional yield needs any arguments

nor any return values.

The other attribute is blockingcall. It is used to allocate the exact amount of

stack space for a given thread. Without UnStacked C the stack size is an educated

guess at the amount of stack space needed. A variable marked with blockingcall

notifies the compiler that it needs to change the type of a given variable to match a

function’s context. blockingcall takes an argument of the name of the function of the

desired stack space. It can take multiple arguments which means it will allocate a

union of those possible stacks, which will allocate the space required for the largest

of those threads. The context (what used to be stack space) can be allocated in the

following way:

1 int i __attribute__ (blockingcall(fun_name));

We also implemented a macro that can be used in place of the blockingcall

attribute:

1 UNSTACKED(fun_name) i;

These allow developers to only allocate the context space they need, with no

risk of overflowing the thread stacks.

The UnStacked C Scheduler

Every other threading framework has some sort of a scheduler except for UnStacked

C. Instead of having its own scheduler, it can operate with whatever scheduler the

underlying RTOS uses. This allows UnStacked C to be injected into many different

kinds of systems, without the need to customize UnStacked C.
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5.3 Evaluation and Results

In order to evaluate the performance of UnStacked C threads, we designed a simple

(somewhat contrived) application. The application is intended purely as a proof-of-

concept to demonstrate UnStacked C’s potential. This program is not an appli-

cation design toward embedded systems, instead it demonstrates the scalability of

UnStacked C. The program sends a token around a ring of one million threads.

When a thread receives the token, it simply passes it on to its neighbor.

Experiment Setup. We configured this program to run with increasing numbers

of threads, and measured three metrics: thread creation time, overall execution time

(including context-switching time), and the memory usage. The experiments were run

on a laptop running Linux, with 2 GB RAM. In the application, all the threads are

allocated and created statically. We compiled the program with regular cooperative

threads, and then the same program translated using our compiler to UnStacked

C. Note that we could not proceed beyond 100,000 threads (on log scale) with regular

cooperative threads, whereas we could get up to 10 million threads for the same

program with UnStacked C before the computer ran out of memory.

Thread Creation Time. The first experiment compares how long it takes for all

the threads in the program to get created. Figure 20 shows this comparison. The

thread creation time grows linearly with the number of threads in both cases. For

the cooperative thread case, the thread creation time grows from 6.3 × 10−5 seconds

for 10 threads to 2.94× 10−1 seconds for 100,000 threads. By comparison, the thread

creation time for UnStacked C grows from 1.89×10−5 for 10 threads to 7.71×10−3

for 100,000 threads to 7.71 × 10−1 for 10 million threads. This linear growth is

consistent with expectation: each thread needs to be initialized sequentially. These

results are not a function of memory allocation as all of the stacks are pre-allocated
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Figure 20: Comparing thread creation time of cooperative threads vs. UnStacked
C. (Both axes are presented in log scale.)

with the memory initialized, so that no allocation occurs at runtime. As can be

observed from the figure, UnStacked C consistently outperforms the cooperatively

threaded implementation.

Execution Time. The second experiment compares the execution time required

for sending 100 token messages around the ring. Figure 21 shows this comparison.

In the case of the cooperative thread implementation, the time taken grows linearly

from 1.01 × 10−3 seconds for 10 threads to 11.35 seconds for 100,000 threads. In the

case of the UnStacked C implementation, the execution time grows (linearly, again)

from 4.5 × 10−5 seconds for 10 threads to 8.63 × 10−1 seconds for 100,000 threads

to 86.1 seconds for 10 million threads. Again, the performance of UnStacked C

is consistently better than the cooperative thread implementation (by two orders of

magnitude).
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Figure 21: Comparing execution time of cooperative threads vs. UnStacked C.
(Both axes are presented in log scale.)

Memory Usage. Finally, we measured the amount of memory used by the token

ring application. This is probably the most important measure, given that the avail-

able memory is what limits the number of threads. To make as “close” a comparison

between the two implementation, we set the stack size for the cooperative thread

implementation to as small as possible (2 KB).3 For the cooperatively threaded im-

plementation, the memory use grows from 1.6 MB for 10 threads to about 238 MB

for 100,000 threads. The UnStacked C implementation grows from 1.58 MB to

about 6.6 MB for 100,000 threads to 509 MB for 10 million threads. As can be seen

from the comparison graph, the memory use grows at a significantly slower rate than

the cooperative threaded implementation. This is a manifestation of the fact that

UnStacked C does not use fixed-size stacks for each thread.

