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New lower bounds for the topological complexity of aspherical
spaces

Mark Grant, Gregory Lupton, John Oprea

1. Introduction

Topological complexity is a numerical homotopy invariant introduced by Farber in the articles [13,14]. As
well as being of intrinsic interest to homotopy theorists, its study is motivated by topological aspects of the 
motion planning problem in robotics. Define the topological complexity of a space X, denoted TC(X), to
be the sectional category of the free path fibration πX : XI → X × X, which sends a path γ in X to its pair
(γ(0), γ(1)) of initial and final points. The number TC(X) gives a quantitative measure of the ‘navigational
complexity’ of X, when viewed as the configuration space of a mechanical system. Topological complexity is 



a close relative of the Lusternik–Schnirelmann category cat(X), although the two are independent. Further
details and full definitions will be given in Section 2.

We remark once and for all that in this paper we adopt the convention of normalizing all category-type 
invariants to be one less than the number of open sets in the cover. So for instance, TC(X) = cat(X) = 0
when X is contractible.

Recall that a path-connected space X is aspherical if πi(X) = 0 for i ≥ 2. The homotopy type of an
aspherical space is determined by the isomorphism class of its fundamental group. Furthermore, for any 
discrete group G one may construct, in a functorial way, a based aspherical complex K(G, 1) having G as 
its fundamental group. Through this construction, any new homotopy invariant of spaces leads to a new 
and potentially interesting algebraic invariant of groups. In this paper we address the following problem,
posed by Farber in [15]: Can one express TC(G) := TC

(
K(G, 1)

)
in terms of more familiar invariants of

the group G? This is an interesting open problem, about which relatively little is known beyond some 
particular cases (see below). In contrast, the corresponding problem for Lusternik–Schnirelmann category 
was solved in the late 1950s and early 1960s, with work of Eilenberg–Ganea [12], Stallings [26] and Swan 
[28]. Their combined work showed that cat(G) := cat(K(G, 1)) = cd(G), where cd denotes the cohomological
dimension, a familiar algebraic invariant of discrete groups.

Groups G for which the precise value of TC(G) is known include: orientable surface groups [13];
pure braid groups Pn [18] and certain of their subgroups Pn,m = ker(Pn → Pm) which are kernels
of homomorphisms obtained by forgetting strands [16]; right-angled Artin groups [6]; basis-conjugating 
automorphism groups of free groups [7]; and almost-direct products of free groups [5]. In all of these 
calculations, sharp lower bounds are given by cohomology with untwisted coefficients. If k is a field, let 
∪ : H∗(G; k) ⊗H∗(G; k) → H∗(G; k) denote multiplication in the cohomology k-algebra of the group G. The 
ideal ker(∪) ⊆ H∗(G; k) ⊗H∗(G; k) is called the ideal of zero-divisors. One then has that TC(G) ≥ nil ker(∪),
where nil denotes the nilpotency of an ideal. This is often referred to as the zero-divisors cup-length lower 
bound.

On the other hand, it is known that zero-divisors in cohomology with untwisted coefficients are not 
always sufficient to determine topological complexity. In [20] the topological complexity of the link com-
plement of the Borromean rings was studied, and sectional category weight and Massey products were 
applied to obtain lower bounds. This is, to the best of our knowledge, the only previously known exam-
ple of an aspherical space X for which TC(X) is greater than the zero-divisors cup-length for any field of
coefficients.

In this paper we give new lower bounds for TC(G) which are described in terms of the subgroup structure
of G. These lower bounds do not, therefore, require knowledge of the cohomology algebra of G or its 
cohomology operations.

Theorem 1.1. Let G be a discrete group, and let A and B be subgroups of G. Suppose that gAg−1 ∩ B = {1}
for every g ∈ G. Then TC(G) ≥ cd(A × B).

Thus TC(G) is bounded below by the cohomological dimension of the direct product A ×B if no non-trivial
element of A is conjugate in G to an element of B. Note that A × B is not a subgroup of G in general, and 
so it may well happen that cd(A × B) > cd(G).

From another viewpoint, Theorem 1.1 implies that upper bounds for the topological complexity of G
force certain pairs of subgroups of G to contain non-trivial conjugate elements.

We next note some general settings in which the assumptions of Theorem 1.1 are satisfied. Recall that 
subgroups A and B of G are complementary if A ∩B = {1} and G = AB. Then for every g ∈ G we can write 
g−1 = αβ for some α ∈ A and β ∈ B, and the condition gAg−1 ∩ B = {1} follows easily from A ∩ B = {1}. 
In the special case when either A or B is normal in G, then G is a semi-direct product.



Corollary 1.2. Let G be a discrete group, and let A and B be complementary subgroups of G. Then TC(G) ≥
cd(A × B).

