
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

ETD Archive 

2012 

Ellagic Acid-Mediated CK2 Inhibition;a Natural, Multifunctional Ellagic Acid-Mediated CK2 Inhibition;a Natural, Multifunctional 

Strategy to Trigger Cervical Cancer Cell Death in Vitro and in Vivo Strategy to Trigger Cervical Cancer Cell Death in Vitro and in Vivo 

Hanan F. Mohammad 
Cleveland State University 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive 

 Part of the Chemistry Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Mohammad, Hanan F., "Ellagic Acid-Mediated CK2 Inhibition;a Natural, Multifunctional Strategy to Trigger 
Cervical Cancer Cell Death in Vitro and in Vivo" (2012). ETD Archive. 206. 
https://engagedscholarship.csuohio.edu/etdarchive/206 

This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted 
for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/206?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


 

 

ELLAGIC ACID-MEDIATED CK2 INHIBITION, A NATURAL, 

MULTIFUNCTIONAL STRATEGY TO TRIGGER CERVICAL 

CANCER CELL DEATH IN VITRO AND IN VIVO 

HANAN F. MOHAMMAD 

Bachelor of Science in Medical Technology 

Wright State University 

June, 2002 

 

Submitted in partial fulfillment of the requirements 

For the degree 

DOCTOR OF PHILOSOPHY IN CLINICAL/BIOANLYTICAL CHEMISTRY 

At the 

CLEVELAND STATE UNIVERSITY 

May, 2012 



This dissertation has been approved for the Department of Chemistry  

And the College of Graduate Studies by:  

Dr. Michael Kalafatis_____________________________________________________ 

Dissertation Committee Chairperson 

______________________________ 

Department & Date 

Dr. Daniel J.Lindner_______________________________________________________ 

Dissertation Committee Member 

______________________________ 

Department & Date 

Dr. Crystal M. Weyman____________________________________________________ 

Dissertation Committee Member 

_______________________________ 

Department & Date 

Dr. Edward Plow ________________________________________________________ 

Dissertation Committee Member 

_________________________________ 

Department & Date 

Dr. David Anderson______________________________________________________ 

Dissertation Committee Member 

________________________________ 

Department & Date 

Dr. Aimin Zhou__________________________________________________________ 

Dissertation Committee Member 

_________________________________ 

Department & Date 

 



 

To My Dear Parents Fathi & Ezziah 



ACKNOWLEDGEMENT  

     I dedicate this dissertation to my parents Fathi Mohammad and Ezziah Alhindi. Their 

continuous encouragement and support made this achievement possible. I also like to 

thank my brother Husam, and my sisters, Nadia, Nada, Elham and Eman for being there 

when I needed them.   

     I owe my deepest gratitude for my advisor Dr. Michael Kalafatis for giving me the 

honor to work with him on this fascinating project. His deep knowledge and expertise 

inspired me and set the foundation to this achievement. He taught me a lot about the 

biochemistry of cancer and I gratefully thank him for his supervision, advice and 

guidance. 

     I’m pleased to thank my committee members, Dr. Daniel J. Lindner (our collaborator 

from Cleveland Clinic) who closesly helped me by providing advice, ideas, and technical 

support. His knowledge and expertise in cancer research contributed crucially to my 

knowledge and skills. Thank you so much Dr. Lindner. I thank Dr. Crystal Weyman 

whose constructive criticism and valuable time she kindly granted contributed to my 

growth as a scientist tremendously. Drs. Edward Plow, David Anderson, and Aimin 

Zhou, your time and effort are greatly appreciated. I am honored to work with all of you. 

      Finally, I would also like to thank Richelle Emery and Michelle Jones in the 

Chemistry office for all their administrative support over the years. My colleague at 

Cleveland Clinic, Yvonne A. Parker, and all fellow graduate students and staff at 

Cleveland State University. It’s been great to study and work with all of you. 



v 

 

ELLAGIC ACID-MEDIATED CK2 INHIBITION, A NATURAL, 

MULTIFUNCTIONAL STRATEGY TO TRIGGER CERVICAL CANCER CELL 

DEATH IN VITRO AND IN VIVO  

HANAN F. MOHAMMAD 

 

ABSTRACT  

Targeting CK2 for cancer therapy has proven effective in inhibiting tumor growth in 

several histology’s. The main goal of this study was to acquire pre-clinical data on a 

naturally occurring CK2-inhibitor (ellagic acid) in support of a human clinical trial. In 

vitro analysis included testing the spectrum of ellagic acid anti-cancer activity, defining 

the mode of growth inhibition in cancer cells and its impact on biochemical and 

molecular pathways. In vivo studies included determination of ellagic acid inhibitory 

effect in animal tumor models and toxicity analysis. We found that CK2 inhibition 

mediated by ellagic acid, was effective in inhibiting the growth of a wide spectrum of 

human cancer cells. These include breast cancer (MCF-7), kidney cancer (ACHN), colon 

adenocarcinoma (SW480), glioblastoma (U87), prostate cancer (DU-145), melanoma 

(WM164) and HPV -positive (HeLa) and -negative (C33A) cervical carcinomas. We used 

HeLa and C33A cell lines to determine EA mechanisms of action and impact on 

oncogenic, proliferative, and apoptotic pathways. Since CK2 controls over 300 target 

proteins involved in major biochemical and molecular pathways, we found that ellagic 

acid treatment was able to inhibit HPV oncogene expression, interrupt oncogenic 

pathways and induce anti-proliferative and pro-apoptotic pathways in HeLa cells. In 
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C33A cells, CK2 inhibition bypassed tumor suppressor p53 and pRb mutation and 

induced apoptosis by inhibition of anti-apoptotic proteins IAPs. Comparing HeLa and 

C33A cells response to ellagic acid treatment, C33A cells were more sensitive to ellagic 

acid treatment compared to HeLa. The expression of HPV oncogenes in HeLa cells could 

delay HeLa response to death stimuli exerted by CK2 inhibition. CK2 inhibition and 

subsequent IAPs repression is the common event occurring in HeLa and C33A cells. 
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CHAPTER I 

INTRODUCTION 

     Cancer has now become the leading cause of death worldwide. It’s a disease that’s 

characterized by irregular proliferation, inappropriate cell survival, decreased apoptosis 

(programmed cell death), immortalization, invasion of surrounding tissue and metastasis 

to other organs. Cancer is responsible for high morbidity and mortality rates worldwide, 

specifically in the United States. According to National Cancer Institute (NCI) 

Surveillance Epidemiology and End Results (SEER), the estimated number of men and 

women diagnosed with cancer of all sites is 1,529,560 of which 569,490 die in 2010 

statistics. Relating cancer immortality to perturbed proteins signal transduction and to 

subsequent uncontrolled cellular growth and tumor development have originated the 

concept of Signal Transduction Therapy (STT) in molecular medicine (1). Protein kinases 

are the regulators of cell signaling pathways controlling cellular growth, proliferation and 

apoptosis. The fact that some kinases abnormal activity can cause major diseases, in 
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addition to their ability to be readily inhibited by catalytic site-directed molecules, has 

resulted in kinases emerging as the drugable kinome that can be targeted for therapy of 

most human diseases. As a general rule in cancer therapy, an effective target for cancer 

treatment must have a biological function that is indispensible in the cell, its abnormal 

activity and dysregulation must be  related to the malfunction of the cell, and be specific 

to cancer cells compared to the normal one (2).  Based on growing evidence in cancer 

research, one can argue that protein kinase CK2, previously known as Casein Kinase II 

demonstrates these traits. Therefore, the emergence of CK2 as suitable target for cancer 

therapy is put forth in this work. 

1.1 CK2 Characteristics. 

     Protein Kinase CK2 is a serine/threonine kinase (3). It recognizes acidic sites 

generally specified by clusters of carboxylic acid and/or pre-phosphorylated side chains 

downstream from the Ser/Thr residues with the one at position n+3 determining the 

minimum consensus sequence S/T-X-X-D/E (3) (4). CK2 exists as a tetramer composed 

of two catalytic subunits α (42-44 kDa), and α` (38 kDa), which exists in heterogeneous 

or homogenous nature, and two regulatory subunits β (25 kDa) (3, 5). Even though, the 

catalytic subunits exhibit more than 90% sequence similarity, they are the product of 

different genes and each has very distinctive C-termini, which suggests functional 

specialization (4, 6). A natural property of CK2-α catalytic subunit is the ability to utilize 

both ATP and GTP as phosphate donors while β subunit confers stability and substrate 

specificity of the enzyme (4, 7). CK2 phosphorylates more than 300 proteins which 

accounts for 18-27% of the cellular phosphoproteome localized in various cellular 
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compartments (3, 8). Protein kinase CK2 targets are involved in essential signaling 

pathways controlling vital cellular mechanism such as cell cycle, apoptosis, DNA 

replication and gene expression (4).  

1.2 CK2 Is Indispensible.  

     CK2 is essential to cellular growth, proliferation and survival. Previous knockout 

study of CK2α in Saccharomyces Cerevisiae resulted in a drastic decrease in yeast 

viability (9). In mice models, disruption of CK2α lead to embryonic death with multiple 

defects found in heart and neural tube (10). In different studies, CK2β knockout mice 

proved to cause embryonic death as well, while CK2α’ knockouts produced sterile mice 

offspring (11, 12). Therefore, CK2 function in the cell has been established to be 

indispensible.   

1.3 CK2 in Cancer versus Normal Tissue. 

     Protein kinase CK2 is ubiquitously expressed in all cell types. However, CK2 

distribution and expression level differ from one cell type to another and discriminates 

between normal and malignant cells. This difference in expression and distribution 

correlates with cellular state of proliferation and growth. CK2 is over-expressed in tissues 

involved in organogenesis or normal highly proliferative cells as well as all types of 

cancer tissue (7, 13). Comparing CK2 activity within normal tissue, it was found to be 

higher in the testis, brain and liver whereas in kidney, spleen, skeletal muscle, cardiac 

muscle and adrenal gland is relatively lower (7). However, over-expression of CK2 in 

normal highly proliferative tissue is only transient and much lower compared to the 
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persistent  over-expression in cancer cells (13). CK2 localization pattern is distributed 

among almost all cellular compartments (as a holoenzyme or separate subunits) including 

cytoplasm, nucleus, plasma membrane, cytoskeleton components, and endoplasmic 

reticulum (7). CK2 subunits are expressed in different proportions and may shuffle 

between cellular compartments as a holoenzyme or individual subunits in accordance 

with the functional requirements of the cell. For example, CK2α becomes rich in the 

nucleus at the late G1 early S phase of the cell cycle and remains there for the rest of the 

cycle, which indicates a correlation between CK2 subunits localization and cellular 

function and activity. CK2 holoenzyme translocation was evident in normal cells while 

studies done on cancer cells models indicate the possibility of individual subunits 

migration between cellular compartments (14-17). The discrimination between normal 

and malignant cells was further illustrated in the subcellular localization of CK2 subunits. 

CK2 is diffused in all cellular compartments in normal cells however, in cancer cells, 

CK2 is mainly localized in the nucleus
 
(13). 