3At this level, the stack is already too small. While the program executes fine during normal
operation, any UNIX Signals cause the stack to overflow.
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Figure 22: Comparing memory usage of cooperative threads vs. UnStacked C.
(Both axes are presented in log scale.)

5.3.1 TinyThread Comparison

To further evaluate UnStacked C we added support for it inside of TinyThread [50].

TinyThread is a threading library for TinyOS which runs on a variety of different hard-

ware platforms. TinyThread uses our stack-estimator to calculate the exact amount

of stack each thread requires. This allows TinyThread to have the smallest RAM

overhead of any previous embedded multithreading system, since only the theoreti-

cally worst case RAM is allocated. This comparison gives a distinction on how the

RAM usage can be reduced beyond previous theoretical limits by using UnStacked

C.

We had to modify a single line of the source code in the applications to support

UnStacked C. Listing 42 shows the change made to the source code. This line

allocates the stack space for a given thread. We changed it to add the blockingstack

attribute, notifying UnStacked C to change the type of this object to match the
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context of the function. This change is very minor, and only needs to be done once

per function. This change could have been implemented as a C-XML-C transform,

but it would have been completely specific to TinyThread.

1 //Original Thread Stack allocation (threadBlink1_STACKSIZE is declared by the stack
analyzer)

2 uint8_t blink1Stack[threadBlink1_STACKSIZE];
3 //Modified code for UnstackedC, telling the compiler to change the type for threadBlink1s

context
4 int __attribute__((blockingstack("threadBlink1"))) blink1Stack[1];

Listing 42: Changes made to TinyThread’s stack allocation

We ran our evaluation on the five applications included in the TinyThread

distribution. We made the aforementioned modifications and recompiled all of them.

We tested them all on T-Mote Sky motes, which contains a MSP430F1611 micro-

controller [53] and they all operated properly. Figure 23 shows the memory (RAM)

comparison, while Figure 24 shows the program memory (ROM) comparison.

UnStacked C reduces the RAM consumption by an average 27.8% versus

the theoretically smallest stack size possible. The rest of the RAM consumption in

the system remains constant, only the thread stack consumption changes. So the

reduction is essentially removing the RAM overhead caused by multithreading.

UnStacked C does come at a cost. It increased the ROM by an average

of 6.9%. We deem this cost is acceptable. Microcontrollers have many times more

ROM than RAM. Also these numbers are statically allocated at compile time, letting

a programmer know exactly how much RAM and ROM a given program actually

needs.

Table III shows a list of the number of threads in each of these programs.

Notice that it is not just the number of threads the influences the RAM usage, but

it is also what the programs are doing. For instance, Blink, BlinkBarrier and

SenseT do not use the radio. This leads tp a significantly lower interrupt overhead

on each thread because many interrupts go unused. Applications which use the radio

such as Bounce and SenseBroadcastT require significantly more RAM even when
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they only have one application thread running.

Program Name Number of Threads

Blink 3
BlinkBarrier 2
Bounce 1
SenseT 1
SenseBroadcastT 1

Table III: The number of threads in each program.
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Figure 23: Comparing memory (RAM) usage of TinyThread vs. TinyThread with
UnStacked C.

5.3.2 Limitations

Our current implementation of the UnStacked C has a few limitations.

1. The current version of UnStacked C does not support recursion. A different
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implementation of UnStacked C can be used to address recursion.4 If recur-

sion is allowed the precisely required stack size cannot be calculated at compile

time, and developers may accidentally use recursion. Instead of implementing

recursion we decided it was better to reduce faults due to stack overflows and

force developers to avoid recursion.

2. We also do not support indirect function calls of blocking functions. This means

that blocking functions cannot be invoked through function pointers. This limi-

tation can be removed if the Indirection Removal transformation from Chapter 4

is applied first.

