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LPA is a normal constituent of serum, but it is not detectable
in freshly isolated blood or plasma from healthy individuals
[13–17]. Since we have found that LPA is present in ascites
from ovarian cancer patients, we investigated whether LPA
was also present in the plasma from patients with ovarian
cancer and evaluated its potential as a marker for ovarian
cancer. We found that ovarian cancer patients had significantly
higher plasma LPA levels compared with controls. Higher
LPA levels were also detected in the plasma from a majority of
patients with other gynecologic carcinomas, but only in a
minority of patients with benign gynecological diseases, and it
was not detected in patients with breast cancer or leukemias [18].

While we are prospectively evaluating LPA as a potential
marker for early detection, we have also begun to study the
source and the mechanism underlying the elevated LPA levels
in patients with ovarian and other gynecological cancers. The
only LPA source that has been studied extensively is activated
platelets [13, 14, 19, 20]. However, since we have observed
that over 95% of gynecological cancer patients have elevated
LPA levels in their plasma, whereas patients with breast cancer
and leukemia do not [18], it seems unlikely that a nonspecific
platelet effect could explain the unique association of gyneco-
logical cancer and elevated plasma LPA. Intriguingly, malig-
nant effusions from ovarian cancer have been reported to
contain high LPA-like activity assayed by a semiquantitative
neuronal cell shape change assay, compared with effusions
from other tumors, including breast and lung cancer [21].
These data suggest that there may be increased production of
LPA associated with ovarian cancer. Therefore, we postulate
that the malignant cancer epithelial cells might be responsible
for the production and secretion of LPA into the blood.

In the present study, we tested whether ovarian, cervical,
breast cancer, and leukemia cells could produce and release
LPA. The enzymes involved in LPA production were also
investigated.

MATERIAL AND METHODS

Materials. Precoated silica gel 60 TLC plates were ob-
tained from EM Science (Gibbstown, NJ). Lysophosphatidic
acids (palmitoyl, oleoyl, and stearoyl LPAs) were purchased
from Avanti Polar-lipids, Inc. (Birmingham, AL). Lysophos-
phatidylcholine, lysophosphatidylinositol, lysophosphatidyl-
serine, lysophosphatidylethanolamine, 8-anilino-1-napthtale-
nesulfonic acid, ammonium hydroxide, and PMA were
obtained from Sigma, Inc. (St. Louis, MO). All other organic
solvents were chromatographic grade and from Fisher (Pitts-
burgh, PA). HEY cells were a gift from G. Mills, M.D. Ander-
son, Texas [9]. OCC1, Hela, Jurkat, K562, MCF7, and MB-
MDA-231 were purchased from the American Type Culture
Collection (Rockville, MD). Fetal bovine serum (FBS), tryp-
sin–EDTA, glutamine, RPMI 1640, and DMEM/F12 were
obtained from Fisher Scientific (Pittsburgh, PA). Gentamycin
was obtained from GIBCO-BRL (Grand Island, NY).

Mammalian cell culture. HEY, OCC1, Hela, Jurkat, K562,
MCF7, and MB-MDA-231 were cultured in complete RPMI
1640 supplemented with 10% FBS, 2 mM glutamine, and 50
mg/ml gentamycin in T75 flasks till cells reached 80–90%
confluence. Cells were starved in 10 ml DMEM/F12 (50/50)
with 2 mM glutamine and 50mg/ml gentamycin for 48 h before
PMA stimulation. The supernatants from different cells were
collected and processed for LPA analysis.

LPA analysis. LPA extraction and purification were per-
formed with a similar method as described by Tokumuraet al.
[15]. Briefly, the supernatants from the various cell populations
were acidified and extracted by methanol/chloroform (2:1,
v/v). After mixing with chloroform and H2O, LPA was ex-
tracted into the chloroform phase and the extract was concen-
trated at 40°C under nitrogen. The residue was dissolved in
methanol/chloroform (2:1, v/v) and loaded on a silica gel plate.
The developing solvent was chloroform/methanol/ammonium
hydroxide (65:35:5.5,v/v/v). LPA and other phospholipids
were detected by spraying the plates with 0.1% 8-anilino-1-
naphthalenesulfonic acid in water and visualized under ultra-
violet light. LPA spots resolved by TLC were scraped from the
silica gel plates and hydrolyzed in 1 M ethanolic KOH. The
resulting fatty acids were transmethylated in the presence of
behenic acid (Nu Check Prep. Inc., Elysian, MN) as an internal
standard with BCl3–methanol reagent (Supelco, Inc., Pitts-
burgh, PA). After transmethylation, the fatty acid esters were
extracted with petroleum ether and quantified by Hewlett–
Packard Model 5890 gas chromatograph equipped with a col-
umn (1.83 m3 2 mm) coated with 3% SP-2310, 2% SP-2300,
on 100/120 Chromosorb W AW (Supelco, Inc. Bellefonte,
PA). Two fatty methyl esters standard mixtures were obtained
from Nu Check Prep. Inc. Concentrations of LPA and each
individual species were derived from the fatty acid ester con-
tent and calibrated with internal standard.