1.4 CK2 Dysregulation Is Tightly Related To Tumorogenesis. 

     Several convincing evidences have implicated CK2 in the tumorigenesis and 

transformation of almost all cancer types. CK2 was found to be overexpressed and its 

catalytic activity elevated in several malignancies (1, 18). CK2 can desensitize cells to 

vital cellular checkpoints and elimination mechanism such as programmed cell death 

(apoptosis). CK2 promotes cellular growth and proliferation through the regulation of 

vital pro-survival signal transduction pathways such as NF-κB, Wnt, and P13K signaling 

(18, 19). Identifying the different signaling pathways that CK2 can perturb is 
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fundamental to understanding the mechanism of action of CK2 in promoting 

transformation and tumorogenesis. 

1.4.1 NF-κB Signaling Pathway. 

     Dysregulated activity of the transcription factor NF-κB was implicated in multiple 

malignances. NF-κB promotes the activation of anti-apoptotic proteins including BcL-xl 

and cIAPs, and cell cycle regulator cyclin D1. The inhibitor of κB (IκB) directly interacts 

with NF-κB to inactivate it and to hold it in the cytoplasm of most cells. Activation of 

NF-κB requires the proteosome dependent degradation of IκB. This degradation was 

found to be enhanced by CK2-mediated increase of IKK kinases expression or direct 

phosphorylation of IκB. Either pathway will activate proteosome-mediated destruction of 

IκB (20). As a result NF-κB is activated to translocate to the nucleus and induce 

transcriptional activation of anti-apoptotic proteins and cell cycle regulators, ultimately 

inducing uncontrolled cellular growth and inhibiting apoptosis.  

1.4.2 Wnt Signaling Pathway. 

     Wnt pathway is known as a key player in cancer development specifically in 

mammary gland and colorectal cancer (21, 22). It regulates cell proliferation, polarity and 

adhesion by keeping a sufficient level of β-catenin, a cofactor of transcription factor 

(TCF/LEF) family.  β-catenin is necessary for transcription activation of c-myc, cyclin D 

and a member of the inhibitor of apoptosis protein family (IAP) Survivin (19). Wnt is an 

extracellular protein which targets β-catenin for degradation. This destruction is inhibited 

by stabilizing protein dishevelled (Dvl). In this pathway, CK2 come into play by  
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Figure 1.1 Schematic presentation of CK2 implication in carcinogenesis through 

regulation of NF-κB, Wnt and P13K oncogenic pathways. (Figure from: Pinna et al. 

2010.) 
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phosphorylating Dvl, β-catenin and the complex β-catenin/Tcf/Lef. This phosphorylation 

activity promotes stabilization of targeted proteins and leads to increased β-catenin-

mediated transcription activation of multiple pro-survival and anti-apoptotic genes 

including Survivin (19, 23, 24).  

1.4.3 P13K/Akt Signaling Pathway: 

     The pro-survival/anti-apoptotic signaling pathway induced by P13 kinase (P13K) 

targets protein kinase B (PKB) or Akt that induces survival through direct inhibition of 

caspase 9, and pro-apoptotic protein BAD. This pathway is regulated by tumor 

suppressor PTEN (phophatase and tensin homolog deleted on chromosome 10). Removal 

of PTEN renders P13K-mediated Akt induction constitutively active (18). CK2 intervene 

at two sites in this transduction pathway. First CK2 targets PTEN for degradation by the 

proteasome (25). Second, CK2 directly phosphorylate Akt and promote its activation to 

further induce cell survival (26, 27). Overall, CK2 over-expression and dysregulated 

activity perturbs significant pro-survival and anti-apoptotic signaling pathways leading to 

cell transformation and tumorogenesis.  

1.5 CK2 A Key Suppressor of Apoptosis. 

     In addition, recent studies have shown that CK2 plays a key role in apoptosis 

suppression. Apoptosis is initiated via two pathways: the intrinsic and extrinsic pathways. 

Intrinsic apoptosis is initiated when pro-apoptotic Bcl2 family of proteins stimulates the 

mitochondrial release of a potent pro-apoptotic cytochrome c protein into the cytosol. 

This event initiates the activation of pro-caspase 9 and pro-caspase 3 which in turn  
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Figure 1.2 Apoptosis Pathways: Apoptosis cascade is initiated by extrinsic or intrinsic 

pathways, which can combine and lead to common execution of caspase cascade that 

result in DNA degradation and cell death. 
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 cleaves poly (ADP) ribose polymerase (PARP) and cause DNA damage and cell death 

(28-30). The extrinsic pathway is triggered by the interaction of tumor necrosis factor 

(TNF) receptors superfamily which includes Fas, TNFR1, DR4 and DR5 to their 

corresponding ligand FasL, TNF, and TNF-related apoptosis-inducing ligand (TRAIL). 

Death receptors are transmembrane proteins that, upon activation, oligomerize forming 

death inducing signaling complex (DISC) which subsequently activate pro-caspase8. 

Active caspase 8 can directly cleave pro-caspase 3 (28, 30). Caspase 8 can cross talk with 

intrinsic pathway through the cleavage of Bid (pro death member of Bcl2 family) and 

formation of truncated-Bid (tBid). tBid stimulates mitochondrial release of pro-apoptotic 

protein cytochrome c and induces subsequent caspase activation (28, 30). 

     Protein kinase CK2 was found to block cell response to death stimuli at multiple 

levels in the apoptotic cascade. CK2 phosphorylates Bid at serine and threonine residues 

located in caspase-8 recognition site which inhibits caspase-8 induced tBid formation 

(31-34). In addition, CK2 activates ARC (apoptosis repressor with caspase recruitment 

domain) to inhibit caspase-8 and block apoptosis cascade (35). Also, the implication of 

CK2 in NF-kB, Wnt and P13K pathways increases IAPs expression which inhibits 

caspase activity and block apoptosis. 

1.6. CK2 Enhances The Activity of Oncogenes. 

     CK2 was found to be upregulated and over-expressed in almost all malignancies. 

Dysregulation of CK2 kinase activity was found to enhance the oncogenic ability of some 

genes and lead to malignant transformation of tissue. For example, transfected animals 

with the catalytic subunit of CK2 in addition to c-myc or Tal-1 oncogenes enhanced 
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tumor phenotype specifically in leukemia and lymphoma models (3, 21, 36). Similar 

results observed in mammary gland models where over-expression of CK2α and MMTV 

enhanced breast cancer phenotype (10, 21). In addition, CK2 enhances oncogenic activity 

of Human Papilloma virus (HPV) oncogene E7. CK2 phosphorylates E7 at CR2 domain 

that contains the binding site of Rb proteins. This phosphorylation was found to enhance 

transformed phenotype by removing constraints on S-phase progression (37). 

Investigators have reported CK2α to behave as an oncogene. CK2α nuclear localization 

reflects the state of aggressiveness of prostate cancer as well as its role as a prognostic 

marker in squamous cell carcinoma of the lung (38, 39). In conclusion, CK2 over-

expression and dysregualtion is tightly related to the transformation and tumorogenesis of 

almost all cancer types. 

1.7 Targeting CK2 Activity to Treat Cancer. 

     Taking together the fact that CK2 is involved in several essential cellular pathways, 

and implicated in tumorogenesis and transformation of tissue have set mounting evidence 

to propose CK2 as a promising target for cancer therapy. Fortunately, protein kinases can 

be shut down using small molecules targeting their ATP binding site. There is a growing 

list of small ATP-site directed molecules that can be used to inhibit CK2 kinase activity. 

Each compound displays a different selectivity and specificity towards CK2 (Table 1). 

With growing interest in naturally occurring compounds therapy, Ellagic Acid (EA) with 

its high selectivity and specificity towards CK2 displays the most efficient molecule for 

CK2 inhibition. 
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1.8 CK2 Inhibitor: Ellagic Acid     

      Ellagic acid (4,4’,5,5’,6,6’ hexahydroxydiphenic acid 2,6,2’,6’-dilactone) is a 

naturally occurring,  relatively stable, polyphenolic compound that is found in raspberries 

(1500 μg/g dry weight), strawberries (630 μg/g) , cranberries (120 μg/g), and walnuts 

(590 μg/g) (40, 41). Ellagic acid has high selectivity and specificity towards CK2 with 

IC50 = 0.04 μM and Ki= 20 nM indicating the highest affinity to CK2 compared to other 

inhibitors (3, 18). Ellagic acid displays a unique binding mode in which it binds 

simultaneously to the phosphate binding region in the ATP binding pocket, and the hinge 

region through hydrogen bonding (42).EA also forms hydrophobic interactions with 

several CK2 residues that further stabilizes the EA-CK2 complex (43).  It is soluble in 

dimethyl sulfoxide (DMSO), ethanol, and polyethylene glycol (PEG400). Ellagic acid 

demonstrates higher solubility in PEG400 (8.3mg/ml) compared to ethanol (0.21 mg/ml) 

and DMSO (2.5mg/ml), thus PEG400 provides the highest drug concentration with 

minimal toxicity (41).  

1.9 Ellagic Acid Anti-Cancer Activity 

     Ellagic acid was reported to have in vitro anti-cancer activity and in vivo anti-tumor 

activity in several types of cancer (44, 45). In vitro studies reported that ellagic acid 

induces cell cycle arrest and apoptosis in human cervical cancer CaSki cells, colon 

carcinoma, and bladder cancer (46-48). It had also been reported that ellagic acid induces 

apoptosis through inhibition of NF-κB in pancreatic cancer MIA PaCa-2 and PANC-1 

cells (49). Moreover, animal studies demonstrated that ellagic acid has chemopreventive 

activity against chemically induced cancers of the skin, esophagus, lung and liver (50-
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54). However, the impact of ellagic acid on cellular biochemical and molecular pathways, 

and its therapeutic potential in animal models remain unclear. Herein we report a pre-

clinical study that investigates ellagic acid spectrum of anti-cancer activity, its impact on 

oncogenic and apoptotic pathways, and its therapeutic potential and tissue toxicity in 

animal models. Identifying ellagic acid mechanism of action could promote it for cancer 

therapeutics clinical trials.  
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CHAPTER II 

EFFECT OF POLYETHYLENE GLYCOL 400 (PEG400) ON ELLAGIC ACID 

ANTI-CANCER ACTIVITY 

 

2.1 Abstract: 

     In vitro ellagic acid cytotoxicity studies were mostly performed using dimethyl 

sulfoxide (DMSO) as a solvent.  Even though these studies have showed no cytotoxicity 

effect from DMSO by itself on cells screened, DMSO is known to be harsh solvent that 

can induce cell toxicity if used at concentrations > 1%. In this study, polyethylene glycol 

400 (PEG400) was used as ellagic acid vehicle. The efficacy in tumor inhibition was 

compared between PEG400- and DMSO-dissolved ellagic acid treatments. This was 

accomplished using in vitro anti-proliferative assay to screen a panel of 7 cancer cell lines 

of different histology including: brain carcinoma cell line U87, HPV positive and HPV 

negative cervical cancers Hela and C33 cell lines respectively, Breast adenocarcinoma 

MCF7, Melanoma WM167, colon cancer SW480 cell line, and ACHN kidney cancer. 
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They all showed sensitivity to increasing micromolar concentration of EA/PEG400 and 

EA/DMSO at different exposure times. However, C33 and MCF7 cell lines showed 

chemosensitivity to DMSO treatment. PEG400 showed less toxicity and no interference 

with EA anti-cancer activity. When cervical cancer cell lines response to EA treatment 

was compared at the same exposure time, C33 showed two fold increase in sensitivity 

compared to HeLa.  
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2.2 Introduction:  

     Polyethylene Glycol (PEG) is a long chain polymer made of ethylene glycol subunits. 