3. All blocking calls must have a fixed number of arguments. Functions with

4To change the transform to support recursion, we need to change the way contexts are defined.
We need to break the context into two parts. One part with the arguments, state and return values;
Another part with the local variables and child calls. This way the caller only needs to see the first
part of the context, and the second part of the context need not be allocated. This creates a system
with essentially a dual stack and new possibility for stack overflows in the context stack.
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variable numbers of arguments can exist in the code, but they cannot block.5

4. There is no incremental compilation. When a single part of a program is modi-

fied, and needs to be re-compiled, everything in the entire application needs to

be re-compiled. In other words, pre-compiled libraries cannot be used, at least

not in a blocking context. Their source code could be added to the project, and

they too would be in-turn compiled into the application. This is an artifact of

all whole-program compilers [78] and not specific to UnStacked C.

5.4 Summary

In this chapter, we have presented UnStacked C, a C-to-C translation approach

to building stackless C continuations. The most important contribution of the work

presented here is that it enables richer design strategies that were previously too

“cost-prohibitive” in terms of memory utilization. It grants these design strategies

without inherent risk of stack overflows.

The UnStacked C translator that we have implemented takes as input a C

program written using cooperative threads and automatically generates the corre-

sponding program that is an event-driven state machine. It performs this with only

minor, if any, changes of the applications themselves.

Our simple proof-of-concept application can run with a million threads while

occupying less than 50 MB of RAM. We see this as a paradigm leap: design strategies

that were previously completely ignored can now be re-visited, and actually imple-

mented.

More importantly, for embedded system programming, we see UnStacked C

as an enabler to designing richer functionality on low-resource devices. Sensor nodes,

5This is a symptom of the implementation, and could be fixed by a more complicated transforma-
tion of the source code. It is also possible to fix this limitation with another transform that removes
the variable number of arguments.
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for example, that have been designed to be dumb data collectors because of the

expressiveness limitations of the programming model can now be armed with extra

functionality. We have applied UnStacked C to a number of existing embedded

applications and have reduced memory consumption by more than 25%.

The current implementation of the UnStacked C compiler is a C-to-C trans-

lator built in Python that uses C-XML-C to parse cooperatively multithreaded C

programs, and then generates the corresponding event-driven program. In Chapter 6

we extend UnStacked C to support preemptive threading with Lazy Preemption.



CHAPTER VI

UnStacked C with LP

Lazy Preemption is a method of translating preemptive multithreads into cooper-

ative multithreads. We implement UnStacked C with Lazy Preemption inside of

UnStacked C as a C-XML-C transform and call it UnStacked C with LP. We

will evaluate it against TOSThreads, an embedded preemptive multithreading sys-

tem.

Preemptive multitasking describes a computer system where the tasks can be

preempted, or seized from the processor, stored, and then the next task is allowed

to run for some time. This allows many tasks to run seemingly simultaneously on

a computer system. It also means that each task gets a certain amount of time on

the processor prior to preemption. In a cooperative multitasking system each task

runs until it voluntarily releases the processor to the next task. In a cooperative

multithreading system there is no basis in time, instead it is when a task yields to

the next task.

Preemptive multitasking is fairly safe since there is little or no interactions

107
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Figure 25: Yield points for an example function with cooperative multithreading.

between the separate tasks. In the case of preemptive multithreading1 the risks

become significant since the threads share memory. The issues occur because multiple

threads can be attempting to use the same resource, in this case memory, at the same

time. Many of these issues do not occur with cooperative threads.

Cooperative multithreading has a different set of problems. Cooperative mul-

tithreading relies on each thread to relinquish control. What happens if a thread does

not relinquish control in a timely manner? Then the entire system can be slowed or

even hung because of a single thread.

A cooperative thread can only yield at specifically defined points. This allows

programmers to reason about how the system will operate. In fact they can reason

about it as a finite state machine. An example program using cooperative threads

is shown in Figure 25, with the possible yield points marked. These yield points are

easy for programmers to identify.

In preemptive multithreading, programmers cannot identify all of the possible

yield points from the source code. Preemptive multithreading allows preemption to

1Tasks are analogous to processes or programs on a PC. Threads are a type of task which all
share memory with each other.
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Figure 26: Yield points for an example function with preemptive multithreading.

occur at any instruction. A single line of source code may translate into zero to

many instructions. Since a programmer cannot know exactly how many instructions

a given line of source code will emit, they cannot know all of the different ways it can

be preempted. In Figure 26, all of the preemption points cannot be identified by pro-

grammers. After a thread is compiled, it does have a limited number of instructions,

so the number of yield points becomes finite. Prior to compilation, developers must

assume that there is an infinite number of preemption points in any given preemptive

thread.

