Classificiation of Atrial Fibrillation Prone Patients Using Electrocardiographic Parameters in Neuro-Fuzzy Modeling,

Mirela Ovreiu
Cleveland Clinic Foundation, ovreium@ccf.org

Marc Petre
Cleveland Clinic Foundation, petrem@ccf.org

Daniel J. Simon
Cleveland State University, d.j.simon@csuohio.edu

Daniel Sessler
Cleveland Clinic Foundation, sessled@ccf.org

C Allen Bashour
Cleveland Clinic Foundation, bashoua@ccf.org

Follow this and additional works at: http://engagedscholarship.csuohio.edu/enece_facpub

Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know!

Publisher's Statement

Government information at DOE websites, including the OSTI site, is in the public domain. Public domain information may be freely distributed and copied, but it is requested that in any subsequent use the Department of Energy be given appropriate acknowledgement. When using the OSTI website, you may encounter documents, illustrations, photographs, or other information resources contributed or licensed by private individuals, companies, or organizations that may be protected by U.S. and foreign copyright laws. Transmission or reproduction of protected items beyond that allowed by fair use as defined in the copyright laws requires the written permission of the copyright owners.

Original Citation

Repository Citation

This Presentation is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Classification of Atrial Fibrillation prone Patients using Electrocardiographic Parameters in Neuro-Fuzzy Modeling

Mirela Ovreiu, Marc Petre, Daniel Simon, Daniel Sessler, and C Allen Bashour

INTRODUCTION

Atrial Fibrillation (AF) is a significant clinical problem as it can degenerate into its chronic manifestation, create hemodynamic instability and increase the risk for stroke. Moreover, the complications of cardiovascular postoperative AF often lead to longer hospital stays and higher health care costs.

The literature showed that AF may be preceded by changes in electrocardiogram (ECG) characteristics such as premature atrial activity, heart rate variability (HRV), and P-wave morphology. We hypothesize that the limitations of statistics-based attempts to predict AF occurrence may be overcome using a hybrid neuro-fuzzy prediction model that is better capable of uncovering complex, non-linear interactions between ECG parameters.

MATERIALS AND METHODS

A database of long duration ECG signals was collected and the demographics are presented in TABLE 1. The inclusion criteria were no preoperative chronic AF and no perioperative pacing.

TABLE 1 – DEMOGRAPHICS OF DATABASE

<table>
<thead>
<tr>
<th></th>
<th>AF</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>male</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>15</td>
</tr>
<tr>
<td>age</td>
<td>average</td>
<td>70</td>
</tr>
<tr>
<td>(years</td>
<td>range</td>
<td>46-88</td>
</tr>
</tbody>
</table>

ECG parameters describing PACs, HRV, and P-wave morphology were computed for every minute of data recording for all of the 98 patients of the training data set according to standards evocated by the Writing Group in [1]. The following 15 crisp valued parameters were considered for neuro-fuzzy classification: 1) Premature Atrial Complexes/min, 2) HRV: Mean, Standard Deviation, Root Mean Square, Total Power, High Frequency, Low Frequency, Low/High Frequency, Low Frequency normalized, Approximate Entropy, and 3) P-wave morphology: duration, amplitude, shape, inflection point, energy ratio. The details of ECG parameter computation are provided in [2].

During network development, pairs of ECG inputs and known outputs were required to train the network. For AF patients parameters computed for 30 minutes prior to AF onset were used as inputs and the outcome was set to 1. While for control group the 30 minute interval was selected before the end of the registration and outcome was zero. A total of 2654 data pairs were used in the training step.

The training model was based on a Sugeno inference system [3]. Membership functions were Gaussians with parameters computed by the class separation process and the total of 25 clusters. Multiple optimization algorithms were tried and Back Propagation over 3000 epochs was selected as the most appropriate.

RESULTS

The preliminary neuro-fuzzy model was able to classify the training data set with the following performances: 99.42% sensitivity, 99.89% specificity, and 99.74% accuracy see Fig. 1. The results confirm that there is sufficient information for a model to distinguish between control and AF patients 30 minutes prior the AF event to clinical diagnosis.

REFERENCES