Corollary 1.3. If G = A � B is a semidirect product, then TC(G) ≥ cd(A × B).

These results should be compared with results in our companion paper [21], in which we treat non-
aspherical spaces.

The paper is organized as follows. In Section 2 we recall the necessary definitions and preliminaries 
concerning category, sectional category and cohomological dimension. Section 3 is a gallery of examples 
illustrating how our Theorem 1.1 may be applied. For right-angled Artin groups, we recover the lower 
bounds for their topological complexity obtained by Cohen and Pruidze in [6]. In the case of pure braid 
groups, the lower bounds for their topological complexity obtained by Farber and Yuzvinsky in [18] follow 
from our Theorem 1.1 using an appealing geometric argument. We also consider the Borromean rings, and 
recover the conclusion of [20, Example 4.3], thus showing that our bounds can improve on zero-divisors 
cup-length bounds with very little computational effort. In Section 4 we consider Higman’s curious acyclic 
group, introduced in [23], and show that its topological complexity is 4. Since this group is known to have 
trivial cohomology for all finitely generated coefficient modules, it seems unlikely that this result could 
be obtained by standard cohomological methods. Finally, in Section 5 we prove Theorem 1.1. The proof, 
which uses the notion of 1-dimensional category due to Fox [19], can be read independently of Sections 3
and 4.

Several of the arguments in Section 4 use Bass–Serre theory, and are due to Y. de Cornulier. We warmly 
thank him for his input.

2. Definitions, notations and preliminaries

We begin by recalling the definitions of Lusternik–Schnirelmann category and sectional category. Further
details can be found in the reference [8]. All spaces are assumed to have the homotopy type of a CW 
complex, and all groups are considered discrete.

Definition 2.1. The (Lusternik–Schnirelmann) category of a space X, denoted cat(X), is defined to be the
least integer k for which X admits a cover by k + 1 open sets U0, . . . , Uk such that each inclusion Ui ↪→ X

is null-homotopic. If no such integer exists, we set cat(X) = ∞.

Definition 2.2. Let p: E → B be a continuous map of spaces. The sectional category of p, denoted secat(p),
is defined to be the least integer k for which B admits a cover by k + 1 open sets U0, . . . , Uk on each of
which there exists a partial homotopy section of p (that is, a continuous map si: Ui → E such that p ◦ si is
homotopic to the inclusion Ui ↪→ B). If no such integer exists, we set secat(p) = ∞.

When p: E → B is a (Hurewicz) fibration, an open subset U ⊆ B admits a partial homotopy section if 
and only if it admits a partial section (that is, a map σ: U → E such that p ◦σ equals the inclusion U ↪→ B). 
The sectional category of fibrations was first studied systematically by Schwarz (under the name genus) in 
[27], where proofs of the following results can be found.

Proposition 2.3. Let p: E → B be a fibration.

1. If B is path-connected and E is non-empty, then secat(p) ≤ cat(B).
2. If p is null-homotopic, then secat(p) ≥ cat(B).



Proposition 2.4. Suppose that the diagram

A

q

E

p

Y B

is a homotopy pullback. Then secat(q) ≤ secat(p).

Let X be a space. The free path fibration on X is the fibration

πX : XI → X × X, πX(γ) =
(
γ(0), γ(1)

)
,

where XI denotes the space of all paths in X endowed with the compact-open topology. This has fiber ΩX, 
the subspace of XI consisting of paths which begin and end at some fixed point x0 ∈ X.

Definition 2.5. The topological complexity of a space X, denoted TC(X), is defined to be secat(πX), the
sectional category of the free path fibration on X.

Topological complexity is therefore an important special case of sectional category. It is a homotopy 
invariant, which as well as having applications to the motion planning problem in robotics (as explained in 
the original articles [13–15]) also turns out to give an equivalent formulation of the immersion problem for 
real projective spaces [17]. It is a close relative of the LS-category, although the two notions are indepen-
dent. Note that when X is path-connected, simple arguments using Propositions 2.3(1) and 2.4 yield the 
inequalities

cat(X) ≤ TC(X) ≤ cat(X × X).

Either inequality can be an equality, as illustrated by the orientable surfaces (see [13, Theorem 9]). Note 
also that when X is a CW complex, combining this upper bound with the standard dimensional upper 
bound for category yields

TC(X) ≤ 2 · dim(X).

In this paper we consider the problem of calculating the topological complexity of aspherical spaces. Given 
a group G, one can construct an aspherical based CW complex K(G, 1), whose homotopy type is an invariant 
of the isomorphism class of G. One can therefore define cat(G) := cat(K(G, 1)) and TC(G) := TC(K(G, 1)),
and then ask for results which describe these invariants in purely algebraic terms. In the case of category, 
such results were obtained by Eilenberg–Ganea, Stallings and Swan, in terms of cohomological dimension.