These problems can be distilled down to preemptive multithreading having

too many yield points and cooperative multithreading having too few. It would make

sense that some middle ground can be found, namely Lazy Preemption. Figure 27

shows the yields points to the same function if Lazy Preemption is used. When

comparing with the cooperative multithreading yield points from Figure 25 notice

there are two new yield points added at the end of each loop. These are not typical

yield points, instead they conditionally yield based upon the value of some global flag.

The flag is set when the scheduler wants to preempt the thread. When the thread gets

to a conditional yield point, it reads the value, and if it is set it yields. Holenderski
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Figure 27: Yield points for an example function with lazy preemption.

et al. [36] calls these optional preemption points when they were manually inserting

them in the application. This is different than Lazy Preemption, since they chose

where these optional preemption points were placed, as opposed to putting them in

every loop.

6.1 The Algorithm

We implement Lazy Preemption as an option inside of the UnStacked C transform.

The algorithm can be described in 3 steps:

1. Determine the call graph

2. Identify which functions are blocking and therefore need to be transformed

3. In each blocking function, insert an optional preemption point at the end of

each loop, and prior to each goto statement which branches backwards.

We mentioned in the algorithm that we need to know which functions are

blocking and we can use the yield statements, but that will not get computational



111

functions marked as blocking. This is because a straight computational function

may not call yield nor any other blocking function, so it will not get transformed by

UnStacked C. To support this, we added a blocking attribute to functions so that

developers can mark functions as blocking. This allows them to become translated

by Lazy Preemption.

6.2 Analysis

Lazy Preemption injects these optional preemption points, which allows it to preempt

only at specific times. Since preemption can only occur at rational points in the

source code, it means that all lines of code with non-blocking operations in them are

implicitly atomic. This atomicity removes all possibilities of multi-word data faults

of a single variable. This stems from a single line of C code being non-preemptable

with Lazy Preemption so any multi-word writes can complete.

Since UnStacked C forces all writes to complete when it yields (since it is

truly a function return). This means that it is not possible to have a temporal

data fault between two UnStacked C threads. So following that observation, using

UnStacked C with LP also cannot have temporal data faults between threads.

It is important to note that some temporal and multi-word data faults can occur

between interrupts and UnStacked C with LP threads still, but not between the

different threads.

Like Lazy Preemption, Python only allows preemptions to occur at specific

points. Python uses a global interpreter lock (GIL) [72] to ensure that only one

thread at a time can be executing in its virtual machine (VM).2 Python’s GIL is

essentially a mutex which the executing thread holds until a byte-code instruction.

This makes every python instruction atomic, even if the operations take many physical

2A virtual machine is a software device that acts like its own kind of computer. Instead of running
on machine language instructions like a microprocessor it uses an arbitrary instruction set called
byte-code.
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instructions to execute. This eliminates all temporal and multi-word data faults of a

single variable.

6.3 Evaluation and Results

We evaluated Lazy Preemption in two ways. First we measured the overhead Lazy

Preemption incurs by manually performing the transform and directly measuring

the overhead compared with a non-threaded version. Second, we compare it with

TOSThread, which is a preemptive multithreading library for embedded systems, by

recompiling the same applications using UnStacked C with LP.

6.3.1 Lazy Preemption Overhead

To evaluate Lazy Preemption preemption we use a microbenchmark. The microbench-

mark calculates the lowest number and is shown in Listing 28. It has two loops which

iterates through all of the numbers until it finds one that evenly divides between

the first ten numbers.3 We added two optional preemption points to the end of

each loop as shown in Listing 29. We then ran both applications on a Microchip

PIC24FJ256DA210.

Table IV contains the results from running the code in Listing 29 and List-

ing 28. There is a distinct growth in code size. The growth in code size is a cost

and must be understood when using Lazy Preemption. The performance decrease in

execution time is negligible. We do not consider this a significant cost.

These costs can be offset in space and performance because other primitives

do not have to be employed to protect shared variables. This is doubly true with the

performance decrease.