PEG400 is a member in the PEGs family with a molecular weight of 400. PEGs have 

multiple applications in pharmaceutical industry as drug delivery vehicle such as 

ointment, capsules, and suppositories makeup (1).  At higher molecular weight 

polyethylene glycol by itself can be used for constipation treatment, bowel cleansing and 

as an ingredient in artificial tear eye drops (1, 2). Also, PEG400 was determined to be 

widely used in the bases of cosmetics and skin creams (1).  The wide use of PEG400 

implies the safety and minimal cytotoxicity that can be induced if used as solvent for 

drug delivery. In addition, ellagic acid solubility studies have determined PEG400 to 

have higher efficiency in dissolving ellagic acid (solubility = 8.3mg/ml) compared to 

ethanol (0.21 mg/ml) and DMSO (2.5mg/ml) (3), therefore, providing higher 

concentration of drug and less solvent.  

     This study was designed to evaluate PEG400 as a safe and efficient vehicle that would 

not interfere with EA cancer inhibition effect, and to determine the spectrum of EA anti-

cancer activity. During phase I of the study, growth-based cytotoxicity assay was used to 

survey a panel of 7 aggressive human cancer-cell lines of different histology against 

PEG400-EA and DMSO-EA treatments at different exposure times ranging from 96-144 

hr. The panel screened includes colon adenocarcinoma (SW480), kidney carcinoma 

(ACHN), melanoma (WM164), brain cancer (U87), breast carcinoma (MCF7), HPV 

positive and HPV negative cervical carcinomas HeLa and C33.  The results from this 

survey led to phase II of the study in which, a metabolism-based cytotoxicity assay was 
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used to compare the effect of PEG400-EA treatment on two cell lines of the same 

histology HeLa and C33 at the same exposure time of 96hr. 
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2.3 Experimental Procedures: 

Drugs and chemicals. 

     The present study used Ellagic Acid Dihydrate (lot#D00076152), molecular weight = 

338.2 provided by Calbiochem. Polyethylene Glycol (PEG) molecular weight 400 was 

purchased from Fisher Scientific lot# 062734, and Dimethyl Sulfoxide (DMSO) 

molecular weight = 78.13 was obtained from aMRESCO lot# 2890C058. 

Cell Culture. 

     All cancer cell lines surveyed were maintained in RPMI (Cellgro), supplemented with 

10% fetal bovine serum and 1% penicillin/streptomycin (Cellgro). Cells were incubated 

in a humidified atmosphere with 5% CO2 at 37⁰ C.  

Preparation of EA/PEG400 and EA/DMSO formulations.  

     In accordance with solubility studies of Ellagic acid, stock solution of EA/PEG400 

was made by dissolving 30 mg EA in 4 ml PEG400, Incubated in the dark at 37⁰ C water 

bath for 5 minutes or until solution became clear and homogenous.  EA/DMSO stock was 

made with 10 mg EA in 3 ml DMSO mixed and kept in the dark. Both solutions were 

filtered in 0.2 μm syringe filter. Solutions were kept at -20⁰ C after usage.  

SRB Antiproliferative Assay. 

     Growth inhibition effect of ellagic acid was assessed by Sulforhodamine-B (SRB) 

colorimetric assay (4). HeLa, C33, U87, MCF-7, WM164, SW480 and ACHN were 

plated in 2- 96 well-plates at concentration of 2000 cells/well. After 24 hours of 
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incubation, cells were fixed with cold 10%  trichloroacetic acid (TCA) in one plate (to 

determine growth baseline) and the other plate was treated with increasing concentration 

of ellagic acid dissolved in PEG400 in one trial and DMSO in another. Two controls 

were set for each cell line, one untreated and one treated with the vehicle only at a 

concentration equal to that in highest ellagic acid dose. Cells were allowed to grow for 

96-144 hours before test was stopped by aspirating the medium and fixing cells with 10% 

cold TCA for >1 hour. Fixed cells were then washed 3 times with water and dried. Fixed 

cells were then stained with 0.4% (w/v) SRB dye (Sigma), dissolved in 1% acetic acid for 

30 minutes at room temperature. Dye was then extracted in mild basic conditions using 

10 mM unbuffered Tris base solution PH 10.5 for 1 minute. The absorbance of dye 

released from cells was measured by microplalte reader at 570 nm. Optical density 

measurements (OD) of the SRB dye is linear with the number of cells fixed at the bottom 

of the 96-well plate.  

MTS viability assay. 

     Cytotoxic effect of ellagic acid was assessed using the MTS colorimetric assay. HeLa 

and C33 cervical cancer cell lines were plated in 96-well plates at concentration of 5x10
3
 

cells/well. After 24 h of incubation, cells were treated with increasing concentration of 

ellagic acid dissolved in PEG400 and control was treated with the vehicle (PEG400). 

Cells were allowed to grow for 96 h before a 20 μl MTS solution was added to the wells 

and incubated in the dark at 37⁰ C for 3 h. Optical density (OD) was read at 492 nm using 

a 1420 WALLAC counter. Optical density readings of the formazan product are linear 

with the number of viable/metabolically active cells.  
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Statistical analysis. 

     Data are expressed as mean ± SEM from at least 3 independent experiments. 

Statistical analysis was done using student t-test. P< 0.05 was considered statistically 

significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

2.4 Results  

     During phase I of the study, cells were screened with PEG400, DMSO, and ellagic 

acid in doses dissolved in PEG400 parallel to DMSO dissolved treatments. Cytotoxicity 

of solvents-treated cells was compared to untreated control.  The statistical difference 

between untreated and solvent treated cells was calculated using t-test. Comparing 

PEG400-treated and untreated cells, t-test showed a P-value > 0.05. This indicates no 

significant difference; therefore, we concluded that PEG400 has no cytotoxic effect on all 

cancer cell lines surveyed. On the other hand, MCF7 and C33A cells treated with DMSO 

showed P-value < 0.05 compared to untreated control. Therefore, these cell lines were 

screened using ellagic acid dissolved in PEG400 only. Overall evaluation of PEG400 

versus DMSO revealed that there was no chemosensetivity induced by PEG400 on all 

carcinoma cell lines tested, while some cell lines showed sensitivity to DMSO. 

Therefore, PEG400 was determined a safer vehicle for ellagic acid administration 

compared to DMSO.  

     To investigate ellagic acid spectrum of anti-cancer activity, we screened different 

cancer cell lines using ellagic acid doses (6.125-50 μmol/l). Using SRB assay, we 

determined IC50 values of cancer cell lines surveyed. MCF-7 cell line demonstrated 

growth inhibition at 96 hours with IC50 = 20 μM, while WM164 had IC50 > 50 μM, 

SW480 IC50 = 20 μM, U87 and ACHN IC50 were < 6.25 μM , HeLa IC50 = 40 μM and 

C33A cells showed IC50  of 10 μM at 144 hr of exposure time. This data revealed potent 

anti-cancer activity by ellagic acid in several cancer types. 
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Figure 2.1. Effect of EA/ DMSO vs. EA/PEG400 formulations on WM164 and                  

SW480 cell growth. A,C. WM164 and SW480 cells were treated with 6.25-50 μM 

EA/DMSO and EA/PEG400 for 120 h. Data represent the mean ± SEM of 8 different cell 

density readings. B, D.  *p > 0.05 for DMSO treated vs. untreated control group and                                                                                                                                                      

**p > 0.05 for PEG400 treated vs. untreated control.  
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Figure 2.2.  Effect of EA/DMSO vs. EA/PEG400 formulation on ACHN and U87 cell 

growth. A, C. ACHN and U87 cells were treated with 6.25-50 μM EA/DMSO and 

EA/PEG400 for 120 and 96 h respectively. Data represent the mean ± SEM of 8 different 

cell density readings. B, D. *p > 0.05 for DMSO vs. untreated control and ** p > 0.05 for 

PEG400 vs. untreated group for both cell lines. 
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Figure 2.3.  Effect of EA/DMSO vs. EA/PEG400 formulation on C33 and MCF-7 

cell growth. A, C. C33 and MCF-7 cells were treated with 6.25-50 μM EA/DMSO and 

EA/PEG400 for 144 and 96 h respectively. Data represent the mean ± SEM of 8 different 

cell density readings. B, D. *p < 0.05 for DMSO vs. untreated control and **p > 0.05 for 

PEG400 vs. untreated group for both cell lines. 
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Figure 2.4.  Effect of EA/DMSO vs. EA/PEG400 formulations on HeLa cell growth. 

A. HeLa cells were treated with 6.25-50 μM EA/DMSO and EA/PEG400 for 96 h. Data 

represents mean ± SEM of 8 different cell density readings. B. *p > 0.05 for DMSO vs. 

untreated control, and **p > 0.05 for PEG400 vs. the untreated group.  
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Figure 2.5. Comparison analysis of EA/PEG400 effect on HeLa vs. C33 cell lines. 

Cells were treated with 6.25-50 μM EA/PEG400 doses for 96 h. Data represents mean ± 

SEM of 2 independent MTS assays.  
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Cell Line IC50 (μM) 

MCF7 (Breast Cancer) 18 

WM164 (Melanoma) 50 

U87 (Brain Cancer) 4 

SW480 (Colon Adenocarcinoma) 18 

ACHN (Kidney Cancer) 4 

HeLa (HPV+Cervical Cancer) 45 

C33 (HPV-Cervical Cancer) 18.7 

 

Table 2.1. Determination of the EA IC50 values for each cell line screened.  
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2.5 Discussion 

     The potential use of ellagic acid for in vivo pharmaceutical treatment requires safe 

vehicle to deliver the drug. This initial study points out the potential of PEG400 as a 

particularly safe vehicle for ellagic acid delivery for in vivo studies or clinical trials.   

Testing the toxicity of the solvent PEG400 revealed no growth inhibition or viability 

reduction on all cell lines screened. Moreover, its use as a solvent for ellagic acid therapy 

did not compromise ellagic acid anti-cancer activity. However, for drug development and 

discovery, other factors like cellular uptake and metabolism, and its effect over long-term 

drug regimentation should be assessed in future studies.  

     As already mentioned in the results section, PEG400-ellagic acid was able to induce 

cancer cell growth inhibition at micromolar concentrations when screened against a panel 

of seven aggressive human malignancies. This anti-proliferative activity presented in this 

study reinforces the previously documented anti-cancer ability of ellagic acid in a wide 

range of cancer types. However, the novelty of this study is represented in the use of 

PEG400 for EA administration for maximal safety and efficiency.  