Definition 2.6. The cohomological dimension of a group G, denoted cd(G), is defined to be the least integer 
k such that Hi(G; M) = 0 for all i > k and all coefficient Z[G]-modules M . If no such integer exists, we set 
cd(G) = ∞.

Theorem 2.7. (Eilenberg–Ganea [12], Stallings [26], Swan [28]) For any group G, we have cat(G) = cd(G).

This result identifies cat(G) with a well-known, algebraically defined invariant of G, namely its co-
homological dimension (which agrees with the projective dimension of Z as a Z[G]-module, see Brown 
[4, Chapter VIII]). One might hope for a similar result for TC(G). However, no such result is known, even
in conjectural form. Note that if G has torsion (and in particular if G is finite) then cd(G) = cat(G) = ∞,



and so TC(G) = ∞ also. Therefore, in this paper we will consider only torsion-free infinite groups of finite
cohomological dimension.

We conclude this section with two lemmas on cohomological dimension of direct products, which will be 
useful in applying our Theorems 1.1 and 1.2 in specific cases. It is known that the cohomological dimension 
behaves sub-additively, in that cd(A × B) ≤ cd(A) + cd(B) for any groups A and B. It is also known that 
the inequality may be strict (for instance, it follows from [30] that cd(Q × Q) = 3 < 4 = cd(Q) + cd(Q)). 
This strictness cannot occur, however, if the groups satisfy certain duality hypotheses.

Recall from [3] that a group A is called a duality group of dimension k if there exists some Z[A]-module 
C and an element e ∈ Hk(A; C) such that cap product with this element gives an isomorphism

− ∩ e: Hi(A; M) ∼= Hk−i(A; M ⊗ C)

for all i and all Z[A]-modules M . Note that in this case, cd(A) = k. If C can be chosen to have underlying 
abelian group Z, then A is called a Poincaré duality group of dimension k, or PDk group for short. If, in
addition, C can be chosen to be Z with the trivial module structure, then A is called an orientable PDk

group.
For instance, the fundamental group of a closed (orientable) aspherical k-manifold is an (orientable) PDk

group. There are many examples of duality groups which are not Poincaré duality groups, such as knot 
groups and Baumslag–Solitar groups [3].

Lemma 2.8. ([3, Theorem 3.5]) Let

1 B Γ A 1

be an extension of groups in which A and B are duality groups, of dimensions k and � respectively. Then Γ is a 
duality group of dimension k+�. In particular, if A and B are duality groups then cd(A ×B) = cd(A) +cd(B).

Lemma 2.9. If A is an orientable Poincaré duality group, and B is any group, then cd(A × B) = cd(A) +
cd(B).

Proof. Let M be a Z[B]-module such that H�(B; M) 
= 0, where � = cd(B). We will consider the Lyndon–
Hochschild–Serre spectral sequence of the trivial extension

1 B A × B A 1

which has Ep,q
2 = Hp(A; Hq(B; M)) and converges to H∗(A ×B; M). Here we regard M as a Z[A ×B]-module

via the homomorphism Z[A × B] → Z[B].
Letting k = cd(A), we see that

Ek,�
2 = Hk(A; H�(B; M)) ∼= H0(A; H�(B; M)) ∼= H�(B; M),

because A acts trivially on H�(B; M). There can be no nonzero differentials associated with this group, and 
so our assumptions on the dimensions of A and B imply that Hk+�(A × B; M) ∼= Ek,�

∞ ∼= Ek,�
2 
= 0. Hence

cd(A × B) ≥ k + �, as required. �
3. Examples

In this section we present three examples illustrating how our Theorem 1.1 may be applied for various
groups. In the first two examples (right-angled Artin groups and pure braid groups) we recover sharp 



lower bounds, originally obtained using zero-divisors cup-length. In the final example we consider the link 
complement of the Borromean rings. Here our lower bound improves on the zero-divisors cup-length, and 
recovers the bound of [20, Example 4.3] which was obtained using sectional category weight and Massey 
products.

3.1. Right-angled Artin groups

Right-angle Artin groups form a rich class of infinite groups, including free groups of finite rank and 
finitely-generated abelian groups. To any finite simple graph Γ, one can associate a right-angled Artin group 
GΓ as follows. The group GΓ has a finite presentation, with one generator xi for each vertex vi ∈ V(Γ),
and one relation xixj = xjxi for each edge {vi, vj} ∈ E(Γ). Thus GΓ has a finite presentation in which all
relators are commutators.

The topological complexity of right-angle Artin groups was computed by Cohen and Pruidze in [6].