Statistics. Determination of statistically significant differ-
ences between experimental groups was performed using the
nonparametric Mann–Whitney test [22]. Differences between
each group were considered to be significant whenP values of
,0.05 were obtained.

RESULTS

PMA-stimulated LPA secretion from HEY cells in a dose-
and time-dependent manner.LPA was not detected in the
supernatant from HEY, OCC1, Hela, Jurkat, K562, MCF7, and
MB-MDA-231 cultured in serum-free medium, suggesting that
tumor cells do not produce LPA when growth factors are
depleted. To produce LPA, PLA2 activity is likely to be in-
volved [23]. The activation of PLA2 can be conveniently and
quickly achievedin vitro by PMA stimulation, since it acti-
vates PKC, which in turn, activates some isoforms of PLA2 and
PLD [19, 23–27].

PMA stimulated significant LPA production which could be
detected in the supernatant of ovarian cancer HEY cells. This
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stimulation was dose and time dependent. As shown in Fig. 1,
LPA release was the highest with 50 nM PMA stimulated cells
and lower for both 5 and 500 nM PMA. LPA formation and
release was rapid (5 min) and very little LPA was detected in
the supernatant from HEY cells after 24 h treatment of 50 nM
PMA (Fig. 2).

PMA-stimulated LPA secretion from ovarian cancer and
cervical cancer cells, but much lower amounts from breast
cancer and leukemia cells.We tested LPA levels in the
supernatant from other cells after the treatment of 50 nM PMA
for 5 min. As shown in Fig. 3, the two ovarian cancer cell lines
HEY and OCC1 produced significant amounts of LPA (0.78
cells and 0.56 nmol/106 cells). Hela cells, a cervical cancer cell
line, also released LPA, although at lower amounts (0.20
nmol/106 cells), into the supernatant after PMA treatment. On
the contrary, MCF7, an estrogen-response (ER) positive breast
cancer cell line and MB-MDA-231, an ER negative breast
cancer cell line, only released a very small amount of LPA

(0.05 cells and 0.01 nmol/106 cells, respectively). In addition,
two leukemia cell lines (Jurkat and K562) secreted negligible
LPA after PMA stimulation.

Statistically, the PMA-stimulated LPA levels in ovarian
cancer cells were significantly higher than the PMA-stimulated
LPA levels in breast cancer cells (P 5 0.002) or leukemia cells
(P 5 0.002). The PMA-stimulated LPA levels in cervical
cancer cells were also significantly higher than that in breast
cancer cells (P5 0.01) and leukemia cells (P5 0.02).

LPA secretion from ovarian cancer cells by PMA stimula-
tion was AACOCF3- and tamoxifen-sensitive.To investigate
the role of phospholipase A2 in LPA production in ovarian
cancer cells, HEY cells were pretreated with 100mM of
AACOCF3, an inhibitor for both cPLA2 and iPLA2, for 12 min
prior to treatment with 50 nM PMA for 5 min. Figure 4 shows
that 75.6% of PMA-stimulated LPA release was inhibited by
AACOCF3 pretreatment. Tamoxifen citrate (50mM, 20 min
pretreatment) also inhibited PMA-stimulated LPA release
(72.2% inhibition) (data not shown).

FIG. 1. Dose dependence of PMA-stimulated LPA release into the culture
supernatant of HEY cells. HEY cells were cultured as described under Material
and Methods. PMA was added to the medium at the indicated concentrations
and incubated for 5 min at 37 C. The culture supernatant of HEY cells was
collected for LPA analysis. The cell numbers were counted for normalization.
LPA analysis was carried as described under Material and Methods. Values are
calculated as means6 S.D. from three experiments.

FIG. 2. Time course of PMA (50 nM)-stimulated LPA release into the
culture supernatant of HEY cells. HEY cells were cultured and stimulated with
50 nM PMA for different times as indicated.

FIG. 3. PMA-stimulated LPA release into the culture supernatant of
multiple cell types HEY, OCC1, Hela, Jurkat, K562, MCF7, and MB-MDA-
231 cells were stimulated with 50 nM PMA for 5 min.