3This is taken from problem 5 of Project Euler. http://projecteuler.net/index.php?
section=problems&id=5

http://projecteuler.net/index.php?section=problems&id=5
http://projecteuler.net/index.php?section=problems&id=5


113

1 long int lowerCommonDen1to10(){
2 long int i;
3 int j;
4 for(i=20;i<MAX_COUNT;i++){
5 for(j=2;j<MAX_LEVEL;j++){
6 if(i % j != 0)break;
7 }
8 if(j == MAX_LEVEL)return i; //Return the value
9 }

10 return 0;
11 }

Figure 28: Calculation of lowest common denominator of the numbers from one to
ten

1 long int lazyPreemption(){
2 long int i;
3 int j;
4 for(i=MAX_LEVEL;i<MAX_COUNT;i++){
5 for(j=2;j<MAX_LEVEL;j++){
6 if(i % j != 0)break;
7 if(flag)return 1; //Optional Preemption point
8 }
9 if(j == MAX_LEVEL)return i;

10 if(flag)return 1; //Optional Preemption point
11 }
12 return 0;
13 }

Figure 29: Calculation of lowest common denominator of the numbers from one to
ten with Lazy Preemption

6.3.2 TOSThreads Comparison

To evaluate UnStacked C with LP we modified portions of the TOSThreads ker-

nel to support UnStacked C. The first change was to remove the platform spe-

cific stack-swapping operations, and replace them with a yield function to notify

UnStacked C. Next we replaced the thread context switches in the TOSThread

scheduler with executions of the UnStacked C threads.

We then changed the stack allocation routines to context allocation routines.

This is different than TinyThread comparison from Chapter 5, in that the applications

in TOSThreads attach the desired stack size and the TOSThread kernel allocates the

stack space. We changed the allocator to ignore the user’s size and instead allocate

the required context size instead. This means that the TOSThread applications do

not have to change to be recompiled with UnStacked C with LP.
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Calculation Calculation with Lazy Preemption Percent Difference
Function Size 66 80 21%
Time 134.9ms 136.0ms 0.82%

Table IV: Calculation time and size with and without Lazy Preemption

The last change involved changing how preemption works with interrupts in

TOSThreads with UnStacked C. TOSThreads has a unique priority method where

it attempts to force threads to be a lower priority than the event-driven system, and

it uses a postamble on each interrupt to accomplish it. Normally the postamble must

be added to each interrupt handler that checks to see whether it is in a thread and

if so, it checks to see if there are any tasks in need of running. If both of these are

true, then the thread goes and is preempted in the interrupt handler.

This work also uncovers a bug in TOSThreads where they attempt to preempt

(accidentally) inside of an event handler. This is likely due to them attempting to use

a software timer to preempt the threading system. Since software timers all share a

hardware timer and do not run in interrupt handlers, they cannot actually preempt

threads in the system. This serendipitous mistake still allows the system to operate

because the software timer posts a task to the main loop, which has a higher priority,

which will in turn force a preemption of the current thread. So preemption still works,

but there is significant overhead in its implementation.

In UnStacked C with LP the postamble simply checks to see if there are

more tasks waiting to be executed (which should be treated as higher priority accord-

ing the Klues et al. [44]) and then sets the preempt flag. With Lazy Preemption a

preempting interrupt only needs to set the flag notifying the current running thread

that it is time to preempt. If there is no thread running, then it is harmless to set the

flag, so additional checks in each interrupt are not required, as they are in traditional

TOSThreads. In TOSThreads since the main application (which runs the tasks and

events) is a thread, they leave the preemption timer on the entire time there is one

additional thread in the running state. In our implementation this is not required
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Figure 30: CPU Current Con-
sumption of Blink in TOSThreads
vs. UnStacked C

Figure 31: CPU Current During
Thread Execution Consumption
in TOSThreads vs. UnStacked
C

since the main system is not a thread, it only runs when two or more application

threads are actually for contending for processor time.

Power

When comparing TOSThreads and UnStacked C with LP we found that these

different ways of implementing preemption have distinct impacts on system power.

Since the applications being executed are sensornet applications which may run on

batteries for extended amounts of time, power consumption of the applications is

absolutely critical. Common sense tells us that UnStacked C with LP should

consume slightly more power due to the processing overhead that we measured in

Section 6.3.1. The results turned out different than expected.