Theorem 3.1. ([6, Theorem 4.1]) For any finite simplicial graph Γ, the topological complexity of the associated 
right-angled Artin group is given by TC(GΓ) = z(Γ), where

z(Γ) = maxK1,K2 |V(K1) ∪ V(K2)|

is the maximum number of vertices spanned by precisely two cliques in Γ.

Recall that a clique K in Γ is a complete subgraph. By an abuse of notation we conflate a clique with 
its set of vertices. So we may write, for instance, K = {vi1 , . . . , vim

} and |K| = m. Note that in the above
Theorem, the two cliques K1 and K2 attaining z(Γ) may, without loss of generality, be taken to be disjoint.

We now observe that the lower bound of TC(GΓ) ≥ z(Γ), which was obtained in [6] using zero-divisors
calculations, follows easily from our Theorem 1.1.

Proposition 3.2. Let K1 and K2 be disjoint cliques in Γ. Then TC(GΓ) ≥ |K1| + |K2|.

Proof. Suppose that K1 = {vi1 , . . . , vim
} and K2 = {vj1 , . . . , vjn

} are disjoint cliques, and let A =
〈xi1 , . . . , xim

〉 and B = 〈xj1 , . . . , xjn
〉 be the free abelian subgroups spanned by the corresponding gen-

erators of GΓ. The inclusion B ↪→ GΓ admits a retraction ϕ: GΓ → B which sends xj to 0 if vj /∈ K2, and
is the identity on B. Note that ϕ(gAg−1) = {1} for every g ∈ G. It follows that gAg−1 ∩ B = {1}. Thus 
Theorem 1.1 gives

TC(GΓ) ≥ cd(A × B) = cd(Zm × Zn) = m + n,

as required. �
3.2. Pure braid groups

Let Pn denote the pure braid group on n ≥ 2 strands. We regard a braid in the standard way as an
isotopy class of n non-intersecting strands in R3, monotonic in the z-coordinate and connecting n distinct 
points in the plane z = 1 with the corresponding points in the plane z = 0. The group operation is given 
by concatenating braids and re-scaling. We may depict a braid1 by a diagram such as in Fig. 1.

Recall that we may take as a K(Pn, 1) space the complement of the standard braid arrangement in C,
otherwise known as the configuration space

1 Courtesy of Andrew Stacey’s braids package (http://www.ctan.org/pkg/braids).



Fig. 1. A pure braid.

Fig. 2. The braid α1 ∈ P4.

F (C, n) = {(z1, . . . , zn) ∈ Cn | i 
= j =⇒ zi 
= zj}.

The topological complexity of this space was computed in [18] to be 2n − 3. The lower bound can be 
obtained by considering the zero-divisors cup-length in cohomology with rational coefficients. The upper 
bound follows from the existence of a homeomorphism F (C, n) ≈ C∗×M , where M is a complex of homotopy 
dimension n − 2, together with the product formula [13, Theorem 11] and the standard dimensional upper 
bound TC(M) ≤ 2 dim(M). Note that cd(Pn) = n − 1 (see [1], for example).

The next result recovers the lower bound TC(Pn) ≥ 2n − 3, using Theorem 1.1 instead of a zero-divisors
calculation.

Proposition 3.3. We have TC(Pn) ≥ 2n − 3 for all n ≥ 2.

Proof. We will identify subgroups A and B of Pn such that gAg−1∩B = {1} for all g ∈ Pn, and cd(A ×B) =
2n − 3.

For each 1 ≤ j ≤ n − 1, define a braid αj ∈ Pn as follows. Geometrically, the braid αj runs the j-th
strand in front of the last n − j strands, then loops back and passes behind the last n − j strands to its 
original position. This is depicted in Fig. 2. It is easy to see geometrically that these elements commute 
pairwise, as illustrated by Fig. 3.

Since the pure braid groups are torsion-free, the αj generate a free abelian subgroup A = 〈α1, . . . ,

αn−1〉 ≤ Pn of rank n − 1.
Now recall that there is a canonical inclusion Pn−1 ↪→ Pn, given by introducing an n-th non-interacting

strand to the right of the other strands. We let B ≤ Pn denote the image of this inclusion, and note that
cd(B) = cd(Pn−1) = n − 2.

We claim that gAg−1 ∩ B = {1} for every g ∈ Pn. To see this, recall that any pure braid on n strands
may be closed to form an ordered link of n components. If two braids α and β are conjugate in Pn, then
their closures are isotopic as ordered links. Suppose α ∈ A is conjugate to β ∈ B. Then the closure of α is an 



Fig. 3. The relation α1α3 = α3α1 ∈ P4.

Fig. 4. The Borromean rings.

ordered link in which each component L1, . . . , Ln−1 has trivial linking number with the final component Ln.
On the other hand, it is easy to see that in terms of the given basis for A we have α = αk1

1 · · · α
kn−1
n−1 , where

ki ∈ Z is the linking number of Li with Ln. Therefore α = 1, and the conjugates of A intersect B trivially,
as claimed.