FIG. 4. AACOCF3 inhibited PMA-stimulated LPA release into the su-
pernatant of HEY cells. HEY cells were pretreated with 100mM AACOCF3

for 12 min, prior to the stimulation of 50 nM PMA for 5 min.
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DISCUSSION

We present data here to show that ovarian and cervical
cancer cells can produce LPA under certain conditions. To our
knowledge, this is the first demonstration that cancer cells can
produce LPA.

Our data show that ovarian cancer cells, but not breast
cancer (MCF7 and MB-MDA-231) or leukemia (K562 and
Jurkat) cells, secrete LPA. The lack of LPA production in
breast and leukemia cells, we believe, is not due to the lack of
responsiveness of these cells to PMA. We have previously
shown that pretreatment with PMA blocks LPA-induced cal-
cium release in MCF7 and MB-MDA-231 cells (unpublished
observation). PMA is known to cause Jurkat cells to proliferate
and produce IL-2 [28]. It is well documented that K562 cells
differentiate in response to PMA [29, 30]. In addition, PMA
has been shown to stimulate aromatase activity in MCF7 cells
[31]. PMA also induces a dose-dependent increase in prosta-
glandin E2 production, inhibits cell growth, and stimulates
aromatase activity in 231 cells [32, 33]. The mechanisms that
underlie these differences remain to be investigated. It is pos-
sible that under different conditions these breast and leukemia
cells may secret LPA into the medium.

Interestingly, the LPA produced by different cancer cellsin
vitro showed the same tumor type specificity as we observed
when measuring LPA in plasma [18]. These results suggest
that malignant ovarian epithelial cells may represent an impor-
tant source of the elevated LPA detected in the plasma of
patients with ovarian cancers [18].

We observed that LPA was not secreted by ovarian cancer
cells in vitro when growth factors were depleted. Under phys-
iological and/or pathological conditions, however, ovarian can-
cer cells are under the influence of many growth factors and
cytokines, including EGF, transforming growth factorb, am-
phiregulin, basic fibroblast growth factor, insulin-like growth
factor, interleukin 1, and tumor necrosis factora [4–6]. Some
of these factors have been shown to activate PLA2 in other cell
systemsin vitro. For example, EGF activates cPLA2 in human
squamous carcinoma A431 cells and fibroblasts [34–37].
TGF-b regulates the expression of phospholipase A2(s) and
induces an increase in cytosolic 85 kDa PLA2 (activity and
protein) in macrophages after a prolonged exposure (.12 h)
[38]. IL-1 and TNF-a, but not IL-6, regulate the expression of
group II phospholipase A2 in glomerular mesangial cells [39,
40]. Identification of the physiological stimulus for the produc-
tion of LPA in ovarian cancer cells is under investigation.
Studies of LPA production under physiological and patholog-
ical conditions, using an animal model, tumor tissue, or pri-
mary tumor culture will be necessary to confirm the source of
elevated plasma LPA.

Our inhibitor studies strongly suggest the involvement of a
cPLA2 or an iPLA2, but do not rule out the potential involve-
ment of a secretory phospholipase A2 (sPLA2) in LPA produc-
tion. cPLA2 has been shown to be required for activation of

sPLA2, and both enzymes are involved in cell activation and
signal transduction in P388D1 macrophage [41]. Recently, a
nonpancreatic sPLA2 was reported to be involved in LPA
production in platelets [42]. The role of sPLA2 and other
enzymes in LPA production and secretion in ovarian cancer
cells remains to be determined. If the source and enzymes
associated with the elevated LPA levels in patients with ovar-
ian cancer are defined, they may serve as important targets for
early intervention of ovarian cancer.

LPA in the medium was diminished after prolonged treat-
ment with PMA, presumably due to the downregulation of
PKC and/or rapid conversion of LPA to either phosphatidic
acid through reacylation or dephosphorylation to monoacyl-
glycerol through a LPA phosphohydrolase action [23].In vivo,
LPA binds strongly to serum albumin. Albumin not only
carries LPA in the serum, but also prolongs its physiological
half-life [23]. Therefore, LPA might have a longer half-lifein
vivo than we have observed in cell culture.

Our previous data on plasma LPA levels [18] do not rule out
a potential contribution from platelets to the elevated LPA
levels found in gynecological cancer patients [18]. Although
we used plasma samples to avoid platelet aggregation during
sample collection and analysis, and we did not observe signif-
icant difference in platelet counts between patients and normal
controls, it is still possible that a platelet abnormality in gyne-
cological patients contributed, in part, to the elevated LPA
levels. However, the data we present here indicate that tumor
epithelial cells are capable of producing LPA under certain
conditions and suggest that they are potential sources for
elevated plasma LPAin vivo.
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