We measured the power consumption of a T-Mote Sky mote, which contains

a MSP430F1611 microcontroller [53]. We modified the Blink application, which nor-

mally blinks three light emitting diodes (LEDs) at different rates. We changed it

so that instead of blinking the LEDs it kept turning them off. This allows the code

generation to be identical except for the three instructions which normally turn the

LEDs on, now turn the LEDs off.

We measured this test program on the same board, first running the unmodified

TOSThreads and then again using UnStacked C with LP, shown in Figure 30.
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The program is idle for 200 ms, then it wakes up and changes the LEDs, then goes

back to sleep. In the TOSThreads implementation we see extra interrupts firing

constantly, due to the preemption timer firing. This causes the system to wake up,

find that there is no thread running and then exit. A detailed view can be seen in

Figure 31. When using UnStacked C with LP, there is less interrupt overhead4,

then there is with original TOSThreads.

In total, UnStacked C with LP reduces the processor utilization from TOSThreads

11.58% down to 0.68%. This means that the same application compiled with UnStacked

C with LP can run more than fifteen times longer than one that was compiled with

only TOSThreads. This change is minor compared to the change in memory usage.

Memory Usage

Since memory usage reduction is a major motivator for UnStacked C with LP,

we evaluated the memory utilization of seven existing programs for TOSThreads.

We recompiled these applications using TOSThreads alone, and then again with

UnStacked C with LP. These applications were not modified prior to compiling.

UnStacked C with LP uses significantly less RAM than regular TOSThreads

as shown in Figure 32. In all of these applications, UnStacked C with LP yields a

smaller RAM footprint. The reduction in RAM is 35% on average. This reduction in

memory is proportional to the amount of memory which was allocated for the thread

stacks.

In Figure 32 we separated the thread stacks from the base application to try

to show the lower limit of memory savings that could possibly occur. The base

application does not change between the TOSThreads and the UnStacked C with

LP, only the thread stack space changes. On average, the original stack usage of the

4Interrupt overhead is the amount of processor time that is taken up by interrupts themselves.
Since TOSThreads has a larger postamble on their interrupts, it will take longer to execute those
interrupts, taking more processor time, thereby increasing the overall interrupt overhead.
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Figure 32: TinyOS RAM usage: TOSThreads vs. UnStacked C

original TOSThreads application can be reduced by more than 80% on average.

There are two main reasons why there is more savings in some applications

and less in others. The first reason is that there are different numbers of threads in

these applications (1-6 threads). The second reason is that the developers of these

applications all picked different stack sizes. The number of threads and the individual

stack sizes are shown in Table V. They range in values 200 bytes per threads all the

way up to 800 bytes per thread. The variety in these stack sizes stems from the fact

these stack sizes were educated guesses. This means that there may be a chance of

stack overflow in these applications.

This memory reduction comes at a cost. Figure 33 shows how the ROM (flash)

grows an average of 12%. This includes the overhead from the normal UnStacked

C transformation as well as the Lazy Preemption transformation. It also removes the

processor specific stack swapping routines and instead uses custom swapping routines

for each thread.
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Program Name Number of Threads RAM per Stack (bytes)

Blink 4 200
Bounce 4 600
BaseStation 6 200
RadioStress 3 300
TestBlockStorage 1 500
TestCollection 1 800

Table V: The number of threads and the size of the stacks define in TOSThreads in
each program.
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Figure 33: TinyOS Flash usage: TOSThreads vs. UnStacked C

The overhead from flash is expected. There is significant code generated in

C. We already know that the injected yield points can create an overhead of up

to 25% from the simple benchmarks. One of the reasons that the overall program

size has not increased to 25% is because only the threaded source code increases

and these applications are threaded/event-driven hybrids. Another reason is that

these programs are doing more things without loops, so the instruction to optional

preemption point ratio is significantly lower than in the microbenchmark.
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6.4 Limitations

The limitations from regular UnStacked C still exist when UnStacked C with

LP. These are described in depth in Chapter 5 in Section 5.3.2. There are no additional

limitations added from Lazy Preemption.

6.5 Summary

Lazy Preemption is a novel preemption technique. It translates preemptive threads

into cooperative threads by injecting optional preemption points throughout the code.