     It is noteworthy that the SRB assay used to assess ellagic acid inhibitory effect on 

different cancer cell lines from different tissues is used for large scale anti-cancer drug 

discovery program at the National Cancer Institute (NCI) (5, 6). However, this assay 

depends on the growth rate of cells. Therefore, exposure time differs from one cell line to 

another depending on how fast these cells grow and reach 70-80% confluence before the 

test can be terminated.  Therefore, to compare two cell line’s response to ellagic acid 
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treatment, exposure time has to be fixed which is not possible with SRB assay. The MTS 

reagent is metabolically reduced by mitochondria to formazan colored products (7, 8). It 

is a time sensitive method but it is not affected by growth rate thus exposure time can be 

controlled for comparison purposes. Upon comparison, cervical cancer cell lines HeLa 

and C33 responded differently to ellagic acid treatment at 96 hr. This difference in 

sensitivity raises the question of why HeLa responds differently to ellagic acid treatment 

compared to C33. We initially hypothesized that HPV oncogenic activity may delay 

HeLa response to EA-induced death stimuli. This suggests differences in the underlying 

mechanism of action of ellagic acid in HeLa and C33 cells. Therefore, HeLa and C33 are 

suitable models to study the role of EA-mediated CK2 inhibition in cancer cells. The 

upcoming studies are focused on identifying EA mechanism of action through the 

evaluation of the differences in CK2 inhibition, and its impact on HPV oncogenic 

activity, cell cycle progression, and apoptotic pathways. In vivo studies are also 

performed to validate EA suitable for a clinical trial. 
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CHAPTER III 

HPV-POSITIVE CERVICAL ADENOCARCINOMA:  

ELLAGIC ACID INHIBITS MULTIPLE ONCOGENIC PATHWAYS IN HELA 

CELL LINE IN VITRO AND EXERTS ANTI-TUMOR ACTIVITY IN VIVO.  

 

3.1 Abstract 

     Cervical cancer is the second most common malignancy among women worldwide.  

Herein, we report that ellagic acid (EA), a natural polyphenolic compound, exerts anti-

proliferative and pro-apoptotic activity in HPV18 (+) human cervical adenocarcinoma 

cells (HeLa) in a dose- and time-dependent manner.  Inhibition of casein kinase 2 (CK2) 

activity by ellagic acid resulted in abrogation of HPV oncogene E6 and E7 expression.  

The decrease in E6 expression correlated with stabilization of p53 and apoptosis 

induction. EA induced mitochondrial-mediated caspase activation via the release of 

cytochrome c into the cytosol and subsequent poly (ADP) ribose polymerase (PARP) 
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fragmentation and cell death. The decrease in E7 correlated with inhibition of cyclin A 

expression, and inhibition of cell cycle progression.  Finally, treatment of athymic-nude 

mice treated EA resulted in inhibition of cervical cancer xenograft growth and longer 

survival compared to non-treated mice, confirming the potent anti-tumor activity of EA.  

Our data strongly suggest that EA has anti-tumor activity which could make it suitable 

for the prevention of HPV induced cervical carcinoma. 
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3.2 Introduction:  

     Cervical cancer is the second most common malignancy among women worldwide 

with >80% of the cases occurring  in developing countries (1). The geographic 

distribution of cervical cancer is highest in Latin America, sub-Saharan Africa, south 

Asia and Southeast Asia (2). Indonesia, with a population of 200 million, has 79.14 

million women age 15 years and older who are considered to be at high risk of 

developing cervical cancer. According to World Health Organization (WHO) 2010 data, 

cervical cancer cases in Indonesia were estimated to be 13,762 with a mortality rate of 

7,493 women per year. Cervical cancer ranks as the second most prevalent cancer among 

women between 15 and 44 years of age in Indonesia (3). Human papilloma virus HPV16 

and 18 DNA was discovered in cervical malignancies by Harald zur Hausen (winner of 

the Nobel Prize in Medicine, 2008). High risk types HPV 16 and 18 account for almost 

50% of all female genital HPV infections, and they are present in 90% of human cervical 

carcinomas (4, 5). Therefore, HPV16 & 18 has been identified as the most prominent 

etiologic factor in cervical malignancy. According to WHO Information Center on HPV 

and Cervical Cancer, 80.1% of invasive cervical cancers in Indonesia are related to HPVs 

16 and 18.  

     Viral survival in host cells depends on disrupting normal cellular machinery, 

inhibiting cellular defense mechanisms and exploiting cell signaling pathways to 

stimulate viral DNA replication and the production of viral particles. Persistent HPV 

infection leads to viral DNA integration into the host genome. Oncogenesis results when 

cells escape normal constraints on cell survival and proliferation. Loss of cellular control 
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over HPV oncogene transcription activity leads to induction of viral oncogene E6 and E7 

expression (6). E6 removes normal constraints on cell survival while, E7 removes normal 

constraints on cell proliferation. Thus, elevated viral oncogene expression is essential to 

the transformation and immortalization of human cervical epithelial cells (7, 8).  

     High risk (HR) HPV E6 targets wild-type (wt) tumor suppressor protein p53 for 

ubiquitin-mediated degradation (7, 9). p53 plays an essential role in the host’s defensive 

mechanism against DNA damage. Tumor suppressor protein p53 can induce apoptosis in 

a transcription-dependent pathway by increasing expression of DR5 and FAS/APO1 

(membrane death receptors) and the pro-apoptotic Bcl2 family members (10-12). In 

addition, p53 exerts its tumor suppressive activity via a transcription-independent 

pathway involving p53 translocation to the mitochondria. At the mitochondria, p53 

causes oligomerization and activation of the pro-apoptotic Bcl2 proteins that increases 

mitochondrial outer membrane permeability for the pro-apoptotic protein cytochrome c to 

be released into the cytosol and activate the caspase cascade (4, 13). Oncoprotein E7 

causes dysregulation of the cell cycle by binding pRb, p107 and p130 (14, 15). HPV-E7 

specifically targets pRb at the E2F binding site. pRb-free-E2F are active transcriptional 

factors that induce gene expression of proteins controlling S-phase progression of the cell 

cycle such as cyclin E and cyclin A which leads to uncontrolled cell cycle progression 

and cell proliferation (16). Hence, HPV oncogenic activity mediates malignant 

transformation of epithelial tissue. 

     This study demonstrates the in vitro and in vivo effect of EA on HPV18-positive 

cervical cancer cells. The HeLa cell line expresses elevated levels of CK2 as well as 
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HPV18 oncoproteins E6 and E7; thus it represents a good model to study the role of EA-

mediated inhibition of CK2 activity on cell proliferation, survival, and HPV oncogene 

expression. 
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3.3 Experimental Procedures:  

Cell culture. 

     HeLa cells were maintained in RPMI (Cellgro), supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin (Cellgro). Cells were incubated in 5% CO2 at 37⁰ C.  

CK2 activity assay 

     CK2 activity in HeLa cells was measured using whole cell lysates. Cells were 

extracted using ice-cold hypotonic buffer containing 20 mM Tris buffer, pH 8.0, 10% 

glycerol, 0.05% nonidet-P40, 2.0 mM EDTA, 2.0 mM EGTA and a cocktail of protease 

and phophatase inhibitors. Cell suspension was kept on ice for 30 minutes, and then 

centrifuged at 10,000 xg for 10 minutes at 4⁰ C. Endogenous kinase activity of CK2 was 

measured by CKII assay Kit (Upstate Biotechnology/ Millipore). 1 μg protein of cell 

lysates was added to a total volume of 40 μl containing assay dilution buffer (20mM 

MOPS, pH7.2, 25mM β-glycerol phosphate, 5mM EGTA, 1mM sodium orthovanadate, 

and 1mM dithiothreitol), 0.4 mM of CK2-specific substrate peptide (R3D3SD3), inhibitor 

cocktail to block activity of other serine/threonine kinases in lysates, and diluted [γ-
32

P] 

ATP in MgCl2. The mixture was incubated at 30⁰C for 10 minutes, and then reaction was 

stopped by adding 20 μl of 40% trichloroacetic acid (TCA). Twenty-five microliter of 

reaction mixture was transferred to P81 paper discs and allowed to bind for 30 seconds. 

Paper discs were washed 3 times with 0.75% phosphoric acid for five minutes each and 

one time with acetone, allowed to dry before they were transferred to scintillation vials 

with 2 ml of scintillation cocktail. Radioactivity of CK2 was counted using scintillation 
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counter, expressed as c.p.m percentage of control radioactivity. Parallel to CK2 activity 

assay, CK2 expression level was analyzed by standard method for western blotting. 

Cell cycle analysis 

     HeLa cells were plated at density of 1 x 10
5
cell/well and incubated for 24h with 50 

μM EA. The cells were then harvested and fixed in 90% ethanol at 4⁰ C. Cells were then 

washed with PBS and resuspended in a solution containing propidium iodide, sodium 

citrate, triton X and RNase, and incubated at 37⁰ C in the dark. After 30 min of 

incubation, samples were analyzed by Cytomics FC500 flow cytometer (Beckman 

Coulter), Quantitative cell cycle analysis was performed using CXP software. 

Trypan Blue Assay. 

     Trypan blue dye exclusion assay was done to test cytotoxicity of cervical cancer cell 

lines to ellagic acid in time dependent manner. HeLa cells were treated with 50 μM 

ellagic acid for 24, 48, 72 and 96 h. At specified time points samples were trypsinized 

and harvested and an aliquot of 500 μl was counted using Beckman Coulter Vi-Cell XR 

cell viability counter. Results were then compared to control at (0 h) which was treated 

with Peg400 only and collected after 96 h of incubation time.  

SYBR Green-quantitative polymerase chain reaction (syber green-qPCR) detection. 

     Total RNA from treated cells was extracted using RNeasy mini kit (QIAGEN). cDNA 

was synthesized according to manufacturer’s protocol for reverse transcriptase (RT). 

Primers for HPV18-E6/E7 and β-actin were synthesized by Invitrogen. Sequence for  
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HPV18-E6 primer:  

5’-GGTGCCAGAAACCGTTGAATC-3’,  

3’-CGAATGGCACTGGCCTCTATAG-5’ 

HPV18-E7 primer: 

5’-CGAACCACAACGTCACACACAAT-3’ 

3’-TGCTGGAATGCTCGAAGGT-5’ 

β - Actin primer: 

5’-CCGAGGACTTTGATTGCACA-3’ 

3’-AGTGGGGTGGCTTTTAGGAT-5’ 

HPVLevels of m-RNA for HPV18 oncoproteins in treated HeLa cells were determined 

using SYBR green master mix (Clonetech) and Fast 9400 real time PCR system (Applied 

Biosystems). The qPCR reaction total final volume was 20 μl consisting of 10 μl SYBR 

green 2x master mix, 0.2 μl of forward and reverse primers (final concentration 0.2 

pmol/μl ) as well as 0.2 μl of ROX reference dye and 9.4 μl of H2O. Instrument was set 

for regular 2 hours qPCR running conditions. Instrument run started with holding stage at 

50⁰C for 20 seconds, and 96⁰C for 10 minutes. This was followed by 40 amplification 

cycles of 95⁰ C for 15 sec, 60⁰ C for 1 min and the melting curve to assess specificity of 

PCR product. The data were analyzed using comparative CT (∆∆CT) and target genes were 

quantified using the formula (2
∆∆CT

) and normalized to an endogenous reference (β-actin) 

that served as loading control. Final analysis of target genes expression was compared to 
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control group (Time 0). Average gene expression values were then blotted in bar graph 

from n=6 for HPVE7 and n=3 for HPVE6. 