Finally we apply Theorem 1.1, to obtain

TC(Pn) ≥ cd(A × B) = cd(Zn−1 × Pn−1) = (n − 1) + (n − 2) = 2n − 3. �
Remark 3.4. The above approach was suggested by viewing the pure braid groups as iterated semi-direct 
products of free groups, and was originally proved using the explicit presentation of Pn given by Artin in [2].
We have found this geometric approach, discovered later, to be more appealing.

3.3. The Borromean rings

Let X be the link complement of the Borromean rings in S3 (see Fig. 4). Then X is a compact 3-manifold 
with boundary, which is aspherical by virtue of the fact that it admits a complete hyperbolic metric of finite 
volume [29]. The fundamental group G = π1(X) admits a finite presentation

G = 〈a, b, c | [a, [b−1, c]], [b, [c−1, a]]〉,

obtained using the Wirtinger method. Since X deformation retracts onto a 2-dimensional complex, we have 
cat(G) = cat(X) ≤ 2. On the other hand, G is not free, and so cat(G) = cd(G) = 2. We therefore have
2 ≤ TC(G) ≤ 4. The fact that the rings are pairwise unlinked implies that cup products in H̃∗(X; k) are
all trivial, for any field k. The zero-divisors cup-length with untwisted coefficients is therefore less than or 



equal to 2 (and in fact is equal to 2, as whenever u and v are linearly independent cohomology classes in 
H̃∗(X; k) the product of zero-divisors (1 ×u −u ×1)(1 ×v −v ×1) is nonzero). We will use our Theorem 1.1
to show that TC(G) ≥ 3. Our aim, therefore, is to find two subgroups A and B of G whose conjugates
intersect trivially and such that cd(A × B) = 3.

In order to do so, we decompose G as a semidirect product, as follows. Recall that removing any one 
component of the Borromean rings results in the unlink of two components. Suppose we remove the compo-
nent corresponding to the generator c. Then the induced map on fundamental groups of link complements 
is a homomorphism

p: G → F (α, β), a �→ α, b �→ β, c �→ 1,

where F (α, β) is a free group on two generators α and β. Since p is clearly onto, and any surjective 
homomorphism to a free group splits, there results a split extension

1 K G
p

F (α, β) 1.

Lemma 3.5. Let A = 〈a〉 be the infinite cyclic subgroup of G generated by a, and let B = p−1〈β〉, where 〈β〉 ≤
F (α, β) denotes the infinite cyclic subgroup generated by β. Then for every g ∈ G we have gAg−1∩B = {1}.

Proof. Suppose x ∈ gAg−1 ∩ B ≤ G. Then p(x) ∈ p(g)Ap(g)−1 ∩ 〈β〉 = {1} ≤ F (α, β). Therefore x =
gang−1 ∈ K, for some n ∈ Z. Since K is normal, it follows that an ∈ K, and so n = 0 and x = 1. �
Proposition 3.6. We have TC(G) ≥ 3, where G denotes the fundamental group of the Borromean rings link
complement.

Proof. By the previous Lemma combined with Theorem 1.1, we have TC(G) ≥ cd(A × B) = 1 + cd(B). All
that remains is to observe that B is not a free subgroup of G, and so cd(B) = 2. To see this, note that b
and [c−1, a] are both in B = p−1〈β〉, and that [b, [c−1, a]] = 1 in B. However, bn 
= [c−1, a] for all n ∈ Z

(since p(bn) = βn 
= 1 = p([c−1, a]) if n 
= 0, and b0 = 1 
= [c−1, a]). This non-trivial relation shows that B
is not a free group. �
Remark 3.7. Proposition 3.6 recovers Example 4.3 in the paper [20], where Massey product calculations 
and sectional category weight are used to achieve the same lower bound (note that in that paper the 
non-normalized TC is used). The proof presented here is somewhat simpler and more illuminating. The
method of proof also generalizes immediately to other aspherical Brunnian link complements (such as the 
complement of Whitehead’s link).

4. Higman’s group

In our previous examples, we used Theorem 1.1 to arrive at lower bounds for TC(G) which can also be
obtained using zero-divisors cup-length, or sectional category weight. In this section, we present a calculation 
of the topological complexity of a group which, to the best of our knowledge, could not be obtained using 
these standard techniques.

In his paper [23], G. Higman gave an example of a 4-generator, 4-relator group with several remarkable 
properties. Here we recall the construction of Higman’s group as an iterated amalgam, as well as those 
properties which are relevant for our purposes. More information may be found in [23] or [11, Section 4].

Firstly, for symbols x and y form the group Hxy with presentation

〈x, y | xyx−1y−2〉.