When the scheduler wants to preempt the current running thread, it sets a flag, and

when the current running thread hits an optional preemption point it yields.

We then extended UnStacked C with LP in a C-XML-C transform. This

enables existing applications to be recompiled into stackless preemptive multithreads.

We evaluated these optional preemption points in a simple application. We

found the processor overhead is insignificant, less than one percent. The program

space utilization is significant, at 25%.

UnStacked C with LP can recompile existing applications with some mi-

nor changes to the scheduler. We evaluated the power consumption in real world

applications, finding UnStacked C with LP to use fifteen times less power than

the previously existing applications.

We used UnStacked C with LP to recompile seven existing example appli-

cations reducing the overall memory consumption by 35% on average. The memory

required for the threads themselves is reduced by more than 80%. The program space

utilizations is increased by only 12% in real-world embedded applications. It achieves

all of this without a complex stack analysis required which knows all of the interrupt

complexities of the rest of the system.

Beyond all of these values, it reduces safety risks in embedded systems, since
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thread stack overflows are now impossible. It also enables developers to understand

how much memory each thread uses, allowing them to plan larger programs accord-

ingly. This enables embedded developers to use preemptive multithreads with the

same ubiquity as PC developers without creating new risks.



CHAPTER VII

Conclusion

Writing software for embedded systems is difficult. We provide several new tools

aimed at improving the productivity of embedded system developers. We enable the

use of cooperative and preemptive multithreading without worrying about stack allo-

cations or stack overflows. We allow developers to remove indirection and provide a

seamless way to implement other compiler-level optimizations. We provide developers

a new mechanism for building compilers.

All of these improvements come with the ability to recompile existing appli-

cations. This means that legacy applications can be rebuilt to target smaller, lower

cost hardware than originally intended. It also can allow new features to be added to

existing systems using multithreading without the cost.

7.1 Thesis

We set out to defend the following thesis:

1. A flexible whole-program compiler framework can enable building compilers

that can detect and prevent certain faults, or perform optimizations, in embed-

121
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ded system software at compile time.

2. Cooperative multithreads can be translated by a compiler into event-driven

state machines. These state machines could have lower memory requirements

known at compile time, preventing thread stack overflows.

3. Preemptive multithreads can be translated into similar event-driven state ma-

chines with the same bounding of memory requirements.

These new tools can only work when programs are compiled using whole-

program compilers. These whole program compilers require all source code for a

given application to be compiled together simultaneously. Whole-program compilers

can be built from existing compilers or compiler frameworks, but those all required

the developers to learn a new language or at least understand an enormous body

of code written by someone else. Instead we provide a source to source compiler

framework enabling developers to perform analysis or transformations on C source

code in their language of choice. Our framework, called C-XML-C, satisfies the first

claim of the dissertation.

The flexibility of C-XML-C makes compiler writing more accessible to pro-

grammers at large, and not just the few who know compiler internals. We have

demonstrated this flexibility by writing eight different transforms in four different

programming languages. C-XML-C is a flexible whole-program compiler framework

we use to build compilers. Some of these compilers (we call transforms) can detect

and prevent faults in thread-safety, data concurrency (Section 4.3.3) and stack over-

flow (Chapters 5 and 6) at compile time. Other compilers perform optimizations:

tail recursion (section 4.3.2), indirection removal (Section 4.3.7) and function inlining

(Section 4.3.4). All of these compilers are focused on embedded system developer

needs.



123

Some of these transforms improve system safety, while others allow developers

access new system optimizations. All of these reduce the complexity that developers

face while designing software components for embedded systems. The most important

of these transforms is the translation of multithreaded programs into event-driven

state machines.

The translation of multithreaded programs into event-driven state machines

has been proposed and implemented in the past in limited circumstances. We provide

a way to compile arbitrary cooperative multithreaded C code into event-driven state

machines. Our transform that implements this is called UnStacked C. UnStacked

C satisfies the second claim of the thesis. Stackless threads means that stacks need not

be allocated and that thread stack overflow is impossible. Prior attempts at stackless

multithreading simply disallow local variables and nested function calls, making these

approaches unusable for legacy code. We recognize that programs use local variables

and nested functions, and that these require some storage location. UnStacked C

translates the source code to reference a context for each thread, and allows developers

to allocate the exact required context for each thread.