Oncoproteins E6 and E7, as well as their downstream targets (p53 and cyclin A) 

expression levels were evaluated by resolving 35 µg of total cell lysate using western 

blots and probing with HPV18-E6 and HPV18-E7 antibody (Abcam).  

Annexin-V assay/ flow cytometry. 

     HeLa cells were treated with 50 µM ellagic acid and Peg400 (control) and incubated 

at 37⁰C. Cells were trypsinized and harvested at 24, 48, 72 and 96 h, washed once with 

cold PBS and resuspended in 100 µl Annexin-V binding buffer at concentration of 1x10
3
 

cells /μl. According to the manufacturer’s protocol, cells were then incubated with FITC-

Annexin V and propidium iodide (PI) solution (FITC Annexin V Kit II, BD 

pharminogen) for 15 min at room temperature in the dark. Apoptosis induction was then 

analyzed on Cytomics FC500 flow cytometer (Beckman Coulter), using CXP software.  

Apoptosis array analysis.  

     HeLa cells were plated in 100 mm dishes at a density of 1x 10
5
 cells/ml. Cells were 

treated with 0 or 50 μM ellagic acid and incubated at 37⁰ C for 96 h. After trypsinizing 

and harvesting of cells, they were rinsed with PBS and extracted at 1x10^7 cells/ml in kit 

lysis buffer (Human Apoptosis Array Kit; R&D Systems). The lysates were resuspended 

and rocked gently at 4⁰ C for 30 min. After centrifuging at 14,000 x g for 5 min, the 

supernatant was transferred into a clean tube. 400 µg protein was incubated with 

apoptosis array membrane according to manufacturer’s protocol. Arrays were read by the 
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typhoon and quantitative analysis of protein levels was done using Image Quant TL 

v2005.  

Immunoblot. 

     Total cell lysate was prepared by lysing the cells in a buffer containing 150 mM 

sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulphate (SDS), and 50 mM Tris at pH 8.0 with a cocktail of protease inhibitors. Protein 

concentrations were determined using BCA protein assay (Biorad). An aliquot of 35 μg 

protein was taken from all samples and resolved on 12% polyacrylamide-SDS gel and 

transferred to PVDF membrane using semi dry transfer method. The membrane was 

blocked with 5% milk and incubated with anti-PARP antibody, anti-Caspase 3 (Cell 

Signaling). 

Cytochrome c release 

     HeLa cells treated with 50 μM ellagic acid for 0, 24, 48, and 72 hours were swelled 

using hypotonic solution containing (20 mM HEPES, pH 7.5, 10 mM KCL, 1.9 mM 

MgCl2, 1.0 mM EGTA and 1.0 mM EDTA, and a cocktail of protease inhibitors on ice 

for 30 minutes, then homogenized using dounce homogenizer. Cell lysate was 

centrifuged at 800 xg for 15 minutes at 4⁰ C to pellet nuclei and cellular debris. 

Supernatant was transferred to new microfuge tubes and spun down at 6000 xg for 15 

minutes at 4⁰ C to pellet mitochondria (17). Supernatant from second centrifugation were 

transferred to new microfuge tubes, protein was measured using BCA assay (Biorad), and 
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resolved on 12% polyacrylamide gel. Gel was then transferred on PVDF membrane, 

blocked with 5% milk and probed with anti-cytochrome c antibodies. 

Ellagic acid effect on HeLa xenograft.  

     Animal experiments were performed in accordance with guidelines approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Cleveland Clinic. Female 

athymic nu/nu mice were purchased from Case Comprehensive Cancer Center (CWRU). 

Cell inoculation was achieved by injecting mice subcutaneously with 1x10
6
 HeLa cells 

suspended at 1x10
7
 cells/ml. Mice were randomized into two groups and were monitored 

daily until tumors reached approximately 100 mm
3
 in volume. Control groups received 

vehicle (Peg400) given intratumorally (IT) in a volume of 25 μl. Second group received 

ellagic acid treatment intratumoral at concentration 8 mg/kg. Treatments were given three 

times a week, tumor dimensions were measured using calipers and volume of tumor was 

calculated using the formula (Volume = 4/3 π a
2
b, where a=minor radius and b=major 

radius of the tumor).  

Histology and immunohistochemistry.  

     Animals were euthanized and organs (liver, kidney, lungs, and spleen) along with 

tumors were harvested and fixed in 10% neutral buffered formalin. Sections of organs 

and tumors were stained with hematoxylin and eosin (H&E). Slides were viewed 

microscopically.  
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3.4 Results 

Ellagic acid inhibits CK2 kinase activity. 

     To confirm the inhibitory effect of ellagic acid on CK2 activity in HeLa cells, kinase 

activity was measured in the presence of a specific peptide substrate. A decrease in CK2 

kinase activity following EA treatment was at maximum at 72 h followed by a drug 

rebound effect evident at 96 h (Fig. 3.1A). CK2 expression was not decreased, at the 

contrary; there is an increase in CK2 expression after 72 h of ellagic acid treatment (Fig. 

3.1B)  

In vitro anti-proliferative and pro-apoptotic effect of EA.   

     To assess the effect of EA on cell cycle progression, flow cytometry was performed.  

Ellagic acid induced marked increase of S- phase from 15% to 32.3%, with a concomitant 

decrease in G0/G1 phase from 51.3% to 22.1% (Fig. 3.2). To test EA effect on viability of 

HeLa cells, cell count of trypan blue stained cells was performed. Treatment with fixed 

concentration of 50 μM EA resulted in inhibition of HeLa cells viability in time 

dependent manner. HeLa IC50 value was determined to be 45μM EA (Fig. 3.3)  

Inhibition of E6 and E7 expression level, and its effect on downstream target 

proteins. 

     Quantitative PCR analysis showed that EA caused a 40% reduction in the level of E6 

and E7 mRNA at 24 hours. The inhibition gradually increased to > 80%, reducing E6 and 

E7 mRNA to 20% of control (Fig. 3.4A). Similar reduction in protein expression was 

also seen with immunoblotting (Fig. 3.4B). To correlate the inhibition of E6 and E7 
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expression on their downstream protein targets, we tested the expression of p53 and E2F 

transcriptional target, cyclin A (Fig. 3.4C). Inhibition of E6 resulted in increased 

expression of p53 in HeLa cells, and cyclin A was reduced in expression following 

decreased E7. Overall, our data demonstrates that EA inhibits E6 and E7 expression, thus 

neutralizing their pathological effect on these critical downstream target proteins. 

Ellagic acid induces apoptosis. 

     In figure 3.5A, we measured apoptosis by Annexin V-FITC staining which detects 

phosphatidyle serine (PS) exposure in the outer leaflet of the plasma membrane. A fixed 

50 μM EA treatment caused a shift to FITC-annexinV-positive/PI-negative cells (early 

apoptosis) and FITC-annexinV-positive/PI-positive cells (late apoptosis). Figure 3.5B, a 

quantitative time- dependent analysis indicates a significant increase in the total number 

of apoptotic cells (early + late) with increased time of EA treatment.  

Ellagic acid targets activates apoptotic proteins in HeLa cells.  

     We next examined the effect of EA on various pro-apoptotic and anti-apoptotic 

components by fractionation, western blotting, and array analysis. Consistent with the 

observed apoptosis induction, we found that EA treatment induced caspase 8 cleavage, 

cytochrome c release into the cytosol and subsequent caspase-3 and PARP cleavage (Fig. 

3.6). Array analysis showed that incubation of HeLa cells with EA results in a dramatic 

decrease in expression in the IAP’s family of apoptosis inhibitors specifically cIAP-1, 

XIAP and survivin, and an increase in TRAIL R2/ DR5 death receptor (Fig. 3.7A, B). 
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This data implicates upregulation of pro-apoptotic proteins and downregulation of anti-

apoptotic proteins in the EA mechanism of action.  

In vivo anti tumor effect of ellagic acid. 

     Both intra-tumoral and intra-peritoneal administration of ellagic acid resulted in 

inhibited tumor growth in HeLa xenografts. All vehicle-treated mice exhibited 

progressive increase in HeLa tumor volume. HeLa tumors showed a 55% reduction in IT- 

treated tumors and 87% in IP (Fig. 3.8, 9). To further prove the effect of ellagic acid on 

cervical cancer tumors, we treated HeLa control animals with 8mg/kg ellagic acid 

intratumorally starting day 57. Treated tumors became black and necrotic. With H&E 

tissue analysis of control and treated tumor sections, treated tumor area appeared to be 

vacuolated containing cellular debris which is indicative of necrosis (Fig. 3.10). H&E 

staining of major organs revealed no tissue toxicity following EA treatment (Fig. 3.11). 
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Figure 3.1.  Ellagic acid inhibits endogenous CK2 phosphorylation activity. 

A.CK2 phosphorylation activity was drastically inhibited in hela cells treated with 50μM 

ellagic acid for 24, 48 and 72 hours. CK2 activity was calculated compared to control 

sample at time 0 and the mean of a triplicate run ± SE are shown. At 96h a drug rebound 

effect was evident. B. Immunoblot representing CK2 expression level with ellagic acid 

treatment and β-actin as an internal control. Immunoblots showing that ellagic acid 

inhibits CK2 kinase activity but does not decrease CK2 expression.   
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Figure 3.2.  Ellagic acid causes S-phase arrest in HeLa cells. 

Flow cytometry analysis of HeLa cells exposed to 50μM ellagic acid at indicated time 

points shows significant increase in cells accumulated in S-phase relative to control cells. 

Data shown are based on the mean of n=3 ±SE.  
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Figure 3.3. The effect of Ellagic acid treatment on HPV (+) cervical carcinoma viability.  

 A 50μM ellagic acid dose induced marked reduction in HeLa cells viability in time 

dependent manner. A single dose administration was effective up to 96 h   of incubation 

time. 
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Figure 3.4.  Ellagic acid inhibits HPV18 oncogenesE6 and E7 expression.  

A. Utilizing quantitative PCR analysis and based on 6 separate experiments, E6- and E7- 

mRNA levels were markedly decreased following a single dose of 50μM ellagic acid. E6- 

and E7- mRNA expression was compared to internal control (β-actin) and data presented 

in mean ± SE. B. Representative immunoblots of E6 and E7 protein expression showing a 

decrease in protein levels as well. C. Data present stabilization of p53 and decrease in 

cyclin-A protein level as a consequence of E6 and E7 inhibition. 
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Figure 3.5.  FITC Annexin V staining illustrates apoptosis induction. 

A. A density scattergram showing viable untreated (control) HeLa cells mostly 

concentrated in M3 (PI negative, FITC Annexin V negative). With increasing time of EA 

treatment, HeLa cells are tracked in M4 (PI negative, FITC Annexin V positive) and M2 

(PI positive, FITC Annexin V positive) which indicate early apoptotic and dead cells 

respectively. B. Representative quantitative analysis showing gradual increase of early 

apoptotic and dead cells with increasing exposure time to EA treatment. Results are 

presented as mean ± SE of n=3.  
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Figure 3.6.  Ellagic acid treatment induces caspase-mediated apoptosis. 

