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On Fox’s m-dimensional category and theorems of Bochner type

John Oprea, Jeff Strom

1. 
Introduction

Bochner’s theorem [35] (also see [28]) asserts that, in the presence of non-negative Ricci curvature, the first Betti number

of a compact manifold M is bounded above by the dimension of M; b1(M) � dim(M). Furthermore, if b1(M) = dim(M), then

M is a flat torus. While Bochner’s approach was overtly analytic in nature, it was shown in [23] that the analysis could be

swept under the rug of the Cheeger–Gromoll splitting theorem to obtain a topological estimate b1(M) � cat(M), where

cat(−) is the homotopy invariant known as Lusternik–Schnirelmann category. In general, we know that cat(M) � dim(M),

so the new upper bound provided a refinement. Indeed, if M = S2 × T 2, then M has (a metric with) non-negative Ricci

curvature, b1(M) = 2, cat(M) = 3 and dim(M) = 4, so we don’t have to hunt hard for examples where the category bound

is better. Nevertheless, the new bound had one unsatisfactory property: it obeyed the rule that b1(M) = cat(M) if and only

if M is a flat torus. Now, tori are very special indeed (e.g. cat(Tm) = dim(Tm)), so to say that equality only holds in the

toral case hints at a better estimate. Just as this fact indicated that the original Bochner dimension bound was refinable by

category, we can ask if yet another refinement exists for the category bound.

It is the purpose of this paper to show that, indeed, there is such a refinement within the context of category without

the property that only flat tori give equality in the standard inequality. In [22], it was shown that the same basic ap-

proach used in refining Bochner could be used to obtain an upper bound for the rank of the Gottlieb group of a space.

Here we will show that the new categorical invariant also may be used to obtain a refined upper bound in this context.

Finally, we will extend our results to the class of almost non-negatively sectionally curved manifolds using the results

of [19]. In this regard, we will show how the “category invariant approach” can recover a Bochner type result of Yam-

aguchi [34].

In order to state the main results, we need to recall two definitions. The Lusternik–Schnirelmann category of a space X ,

denoted cat(X), is the smallest integer k so that X can be covered by open sets U0,U1, . . . ,Uk , each of which is con-



tractible to a point in X . Such a covering is called a categorical covering. LS category is an important numerical invariant in

algebraic topology, critical point theory and symplectic geometry (see, for instance, [6,8,29]). Since it is notoriously difficult

to compute, many approximating invariants have been introduced in order to estimate category from below and above (see,

for instance, [26]). In this paper, we will use one of these approximating invariants, cat1(−), to provide new upper bounds.

We prove the following.

Theorem. (See Theorem 5.7.) Suppose M is a compact manifold with non-negative Ricci curvature and infinite fundamental group.

Then

b1(M) � cat1(M)

where b1(M) is the first Betti number of M.

Example 5.8 then shows that it is possible to have b1(M) = cat1(M) for a non-toral compact M with non-negative Ricci

curvature and infinite fundamental group.

An element α ∈ π1(X) is a Gottlieb element if there exists an extension A (called an associated map) in the diagram

S1 ∨ X
(α,idX )

X .

S1 × X

A

The set of all Gottlieb elements in π1(X) is a subgroup of the center of π1(X) and is denoted G1(X). If the abelian

group G1(X) is finitely generated, then it was shown in [22] that the rank of G1(X) is bounded above by the Lusternik–

Schnirelmann category of X . A much better bound is provided by the following.

Theorem. (See Theorem 5.4.) Writing cat1(X) for Fox’s 1-dimensional category, we have

rank
(
G1(X)

)
� cat1(X),

for any normal space X with finitely generated G1(X).

Throughout the paper, we consider spaces that are of the homotopy type of CW complexes. (In particular, spaces are

paracompact normal ANR’s (see [6, Appendix 1]).) Also, because the paper is intended for geometers as well as topologists,

we have included as many details concerning LS category as is feasible.

2. Fox’sm-dimensional category

In [15], R. Fox introduced the notion of m-dimensional category as an approximating invariant for LS category. Say that

catm(X) = k if k is the least integer so that there exists an open cover {U0, . . . ,Uk} of X such that, for each U j , every

composition P → U j ↪→ X with dim(P ) �m is nullhomotopic (where P is a polyhedron). We say that any such open set U

is m-categorical. Immediately, we see that catm(X) � cat(X) for all m � 0. Also note that simplicial or cellular approximation

provides the following.

Lemma 2.1. If X is n-connected, then catm(X) = 0 for all m � n.

We write X → X[m] for the mth Postnikov section of X and φm : X〈m〉 → X for its homotopy fiber, known as the

m-connected cover of X (in particular, X〈1〉 → X is, up to homotopy equivalence, the universal cover of X ). Svarc [31]

identified catm(X) with an invariant called the genus of the m-connected cover fibration φm : X〈m〉 → X . In modern parlance,

the genus of a fibration F → E
p−→ B is called the sectional category; it is the least integer k for which there is an open cover

B = U0 ∪U1 ∪· · ·∪Uk such that there is a partial section of p over each U j . Thus we have the following modern formulation

of Svarc’s result (also see [8, Proposition 4.4]).