This group is isomorphic to the Baumslag–Solitar group B(1, 2), and hence is a duality group of dimen-
sion 2.

The infinite cyclic group F (y) injects into both Hxy and Hyz, and so we may form the amalgam Hxyz :=
Hxy ∗F (y) Hyz. Likewise we may form Hzwx as the amalgam of Hzw and Hwx over F (w). The free group
F (x, z) injects into both Hxyz and Hzwx, and Higman’s group is defined to be the amalgam H := Hxyz∗F (x,z)

Hzwx. It has presentation

P : 〈x, y, z, w | xyx−1y−2, yzy−1z−2, zwz−1w−2, wxw−1x−2〉.

Note the symmetry in this presentation. Indeed, the construction of H as an iterated amalgam is non-unique, 
and below we will make use of a second amalgam decomposition H = Hyzw ∗F (y,w) Hwxy.

The group H is acyclic (it has the same integer homology as a trivial group), and so H̃∗(H; k) = 0 for 
every abelian group k. Moreover, since H has no non-trivial finite quotients [23], it has no non-trivial finite 
dimensional representations over any field. It then follows that if M is any coefficient Z[H]-module which 
is finitely generated as an abelian group, then H̃∗(H; M) = 0. Thus the group H is difficult to distinguish 
from a trivial group using cohomological invariants.

On the other hand, since H is not a free group we have cd(H) ≥ 2. The 2-dimensional complex associated 
to the presentation P is shown to be aspherical in [11], and it follows that cat(H) = cd(H) = 2. Thus the
topological complexity of Higman’s group satisfies 2 ≤ TC(H) ≤ 4. Note that the zero-divisors cup-length
with untwisted coefficients over any field is zero. In this section we will prove the following result.

Theorem 4.1. We have TC(H) = 4.

We will employ results on the structure of amalgams and their Bass–Serre trees, for which Serre’s mono-
graph [25] is the standard reference. The fundamental result [25, Theorem 7] gives a correspondence between 
G-trees X with quotient graph X/G a segment, and amalgam structures on the group G. More precisely,
let G = A ∗C B be an amalgam. Then there exists a G-tree X, unique up to isomorphism, with fundamental
domain a segment T ⊆ X consisting of vertices v, w ∈ V(X) and an edge e = (v, w) ∈ E(X), such that
the stabilizer subgroups are given by Gv = A, Gw = B and Ge = C, and the natural inclusions Ge ↪→ Gv

and Ge ↪→ Gw agree with the defining monomorphisms C ↪→ A and C ↪→ B. The tree X together with its
action is called the Bass–Serre tree of the amalgam G = A ∗C B.

We will also make use of the elliptic–hyperbolic dichotomy for automorphisms of trees. Let G be a group 
acting on a tree X (by automorphisms, of course). Recall that a tree is a graph characterized by the property 
that, for any two vertices v, w ∈ V(X), there is a unique geodesic path γ in X from v to w. The distance 
from v to w in X, denoted dX(v, w), is defined to be the number of edges in γ. Now for each g ∈ G we put

�X(g) = min{dX(v, gv) | v ∈ V(X)}.

This defines a function �X : G → Z, called the hyperbolic length function for the action of G on X. For each
element g ∈ G there are two possibilities:

• �X(g) = 0, and g fixes a vertex v ∈ V(X). In this case we say that g is elliptic, or that g acts elliptically
on X.

• �X(g) > 0, in which case we say that g is hyperbolic, or that g acts hyperbolically on X.

There are two trivial observations worth making at this point. One is that the hyperbolic length func-
tion descends to a function on the conjugacy classes of G. In other words, for all g, h ∈ G we have that 
�X(hgh−1) = �X(g). The second is that if g ∈ G acts elliptically on X, then for any vertex w ∈ V(X) the
sequence {dX(gmw, w)}m is bounded. To see this, consider the geodesic from w to some vertex w0 fixed



by g. Its image under gm is the geodesic from gmw to w0. Composing these two geodesics gives a path from
gmw to w, of length 2 · dX(w, w0).

Lemma 4.2. Suppose that the free product G = A ∗ B acts on a tree X containing an edge (v, w) ∈ E(X), 
such that A fixes v and B fixes w, while no element of A − 1 fixes w and no element of B − 1 fixes v. Then 
any element g ∈ G not conjugate to an element of the union A ∪ B is hyperbolic.

Proof. Suppose that g ∈ G is not conjugate to an element of A ∪ B. Taking conjugates if necessary (and 
without loss of generality), we may suppose that g = a1b1a2b2 · · · akbk, where k ≥ 1 and each ai ∈ A − 1
and bi ∈ B − 1. We will show that for any g of this form we have

dX(gw, v) = 2k − 1 and dX(gw, w) = 2k. (1)

In particular, since gm is of the same form for m ∈ N, the distances dX(gmw, w) = 2mk grow linearly
with m. This implies that g is hyperbolic, by the observation made just prior to the statement of the 
lemma.