Immunoblot analysis of apoptosis executioner proteins, indicate the activation of 

caspase3 and caspase8 and the involvement of mitochondrial apoptotic pathway by the 

realease of cytochrome c into the cytosol.  
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Figure 3.7.  Apoptosis array analysis EA-treated HeLa cells. 

A. Apoptosis array profile of control and treated HeLa cells. Most significant differential 

expression was noticed in apoptosis inhibitors and receptors in control vs. treated 

proteome. B. Quantitative analysis was done using the average pixel density of duplicate 

protein spots compared to positive control. P-value calculated for surviving, XIAP DR4 

and DR5 pixel density < 0.05. 
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Figure 3.8. Tumor growth response to IT-EA treatment 

Ellagic acid inhibited the growth of HeLa xenografts via intratumoral administration. 

Data represent the mean of 6 tumors for control and 8 for treated group. Treatment was 

terminated on day 94. Tumor volume did not increase even after termination of treatment.  
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Figure 3.9. Tumor growth response to IP-EA treatment.  

Mice were treated with ellagic acid via IP injections. Control group received vehicle 

(Peg400). Control tumor volumes continued to grow while treated- tumor growth was 

repressed. Data points represent the mean of n=6 tumor measurements ± SEM. Treatment 

was terminated at day 94 and tumor growth was monitored until animal model ceased.  
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Figure 3.10.  Tumor sections H&E staining. 

A. control tumor section showing viable tumor cells with no sign of necrosis 

(vacuolization or cellular debris). B &C. intratumorally treated sections showing 

vacuolization and dead cells debris. 
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Figure 3.11.   H&E staining of organ sections from EA-treated xenografts 

HeLa xenografts organ sections showing no tissue toxicity or necrosis. 
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3.5 Discussion 

     Our data demonstrates that ellagic acid inhibits CK2 kinase activity in HeLa cells. 

Maximum inhibition occurred at 72h after ellagic acid treatment, and was followed by 

kinase activity rebound at 96 h. This could be a result of a decline in Ellagic acid 

inhibitory effect due to instability after 72 h. The increase in CK2 expression at 72 and 96 

h may be due to cells compensating for the loss of CK2 activity, which further explains 

the increase of CK2 acitivity at 96 h.  Results in this study suggest that EA interruption of 

CK2 signaling pathways is, at least in part, responsible for the inhibition of E6 and E7 

expression at the mRNA and protein levels. E6 and E7 abrogation of host defense 

mechanisms plays a key role in the development of cervical cancer. Inhibition of HPV 

oncogene expression restores tumor-suppressor protein levels and sensitizes cells to 

apoptosis. This series of events will likely cause a phenotype of tumor growth inhibition 

and apoptosis. However, the exact mechanism of CK2-mediated down regulation of E6 

and E7 remains to be elucidated. 

     E7 repression was associated with decreased expression of cyclin A. Given that S-

phase progression is controlled by CDK2/ cyclin A complex (18) and cyclin A 

transcription is controlled by E2F, cell accumulation in S-phase can be associated with 

E7 down regulation. The inhibitory effect of ellagic acid on E7 led to increased stability 

of pRb, and inhibited transcriptional activity of E2F therefore decreasing cyclin A 

expression. The latest event would induce S-phase arrest, which was observed in EA-

treated-HeLa cells. In addition, E6 inhibition stabilizes tumor suppressor protein p53 
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levels.  HeLa cells express wt-p53 at low levels. Raising p53 to normal levels may restore 

its normal activity as a pro-apoptotic protein. 

     Inhibition of CK2 kinase activity can induce multiple apoptotic pathways. Array 

analysis of HeLa apoptotic proteome showed an increase in the expression of death 

receptors most significantly was the increase in TRAIL R2/ DR5 receptor. DR5 

expression is regulated by p53 thus; it can be associated with stabilized p53 level. DR5 

bind death stimuli and cause activation of pro-caspase 8. Cross talk between the extrinsic 

(via death receptors) and the intrinsic (via the mitochondria) apoptotic pathways can 

occur through BID cleavage by caspase-8 and p53 upregulation of Bcl2 pro-apoptotic 

proteins expression (19). Inhibition of CK2 kinase activity renders BID susceptible to 

caspase-8 cleavage and restores p53 level. Therefore, either signal is capable of inducing 

the intrinsic pathway. This was indicated by the detection of mitochondrial release of pro-

apoptotic cytochrome c into the cytosol. The final outcome of extrinsic, intrinsic 

pathways is the activation of caspase 3, a terminal effector caspase that targets PARP for 

fragmentation (20, 21).  

     Most malignancies over-express IAP proteins to protect against death stimuli hence 

several anti-cancer therapeutics target IAP’s to induce cancer regression (22-24). IAPs 

including cIAP-1, cIAP-2, XIAP and survivin interfere with apoptosis pathways. Most 

potent apoptosis suppressor is XIAP that binds and inhibit activated caspase-3, caspse-7 

and caspase-9 (25). Controlling IAPs expression level is fundamental to sensitize cells to 

apoptosis (26). In this study, EA showed potent inhibition effect of IAP’s specifically 

XIAP and surviving which render cells susceptible to apoptosis signaling.   
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     Our in vivo evaluation of EA tumor-suppressive potential in mouse HeLa xenografts, 

via intratumoral and intra-peritoneal administration, showed high efficiency of EA in 

reducing HPV (+) cervical cancer tumor growth. EA treatment had no organ toxicity and 

resulted in relatively longer survival of tumor xenografts.  

     Overall evaluation of EA mechanism of action in HeLa cells indicates that EA, by 

targeting a multifunctional enzyme (CK2), inhibited HPV oncogene expression, and 

stabilizes tumor suppressor proteins p53 and pRb. EA inhibitory effect involves the 

activation of multiple pro-apoptotic proteins and the repression of anti apoptotic ones.  

Mechanism of action was mainly mediated by extrinsic apoptosis pathway and 

incorporated the intrinsic pathway as well. Multifunctional targets and activation of 

multiple apoptotic pathways is essential in cancer therapeutics to prevent drug resistance 

development in cancer. 
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CHAPTER IV 

HPV-NEGATIVE CERVICAL CARCINOMA:  

ELLAGIC ACID INHIBITS C33A CELLS GROWTH IN VITRO AND HAVE 

ANTI-TUMOR ACTIVITY IN VIVO.  

 

4.1 Abstract. 

     In this study, human cervical carcinoma cell line negative for human papillomavirus 

(HPV) DNA, was analyzed for its response to ellagic acid (EA) treatment. Cervical 

carcinoma cell line C33A, expressing mutated p53 and RB genes was highly sensitive to 

EA treatment. There was a marked inhibition of CK2 kinase activity with EA treatment. 

Apoptosis appeared to be the major mode of inhibition exerted on C33A cells by EA. 

Analysis of apoptosis inhibitors revealed a proportional relationship with cell toxicity. In 

vivo results showed that ellagic acid has potent anti-tumor activity in C33A xenografts.  

These results indicate that EA can bypass tumor suppressor proteins p53 and pRb 

function and induce cytotoxicity through inhibition of CK2 kinase activity. 



73 

 

4.2 Introduction: 

     Despite recent improvements in prevention, diagnosis and treatment, invasive cervical 

cancer remains a disease with high mortality rate in females in the United States and in 

developing countries (1, 2). High risk human papilloma virus (HR-HPV) was found to be 

the major etiologic factor of 90% of all cervical dysplasia diagnosed (3-7). The remaining 

10% can develop due to other unknown causes. However, there are factors that have been 

identified by the World Health Organization/ Information Center of Oncology 

(WHO/ICO) to be contributing to cervical cancer development. These include smoking, 

oral contraceptive use, fertility rate, sexual behavior and HIV prevalence.  

     Cellular homeostasis is defined as the process of balancing cell proliferation and cell 

death. Homeostasis is crucial to normal survival and development of normal tissue. It is 

regulated by multiple cellular proteins that form biological checkpoints to control cell 

growth and eliminate abnormally proliferating cells (8, 9). Cancer cells are usually 

defective in their ability to maintain normal cellular growth and to execute apoptosis 

when necessary. This could be a result of a genetic mutation, or an acquired oncogenic 

activity that interferes with normal cellular homeostasis machinery. In cervical cancer, 

the loss of p53 and pRb tumor suppressor activity is a common feature among HPV (+) 

and (-) cells, and fundamental to the development of malignant transformation of cervical 

epithelial tissue (10). As we mentioned in previous report the mechanism of malignant 

transformation of HPV-infected primary epithelial cells, have been related to HPV 

oncogenes E6- and E7- mediated inhibition of tumor suppressor proteins p53 and pRb 

respectively (3, 11-13). However, in HPV (-) C33A cell line abrogation of p53 and pRb 
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tumor suppressor activity is achieved by gene mutation. P53 gene mutation is mapped to 

core domain. A substitution of CGT→TGT at codon 273 results in amino acid change of 

Arg → Cys. Amino acids at core domain are required for direct contact with DNA (14). 

Thus this mutation causes accumulation of inactive p53 aggregates in C33A cells. On the 

other hand, a single G→A mutation in the intron/exon 20 splice junction of pRb-

encoding gene was found in C33A cells. This point mutation results in inactive protein 

that is defective in its ability to be phosphorylated (10). An effective anti-cancer drug is 

the one that can inhibit acquired oncogenic agents or bypass the genetic mutation effect, 

and render cancer cells responsive to death stimuli. 

     To complement our evaluation of the ellagic acid inhibition of HPV (-) cervical 

cancer, we decided to assess this beneficial effect through animal studies. Several in vivo 

assays have assessed the importance of ellagic acid in tumorogenesis inhibition. Ellagic 

acid chemopreventive activity against chemically induced cancers of skin, esophagus, 

lung and liver were demonstrated by animal studies. In 12-O-tetradecanoyl-phorbol-13-

acetate (TPA)-induced skin cancer mice models, ellagic acid topical application inhibited 

biochemical markers of skin cancer development including DNA synthesis, ornithine 

decarboxylase, and hydroperoxide production (15). Ellagic acid dietary supplement was 

proven to effectively inhibit N-nitrosomethyl- benzylamine (NMBA) - and 

methybenzylnitrosamine (MBN) - induced esophageal cancer (16-18). EA oral 

administration resulted in reversed fibrosis and significant reduction in elevated liver 

enzymes, lipid peroxidase and liver dihydroxy proline (19). In rat model of Crohn’s 

disease, (10-20 mg/kg) EA oral administration effectively diminished intestinal injuries, 

alleviated oxidative stress and restored pro-inflammatory proteins expression to normal 
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levels (20). It is well known that the gold standard assay in assessing a therapeutic 

potential of a compound is done through in vivo trials, thus, in vivo testing is 

fundamental to understanding tumor suppression activity of ellagic acid in cervical 

cancer xenografts.  