We have successfully implemented UnStacked C as a C-XML-C transform and

evaluated it against a multithreaded system for embedded systems named TinyThread.

TinyThread has the lowest stack consumption of any multithreading system since it

uses stack analysis to allocate only the theoretical minimum stack space via stack

analysis. We recompiled existing TinyThread programs and reduce the overall mem-

ory requirements by more than 25% beyond the theoretical limit. All of this is

accomplished without creating any risk of stack overflow.

We also ran a microbenchmark on a PC using UnStacked C. We were able to

achieve over one million threads in less than 50 MB of RAM. While this is out of the

focus of our primary research in this dissertation, it leads to new research directions

using previously ignored design strategies.
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UnStacked C also fixes possible faults in data sharing between two coop-

erative threads. Since variables and registers are not pushed onto a physical stack,

temporal data faults cannot occur. This is due to the fact that the threads are no

longer threads, but are event-driven state machines, which run one at a time. Since

the functions themselves will return, all of the variables must be written before exit-

ing. This means that they will not be caught in registers during a task switch — and

cannot create a temporal fault.

We have proposed a new type of preemption called Lazy Preemption. It forces

preemptions to only occur at well-defined points in a program’s execution. It is

implemented by injecting these optional preemption points at the end of each loop

iteration. The interrupt which used to force a task switch now sets a flag. This flag

is checked at these optional preemption points, and if it is set than the thread will

yield. This effectively translates preemptive threads into cooperative threads, but

with more yield points to enable preemption.

We then translate the entire preemptive multithreaded application into an

event-driven state machine. We implemented Lazy Preemption inside of UnStacked

C. UnStacked C with LP satisfies the final claim of the thesis. This enables

existing preemptive multithreaded applications to be recompiled into event-driven

state machines. Once translated, these inherit the same safety as other UnStacked

C applications, in that temporal data faults cannot occur. It is also important to note

that the lazy transformation removes the possibility of multi-word data faults, since

it only yields in between lines of source code. This allows a given line to complete

executing regardless of how many instructions it takes.

We tested UnStacked C with LP by recompiling existing applications ini-

tially written in a preemptive multithreading system called TOSThreads. We mea-

sured the power consumption in one of these applications and found that UnStacked

C with LP uses 15 times less power. The memory used in these applications is re-
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duced by 35% on average. It reduces the memory required for the given threads by

more than 80%.

UnStacked C reduces RAM usage at a cost of an increase in program space.

When we measured UnStacked C against TinyThread we saw an increase in pro-

gram space of 6.9% on average. When we measured UnStacked C with LP on

TOSThread applications we saw an increase of program space of 12%. We see these

costs as nominal compared to the reduction in memory usage. All of these appli-

cations only have a single instance of every thread, in systems that have multiple

instances of each thread, only the number of contexts increase, not the program size.

This means that other applications may have a more significant benefit with a smaller

cost.

The benefits to embedded systems is clear: Multithreading in embedded sys-

tems is now possible without the traditional risks of multithreading at only a nominal

cost. This enables developers to write applications without such an in-depth knowl-

edge of multithreading systems. It also allows them to write larger applications than

the RAM would typically allow.

7.2 Future Work

We view C-XML-C as a technology that will enable other research. It lowers the barrier

to manipulating C compilers, allowing many different developers to look at problems

differently. We initially built it so that we could build the complex transformations

required to perform UnStacked C. It took on a life of its own when we realized

its flexibility and ease of use. In this regard, C-XML-C may enable a large body of

research outside of the scope of embedded systems.

We view UnStacked C in a similar light. We view UnStacked C as a foun-

dation for many different types of multithreading systems to come. In the embedded
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systems world, real-time operating system (RTOS) vendors are constantly looking to

out perform each other, and UnStacked C is one such approach. If UnStacked

C with LP is used by one such RTOS, it is likely that others will follow to remain

competitive.

Outside of the embedded systems world, UnStacked C can lay the foundation

for more complex threading system on PCs and servers. High-concurrency servers

often require many threads and are limited by the constraints of the overhead of

threads and existing design patterns. UnStacked C could be extended to relieve the

constraints of multithreading overhead and increase performance of existing systems.

.
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