To establish (1) we proceed by induction on k. If k = 1 and g = a1b1, then gw = a1w and v = a1v are
connected by the edge a1(w, v) = (a1w, v). Following this by the edge (v, w) gives a path of length 2 from
gw to w. Note that X cannot contain the edge (gw, w), as this would result in a triangular circuit. This 
completes the base case.

Now suppose that k > 1 and write g = a1b1h. By induction, the geodesic from hw to v has length 2k − 3,
and the geodesic from hw to w has length 2k −2 and finishes with (v, w). Since b1 fixes w and does not fix v,
the geodesic from b1hw to w has length 2k − 2 and does not finish with (v, w). Therefore the geodesic from
b1hw to v has length 2k − 1 and finishes with (w, v). Now, since a1 fixes v and does not fix w, the geodesic
from gw = a1b1hw to v has length 2k − 1 and does not finish with (w, v). Therefore the geodesic from gw

to w has length 2k and finishes with (v, w). This completes the induction, and the lemma is proved. �
Finally before embarking on the proof of Theorem 4.1, we state the following two lemmas concerning 

conjugacy in amalgams, which can be proved directly using the Structure Theorem for amalgams (see 
[25, Theorem 2]).

Lemma 4.3. In an amalgam G = A ∗C B, if an element of A is conjugate in G to an element of B, then it
is conjugate in G to an element of C.

Lemma 4.4. In an amalgam G = A ∗C B, if an element of A is conjugate in G to an element of C, then it
is conjugate in A to an element of C.

Proof of Theorem 4.1. Let Hxy = 〈x, y〉 ≤ H be the subgroup generated by x and y, and let Hzw =
〈z, w〉 ≤ H be the subgroup generated by z and w. Both Hxy and Hzw are isomorphic to the Baumslag–
Solitar group B(1, 2), hence are duality groups of dimension 2. By Lemma 2.8 their product Hxy × Hzw is
a duality group of dimension 4, and so cd(Hxy × Hzw) = 4. The proof of Theorem 4.1 will be complete if
we can show that the hypothesis of Theorem 1.1 applies to these subgroups. Therefore we must show that 
gHxyg−1 ∩ Hzw = {1} for all g ∈ H.

Suppose that a ∈ Hxy is conjugate in H to b ∈ Hzw; we aim to show that a = 1. Using the first description
of H as an amalgam Hxyz ∗F (x,z) Hzwx and Lemma 4.3, we find that a is conjugate in H to some element
of F (x, z). Using the second description of H as an amalgam Hyzw ∗F (y,w) Hwxy and Lemma 4.3 again, we
find that b is conjugate in H to some element of F (y, w). We are thus reduced to showing that an element 
α of F (x, z) conjugate in H to an element β of F (y, w) must be trivial.



Consider the first description of H as an amalgam Hxyz ∗F (x,z) Hzwx, and its corresponding Bass–Serre
tree X. The element α ∈ F (x, z) fixes an edge of the tree, and therefore acts elliptically. The element 
β ∈ F (y, w) therefore also acts elliptically on X. Restricting to an action of F (y, w) = F (y) ∗ F (w) on X
and applying Lemma 4.2, we find that β must be conjugate in F (y, w) to an element of F (y) ∪ F (w). We 
conclude that β is conjugate in H to some element β′ ∈ F (y) ∪ F (w).

The same argument using the description of H as an amalgam Hyzw ∗F (y,w)Hwxy shows that α ∈ F (x, z)
is conjugate in H to some α′ ∈ F (x) ∪ F (z).

We are thus reduced to showing that an element α′ ∈ F (x) ∪ F (z) conjugate in H to an element 
β′ ∈ F (y) ∪ F (w) must be trivial.

Consider first the case that α′ = xm ∈ F (x) and β′ = yn ∈ F (y). Using the first description of H as an 
amalgam Hxyz ∗F (x,z) Hzwx and Lemma 4.4, we find that xm is conjugate to yn in the group Hxyz with
presentation 〈x, y, z | [x, y] = y, [y, z] = z〉. Since non-trivial powers of x survive in the abelianization while 
powers of y are trivial, we find that m = 0 and so α′ = 1.

Secondly, consider the case that α′ = xm ∈ F (x) and β′ = wn ∈ F (w). Using the second description of 
H as an amalgam Hyzw ∗F (y,w) Hwxy and Lemma 4.4, we find that xm is conjugate to wn in Hwxy. This
time powers of w survive in the abelianization while powers of x are trivial, and again we find that α′ = 1.