     We have demonstrated previously that ellagic acid (EA) induced anti-proliferative 

effect on broad spectrum of malignancies including HPV (+) HeLa and HPV (-) C33A 

cells. Our investigation of EA mechanism of action in HeLa cells revealed that CK2 

inhibition leads to abrogation of HPV oncogene expression. As a consequence p53 and 

pRb normal levels and function as tumor suppressors were rescued. pRb inhibited the 

expression of cyclin A, and p53 induced death receptor activation. Apoptotic pathway 

involved extrinsic and intrinsic routes and a concomitant inhibition of IAP’s that could be 

induced by CK2 inhibition. In this report, we are investigating CK2 inhibition 

downstream mechanism of action in the absence of HPV oncogenic activity and the 

irreversible loss of p53 and pRb normal activity.  
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4.3 Experimental Procedures:  

Cell culture. 

    C33A cells were cultured in RPMI (Cellgro), supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin (Cellgro). Cells were maintained in 5% CO2 at 37⁰ 

C. 

CK2 activity assay 

     CK2 activity in C33A cells was measured using whole cell lysates. Cells were 

extracted using ice-cold hypotonic buffer containing 20 mM Tris buffer, pH 8.0, 10% 

glycerol, 0.05% nonidet-P40, 2.0 mM EDTA, 2.0 mM EGTA and a cocktail of protease 

and phophatase inhibitors. Cell suspension was kept on ice for 30 minutes, and then spun 

down at 10,000 xg for 10 minutes at 4⁰ C. Endogenous kinase activity of CK2 was 

measured by CKII assay Kit (Upstate Biotechnology/ Millipore). 1 μg protein of cell 

lysates was added to a total volume of 40 μl containing assay dilution buffer (20mM 

MOPS, pH7.2, 25mM β-glycerol phosphate, 5mM EGTA, 1mM sodium orthovanadate, 

and 1mM dithiothretol), 0.4 mM of CK2-specific substrate peptide (R3D3SD3), inhibitor 

cocktail to block activity of other serine/threonine kinases in lysates, and diluted [γ-
32

P] 

ATP in MgCl2. The mixture was incubated at 30⁰C for 10 minutes, and then reaction was 

stopped by adding 20 μl of 40% trichloroacetic acid (TCA). Twenty-five microliter of 

reaction mixture was transferred to P81 paper discs and allowed to bind for 30 seconds. 

Paper discs were washed 3 times with 0.75% phosphoric acid for five minutes each and 

one time with acetone, allowed to dry before they were transferred to scintillation vials 
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with 2 ml of scintillation cocktail. Radioactivity of CK2 was counted using scintillation 

counter, expressed as c.p.m percentage of control radioactivity.  CK2 expression level 

was assessed by resolving 35 μg protein on 12% polyacrylamide-SDS gel, transferred to 

PVDF membrane and blotted with anti-CK2α antibody.  

Cell cycle analysis 

     C33A cells were plated at density of 1 x 10
5
cell/well and incubated for 24h with 50 

μM EA. The cells were then harvested and fixed in 90% ethanol at 4⁰ C. Cells were then 

washed with PBS and resuspended in a solution containing propidium iodide, sodium 

citrate, triton X and RNase, and incubated at 37⁰ C in the dark. After 30 min of 

incubation, samples were analyzed by Cytomics FC500 flow cytometer (Beckman 

Coulter), Quantitative cell cycle analysis was performed using CXP software. 

Trypan Blue Assay. 

     Trypan blue dye exclusion assay was done to test cytotoxicity of C33A to ellagic acid 

in time dependent manner. Cells were treated with 50 μM ellagic acid for 24, 48, 72 and 

96 h. At specified time points. Cells were collected and an aliquot of 500 μl was counted 

using Beckman Coulter Vi-Cell XR cell viability counter. Results were compared to 

control which was treated with the vehicle (Peg400) and collected after 96 h of 

incubation time.  

Annexin-V assay/ flow cytometry. 

     50 µM ellagic acid-treated cells were trypsinized and harvested at 24, 48, 72 and 96 h, 

washed once with cold PBS and resuspended in 100 µl Annexin-V binding buffer at 
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concentration of 1x10
3
 cells /μl. According to the manufacturer’s protocol, cells were 

then incubated with FITC-Annexin V and propidium iodide (PI) solution (FITC Annexin 

V Kit II, BD pharminogen) for 15 min at room temperature in the dark. Apoptosis 

induction was then analyzed on Cytomics FC500 flow cytometer (Beckman Coulter), 

using CXP software.  

Apoptosis array analysis.  

     C33 cells were plated in 100 mm dishes at a density of 1x 10
5
 cells/ml. Cells were 

treated with 0 or 50 μM ellagic acid and incubated at 37⁰ C for 96 h. After trypsinizing 

and harvesting of cells, they were rinsed with PBS and extracted at 1x10^7 cells/ml in kit 

lysis buffer (Human Apoptosis Array Kit; R&D Systems). The lysates were resuspended 

and rocked gently at 4⁰ C for 30 min. After centrifuging at 14,000 x g for 5 min, the 

supernatant was transferred into a clean tube. 400 µg protein was incubated with 

apoptosis array membrane according to manufacturer’s protocol. Apoptosis array data 

developed on X-ray film were quantified and analyzed using Image Quant TL v2005. 

Pixel density of protein spots were analyzed ad exported to excel. Average pixel density 

of 2 spots per protein was calculated. Negative control was used as background and 

subtracted from the mean. Results were then normalized to the positive control.   

Immunoblot. 

     C33A cells were treated with 50µM ellagic acid, and incubated for 24, 48, 72 and 96 

hours. Time point 0 was treated with the vehicle PEG400 only. Cells were harvested at 

indicated time points, washed with PBS and lysed in a buffer containing 150 mM sodium 
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chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate 

(SDS), and 50 mM Tris at pH 8.0 with a cocktail of protease inhibitors. Protein 

concentrations were determined using BCA protein assay (Biorad). An amount of 35 μg 

protein was taken from all samples and resolved on 12% polyacrylamide-SDS gel and 

transferred to PVDF membrane using semi dry transfer method. The membrane is then 

blocked with 5% milk and incubated with anti-PARP antibody (Cell Signaling).  

Ellagic acid effect on C33A xenograft.  

     Animal experiments were performed in accordance with guidelines approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Cleveland Clinic. Female 

athymic nu/nu mice were purchased from Case Comprehensive Cancer Center (CWRU). 

Cell inoculation was achieved by injecting mice subcutaneously with 1x10
6
 C33A cells 

suspended at 1x10
7
 cells/ml. Mice were randomized into two groups and were monitored 

daily until tumors reached approximately 100 mm
3
 in volume. Control groups received 

vehicle (Peg400) given intratumorally (IT) in a volume of 25 μl. Second group received 

ellagic acid treatment intratumoral at concentration 8 mg/kg and third group received 30 

mg/kg via intraperitoneal route. Treatments were given three times a week, tumor 

dimensions were measured using calipers and volume of tumor was calculated using the 

formula (Volume = 4/3 π a
2
b, where a=minor radius and b=major radius of the tumor).  
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Histology and immunohistochemistry.  

     Animal models were euthanized and tumors were harvested and fixed in 10% neutral 

buffered formalin. Sections of tumors were stained with hematoxylin and eosin (H&E). 

Slides were viewed microscopically.  

Statistical analysis 

     Data are expressed as mean ± SEM from at least 3 independent experiments.  
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4.4 Results 

The inhibitory effect of ellagic acid on CK2 activity in C33A cells. 

     A single administration of 50μM ellagic acid resulted in inhibition of endogenous 

CK2 phosphorylation of the CK2-specific peptide substrate (R3D3SD3 ). Maximum 

inhibition of CK2 activity occurred after 48 h of EA treatment (Fig. 4.1A). CK2 activity 

rebound effect was evident after 72 h. As we have mentioned in previous report, 72 h 

might be the maximal effective time for 50μM EA after which a second dose is required. 

Figure 4.1B shows an evaluation of CK2 expression and found that EA exerts its effect 

on catalytic activity of CK2 only and not on its expression level.  

Ellagic acid decreases viability and has no cell cycle effect in C33A. 

     Next, we assessed the effect of ellagic acid on cell cycle progression (Fig. 4.2). We 

previously showed that EA induced S-phase arrest in HeLa cells and we indicated the 

correlation between HPV oncogenic activity and cell cycle modulation in HeLa cells. As 

expected, HPV (-) C33A cells did not show any significant cell cycle modulation 

following EA treatment.  However, a single dose of 50μM ellagic acid reduced viability 

of C33A cells to < 60% after 48 h. After 96 h of ellagic acid treatment, viability was 

reduced to < 20% (Fig. 4.3). 

Ellagic acid Induces apoptosis in C33A cells. 

     Ellagic acid increased percent apoptotic cells (early+late) in a time-dependent manner. 

Apoptosis was detected by phosphatidylserine (PS) externalization. Exposed PS on the 

outer cellular membrane is an early sign of apoptosis induction and was tagged by FITC 
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annexin V staining. Positively stained cells shift rightward with increased time of EA 

treatment (Fig. 4.4A). Figure 4.4B illustrates quantitative analysis of the increased cell 

population in early and late stage apoptosis  

Apoptosis effector proteins are modulated by ellagic acid treatment. 

     To identify effector proteins involved in ellagic acid-induced apoptosis in C33A cells, 

we evaluated the difference in pro-apoptotic and anti-apoptotic proteins expression in 

untreated-C33A and treated-C33A cells. Figure 4.5 A, B, C show that ellagic acid does 

not exert a modulation on the expression of p53 and cyclin A. Fragmentation of PARP 

was evident at 48 h after ellagic acid treatment. Array analysis indicates that death 

receptor-mediated apoptosis pathway is not involved in the mechanism of C33A cell 

death. However, Ellagic acid stimulated the repression of apoptosis inhibitors family of 

proteins IAP’s including cIAP-1, cIAP-2, XIAP and Survivin (Fig. 4.6A, B). 

Impact of ellagic acid treatment on C33A xenografts. 

     Next, we wanted to investigate whether ellagic acid in vitro inhibitory effect can have 

therapeutic benefits in C33A animal models. Inhibition of CK2 kinase activity blocked 

tumor growth in C33A xenografts treated via intra-peritoneal and intra-tumoral routes 

with a more profound effect in IT-treated animal models (Fig. 4.7, 8). When HPV-

negative cervical cancer tumors reached a volume of 100 mm^3, the mice were randomly 

divided into 3 groups and treated as explained in the experimental methods section. 

Control tumors continued to grow progressively. Mice treated with intratumoral 

injections of EA exhibited  
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dramatic decrease in tumor growth. Mice treated with intaperitoneal injections showed 

decreased tumor volume compared to control mice. To assess the impact of CK2 

inhibition by EA in C33A tumors, control groups large tumors were injected with EA 

intratumorally. These tumors developed black, ulcerated lesions which upon examination 

by H&E staining was found to be necrotic tissue (Fig. 9).  
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Figure 4.1.  Ellagic acid inhibits CK2 kinase activity.  

A.CK2 phosphorylation assay of specific peptide was evaluated in the presence of 50μM 

ellagic acid at different time intervals. Data based on 3 independent studies, normalized 

to control (sample at time 0) and expressed as mean ± SEM. B. CK2 expression by 

immunoblot showing stable expression of CK2 protein.   
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Figure 4.2. Minimal change in cell cycle distribution in C33A cells.  

Ellagic acid-treated cells sorted by flow cytometry analysis of DNA content into G0/G1, 

S and G2/M phases, revealed no effect on cell cycle progression. Quantitative data 

represents mean of 3 independent assays ± SEM. 
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Figure 4.3.   Ellagic acid-induced CK2 inhibition decreases cell viability in vitro. 

Trypan blue cell viability assay of C33A cells treated with 50μM ellagic acid at different 

treatment exposure times. Data is based on 3 independent studies and expressed as mean 

± SEM.  
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Figure 4.4. Ellagic acid induces apoptosis in C33A cells in a time-dependent manner. 

A. Density blot showing increase of cells shift rightward with increased time of ellagic 

acid treatment, compared to control. Cells shifting to the right lower quadrant are positive 

for annexin V (early apoptosis) and cells shifting to right-upper quadrant are positive for 

annexin V + PI staining (late apoptosis). This shift is indicative of PS externalization as a 

measure of apoptosis induction. B. A quantitative histogram of 3 independent annexin V 

assays. Data represent mean of (early + late apoptotic cells) ± SEM. 
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Figure 4.5. Ellagic acid effect on p53, pRb and apoptosis terminal effector protein 

PARP. Immunoblot analysis of C33A cells showed elevated levels of p53 and pRb with 

no change in expression with ellagic acid treatment. PARP fragmentation illustrated at 48 

h of ellagic acid treatment is indicative of caspase-mediated apoptosis induction.  
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Figure 4.6.  Apoptosis array analysis idintifies apoptosis effector proteins involved 

in growth inhibition of C33A cells. A.TNF family of death receptors and IAP’s 

expression was evaluated in ellagic acid treated and untreated C33A samples. Each 

protein is represented by two duplicate expression dots on the array. B. Quantitative 

analysis was done by pixel density measurement normalized to positive control.  
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Figure 4.7. In vivo anti-tumor activity of intratumoral ellagic acid treatment. 

Data represent the average volume of 6 tumors treated via intratumoral injections three 

times a week ± SEM. Tumor volume decreased dramatically compared to Peg400 control 

group. Treated animals survived for 250 days.  
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Figure 4.8. In vivo anti-tumor activity of intraperitoneal ellagic acid treatment. 

Quantification of C33A tumor growth from inta-peritoneally injected ellagic acid 

compared to Peg400 treated control. Data presented as mean of 6 tumors in control and 

treated groups.  
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Figure 4.9. Development of necrosis in tumors following ellagic acid treatment. 

Control tumors were injected intratumorally with 8 mg/kg ellagic acid. Black necrotic 

tissue developed after 3 EA-treatments, which upon evaluating by H&E staining was 

found to be necrotic tissue.  

 

 

 

 

 

Necrotic tumor Viable tumor  



93 

 

4.5 Discussion 

     We investigated the anti-proliferative and anti-tumoral effects of EA in HPV (-) C33A 

cells and the mechanism of apoptosis induction in the absence of p53 and pRb tumor 

suppressor activity. Our in vitro results show that C33A cells were sensitive to 

micromolar doses of EA in time and dose dependent manner. EA induces CK2 kinase 

activity inhibition with no effect on CK2 expression in C33A cells. Tumor suppressor’s 

p53 and pRb are mutated in C33A cells thus; p53 and pRb expression was not affected by 

EA treatment. Ellagic acid mode of inhibition in C33A cells did not involve cell cycle 

arrest. However, flow cytometry analysis of PS early exposure as well as PARP 

fragmentation indicates caspase-mediated apoptosis induction. Decreased expression of 

XIAP, survivin, cIAP1 and cIAP2 is essential in the execution of apoptosis. IAPs are 

overexpressed in a variety of malignancies. They inhibit caspase activity and play a 

critical rule in chemotherapy resistance.  Repression of IAPs removes the block on 

caspase activity and renders cancer cells susceptible to apoptosis execution. In vivo study 

indicate EA is efficient in inhibiting HPV (-) cervical tumor growth by intratumoral and 

intraperitoneal treatment. 

     These results suggest that, ellagic acid-mediated CK2 inhibition is effective in 

inducing apoptosis in the absence of p53 and pRb tumor suppressor activity via IAP’s 

inhibition. Inhibiting a multifunctional target such as CK2, can bypass tumor suppressor 

gene mutation and induce cancer cell death.  
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CHAPTER V 

OVERALL CONCLUSION 

     It is now well known that HPV infection is a sexually transmitted disease that when 

persistent, can cause vaginal, penile, vulva, anal canal and head and neck cancers (1-4). 

The newly developed vaccine containing noninfectious peptide representing high risk 

(HR) HPV strains is effective at preventing HPV infections and subsequent dysplasia (4, 

5). Drug and Food Administration (FDA) has approved HPV vaccination for females 

aged 9-26. Recently females of any age are recommended to receive the vaccine as long 

as they test negative for HPV-DNA. This vaccine is a valuable tool in preventing HR-

HPV infection and cervical dysplasia (4, 6). However, implementation of HPV 

vaccination is very limited in developing countries where cervical cancer results in high 

mortality rate. The population who receive the vaccine is limited to females who are 

negative for HPV-DNA, while males are also at risk of developing HPV-mediated 

cancers (4). HPV vaccine protects against 70% of HPV strains but the duration of this 
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immunity is still uncertain. Women who receive the vaccine have to follow up with a 

yearly Papanicolaou (Pap-smear) to screen for the remaining 30% of HPV strains against 

which the vaccine does not provide immunity (4). The limitations of HPV vaccine leave a 

large population that remains at risk of developing HPV-related cancers.   

     Early detection of cervical cancer is necessary for optimal treatment outcome. Women 

have to undergo a yearly Papanicolaou for early detection of cervical dysplasia. Currently 

the standard care for abnormal cytology, which is determined by pap-smear screening, is 

immediate colposcopy and biopsy of all suspected lesions. Biopsy specimen analysis 

determines the histologic diagnosis. Both cytology and histology analysis can then 

determine the degree of cervical dysplasia according to the Bethesda System (7). This 

categorization system divides abnormal cytology into two main groups: squamous and 

glandular origins. Squamous cell origins include atypical squamous cells, low-grade 

squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion 

(HSIL) and squamous cell carcinoma. Glandular cell origins include: atypical cells, 

atypical favoring neoplasia, endocervical adenocarcinoma in situ, adenocarcinoma (7). 

Cytology diagnosis is further confirmed by histology diagnosis, which is categorized into 

Low-grade cervical intraepithelial neoplasia (CIN1) which falls under LSIL; and 

Moderate and severe CIN2 and CIN3 (CIN3 indicates carcinoma in situ) which fall under 

HSIL (7, 8). Once cervical carcinoma is confirmed by cytology and histology 

examination, a clinical staging has to be determined according to International Federation 

of Gynecology and Obstetrics (FIGO). Depending on clinical staging of cervical 

neoplasia, treatment can be determined (8). 
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Figure 5.2. Cervical dysplasia classification according to cytology and histology 

analysis. From Lowy & Schiller, J Clin Invest, 116:1167-73, 2006 
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     Cervical cancer treatment is aggressive and can include; radiation (external beam 

radiation or intra-vaginal), chemotherapy (cisplatin (CDDP) and 5-fluorouracil (5-FU)), 

surgery which may involve  radical hysterectomy and pelvic lymphadenectomy (8). In 

most cervical cancer cases combined therapy is necessary. Combined radical surgery and 

radiation is used to treat certain stages of cervical cancer, however, this therapy is 

associated with toxic side effects (8). Combined chemo-radiotherapy is considered the 

gold standard treatment for cervical carcinoma. Although, the later therapy improves 

survival rate in cervical cancer patients, it can cause severe acute and late toxic effects (9, 

10). Acute toxicity of concurrent chemotherapy and radiotherapy treatment manifest in 

hematologic and gastrointestinal complications that may require hospitalization (10). Late 

toxicity can include small bowel obstruction, ureteric fibrosis, pulmonary embolus, sepsis 

and toxic death (9).  

     The aggressiveness of these therapies and the development of chemo- and radio- 

therapy resistant tumor cells increased the need for an improved anti-cervical cancer drug 

(11). We found that ellagic acid-mediated CK2 inhibition has antiproliferative and 

apoptotic activity against cervical carcinoma in vitro and in vivo. Ellagic acid appears to 

present an anti-viral effective strategy that is safe, multifunctional (to avoid cancer cells 

resistance development), and has the ability to bypass tumor suppressors’ mutation to 

induce cancer cell death.  

     Comparing HPV (-) C33A and HPV (+) HeLa cervical cancer cells in their response 

to ellagic acid- mediated CK2 inhibition, we found that C33A showed greater sensitivity 

in time- and dose- dependent manner compared to HeLa cells. We hypothesized that this 
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difference was due to differential gene expression. Therefore, we analysed major 

oncogene expression differences via immunobloting (Fig. 2). Immunoblot analysis in 

HeLa cells confirm the expression of HPV18-E6 and -E7, show normal level of cyclin A 

as a product of pRb-E2F transcription activity, and undetectable p53. C33A on the other 

hand, is negative for HPV-E6 and E7 expression, expresses elevated level of mutated p53 

and normal expression level of cyclin A. When we compared CK2 expression, we found 

that it is expressed at elevated level in C33A cells compared to HeLa. This suggests that 

HeLa might be more sensitive to ellagic acid inhibitory effect compared to C33A. 

However, as indicated in our previous reports, C33A is more sensitive than HeLa. This 

suggests that HPV-oncogenic activity delays HeLa response to CK2 inhibition and 

hinders it from being as sensitive to ellagic acid treatment as C33A.  

     Comparing ellagic acid mechanism of action in HeLa and C33A cells will provide 

insight into the molecular mechanism of action of ellagic acid in different proteome 

profiles. This comparison study revealed apoptosis as the common inhibitory mechanism 

in both C33A and HeLa cells in time- and dose- dependent manner. Cell cycle arrest was 

partly involved in ellagic acid inhibitory effect in HeLa cells. This specificity to HeLa 

cells is associated with the oncogenic activity of HPV-E7 as the later plays an important 

role in regulating cell cycle machinery. We predicted major differences in the underlying 

mechanism of apoptosis induction in HeLa and C33A cells. This was confirmed by 

different expression of effector proteins involved in apoptosis induction in HeLa and 

C33A cells. HeLa showed a combination of TRAIL death receptor activation, 

mitochondrial involvement, and IAP’s inhibition. In contrast, C33A cells showed IAP’s  
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Figure 5.3. Immunoblot comparison analysis of gene differential expression in HeLa 

and C33A cells.  
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as the major effector proteins involved in apoptosis induction.  

     In vivo study of ellagic acid effect on HeLa and C33 tumors was consistent with 

previous in vitro results. At low dose application of ellagic acid, HeLa exhibited less 

sensitivity to intratumoral treatments than C33. However, at higher dose, HeLa and C33 

tumors demonstrated similar response to intra-peritoneal administration of ellagic acid. It 

is noteworthy that upon treating HeLa and C33 tumors in control groups with ellagic 

acid, both tumors developed areas of necrosis. This further confirms ellagic acid 

effectiveness in tumor growth inhibition. 
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