The remaining two cases are dealt with similarly. �
Remark 4.5. The arguments of this section, due to Y. de Cornulier [9], indicate that the topological com-
plexity of groups is a much deeper property than category. They also hint at the possibility of proving a 
more general result about the topological complexity of free products with amalgamation. Note that for free 
products we have TC(G ∗H) ≥ cd(G ×H), as follows easily from our results, or from results of Dranishnikov
on the topological complexity of wedge sums [10].

5. Proof of Theorem 1.1

In order to prove Theorem 1.1, we find it convenient to use the 1-dimensional category of R. H. Fox [19]
(see also [24] and [27]). Let X be a topological space.

Definition 5.1. An open subset U ⊆ X is 1-categorical if every composition L → U ↪→ X, where L is a 
complex with dim(L) ≤ 1, is null-homotopic. The 1-dimensional category of X, denoted cat1(X), is the
least integer k for which X admits a cover by k + 1 open sets U0, . . . , Uk, each of which is 1-categorical.

We recall the following facts about cat1, proofs of which can be found in [27, Proposition 44] and
[24, Corollary 2.2].

Proposition 5.2. Let X be a connected complex.

1. We have cat1(X) = secat(X̃ → X), the sectional category of the universal cover.
2. If X is a K(G, 1), then cat1(X) = cat(X) = cd(G).

We also need the following lemma.

Lemma 5.3. Let X be a connected complex. An open set U ⊆ X is 1-categorical if and only if every compo-
sition S1 → U ↪→ X is null-homotopic.

Proof. The only if statement is trivial. Suppose that every composition S1 → U ↪→ X is null-homotopic.
It follows that the induced map π1(U, x) → π1(X, x) is trivial, for every choice of basepoint x ∈ U (since
based maps to X which are null-homotopic are also based null-homotopic). So we may apply the lifting 



criterion [22, Proposition 1.33] to each path component of U to conclude that U ↪→ X lifts through X̃ → X. 
This means that every composition L → U ↪→ X with dim(L) ≤ 1 lifts through X̃ → X and, by cellular 
approximation, is therefore null-homotopic. Hence U is 1-categorical. �
Proof of Theorem 1.1. Let G be a group with subgroups A and B. Let X, YA and YB denote K(π, 1)
complexes for π = G, A and B respectively. The inclusion monomorphisms induce pointed maps YA → X

and YB → X. Taking the pullback of πX with respect to the product YA × YB → X × X of these maps
results in a pullback diagram

E

q

XI

πX

YA × YB X × X

(2)

from which it follows by Proposition 2.4 that secat(q) ≤ secat(πX) = TC(X). We will show that, under the
hypotheses of Theorem 1.1, we have cd(A × B) = cat1(YA × YB) ≤ secat(q).

We therefore assume that gAg−1 ∩ B = {1} for every g ∈ G. We will show that any open set U ⊆
YA × YB which admits a partial section for q must be 1-categorical, and hence cat1(YA × YB) ≤ secat(q).
By Lemma 5.3, it suffices to show that for any map S1 → U , the composition φ: S1 → U → YA × YB is
null-homotopic.

Applying the functor [S1, −] given by unbased homotopy classes of loops, and recalling that πX : XI →
X × X is homotopically equivalent to the diagonal Δ: X → X × X, we arrive at a commutative diagram of 
pointed sets

[S1, E]

q#

[S1, XI ] �

(πX)#

[S1, X]

Δ#

[S1, YA × YB ] [S1, X × X]

(3)

Recall that for any path-connected pointed space (Z, z), the set [S1, Z] is in bijection with the set of
conjugacy classes in the fundamental group π1(Z, z) (see [22, Section 4.A]). We will adopt the non-standard
notation [π] for the set of conjugacy classes in a group π. It is easily checked that [S1, YA × YB ] ∼= [A] × [B],
and that Δ# can be identified with the diagonal map [G] → [G] × [G] on the conjugacy classes of G.

Since U admits a partial section for q, there is a map ψ: S1 → E such that q#[ψ] = [φ]. Now chasing the
element [ψ] around the above diagram, we find that [φ] = ([a], [b]) ∈ [A] × [B], where a ∈ A and b ∈ B are 
elements which are conjugate in G. By our assumption that gAg−1 ∩ B = {1} for all g ∈ G, this implies 
that a = b = 1, and so φ is in the trivial homotopy class. �
Remark 5.4. One could also prove Theorem 1.1 by analysing the long exact sequence in homotopy of the 
fibration q: E → YA × YB (compare [21]). When the condition AB = G does not hold, the total space E is
disconnected. The conjugation hypothesis arises from change-of-basepoint isomorphisms. We have chosen 
the cat1 proof as more conceptual and easier to follow.
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