Proposition 2.2. ([31, Proposition 44]) If X is a CW complex, then

catm(X) = secat
(
X〈m〉 → X

)
.

Sketch of proof. First suppose {U0, . . . ,Us} is a cover of X where each U j has a section s j :U j → X〈m〉. Let f : P → U j

with dim(P ) � m. Then, by cellular approximation, s j factors up to homotopy through the m-skeleton of X〈m〉 and this is

homotopically trivial since X〈m〉 is m-connected. Hence s j |P � ∗ and so φms j |P � ∗ as well. Therefore, {U0, . . . ,Us} is an

m-categorical cover and catm(X) � secat(X〈m〉 → X).



Secondly, suppose U0, . . . ,Us is an m-categorical cover of X . Since X is normal, there is an open refinement V0, . . . , Vs

with V j ⊂ V j ⊂ U j for each j = 0, . . . , s. The closed sets V j can be taken to be subcomplexes, so the m-skeleta Vm
j map

nullhomotopically into X . Then we see that the obstructions to finding a partial section of φm : X〈m〉 → X over V j lie in

Ht+1(V j, V
m
j ;πt(F )), where F = Fiber(φm). But these groups are zero for t � m − 1 and for t � m, πt(F ) = 0 (since φm

induces isomorphisms πt(X〈m〉) → πt(X)). Thus the obstructions all vanish and we obtain a partial section of φm over V j .

But every subcomplex has an open neighborhood that deformation retracts onto it, so we can intersect the neighborhoods

for the V j with the U j to obtain s open sets with partial sections of φm . Hence, catm(X) � secat(X〈m〉 → X). �
3. Sectional category and the category of a map

Because Fox’s m-dimensional category is given by the sectional category of the m-connected cover, we can hope to

understand it better by recalling the properties of secat. (Most of these properties were first proved in [31]. We present

them here from a modern viewpoint with simple proofs.) Although we mentioned the definition of sectional category

before Proposition 2.2, for easy reference, we state it here as

Definition 3.1. Suppose F → E
p−→ B is a fibration. Then the sectional category of p, denoted secat(p), is the least integer n

such that there exists an open covering, U0, . . . ,Un , of B and, for each Ui , a map si :Ui → E having p ◦ si = idUi
. (Because

the Ui are subsets of B , the lift si is referred to as a local (or partial) section of p.)

The basic results about secat are contained in the following.

Proposition 3.2. Let F → E
p→ B be a fibration. Then:

(1) secat(p) � cat(B).

(2) If E is contractible, then secat(p) = cat(B).

(3) If there are x1, . . . , xk ∈ H̃∗(B; R) (any coefficient ring R) with

p∗x1 = · · · = p∗xk = 0 and x1 ∪ · · · ∪ xk �= 0,

then secat(p) � k.

Proof. We prove (1) and (3) and leave (2) as an exercise.

For (1), suppose cat(B) = n with categorical covering U0, . . . ,Un . Consider the homotopy lifting diagram

Ui × 0
e0

E

p

Ui × I

G

H
B

where e0 is the constant map to a chosen point in the fiber of a basepoint b0 ∈ B and H is a contracting homotopy with H0

the constant map at b0 and H1 the inclusion Ui ↪→ B (which we write as inclUi
). The map G exists by the homotopy

lifting property; note that G0 = e0 and p ◦ G1 = H1 = inclUi
, so G1 is a section of p over Ui . Since this procedure works for

each Ui , we have secat(p) � n = cat(B).

For (3), suppose secat(p) = m and that U0, . . . ,Um cover B with local sections s0, . . . , sm respectively. Suppose that

cohomology classes x0, . . . , xm ∈ H̃∗(B; R) satisfy p∗(xi) = 0 for each i = 1, . . . ,m. Denote the obvious inclusions by

inclUi
:Ui ↪→ B , qi : B ↪→ (B,Ui) and q : B ↪→ (B,

⋃
Ui). But then the condition p∗(xi) = 0 gives

incl∗Ui
(xi) = s∗i

(
p∗(xi)

) = 0

since p ◦ si = inclUi
, and the long exact sequence in cohomology associated to the pair (B,Ui) provides an element x̄i ∈

H∗(B,Ui; R) with q∗
i (x̄i) = xi . This can be done for each i and the resulting product x̄0 ∪ · · · ∪ x̄m ∈ H∗(B,

⋃
Ui; R) satisfies

q∗(x̄0 ∪ · · · ∪ x̄m) = x0 ∪ · · · ∪ xm . From the definition of sectional category, we have B = ⋃
Ui . Thus H∗(B,

⋃
Ui; R) = 0 and,

hence, x̄0 ∪ · · ·∪ x̄m = 0. Therefore, x0 ∪ · · ·∪ xm = 0 as well and we see that any non-zero k-fold product of classes satisfying

the hypotheses of (3) must have length less than or equal to secat(p). �
Proposition 3.2 may be generalized for fibrations obtained as a pullback along a map f of a fibration with a contractible

total space. In this case we can identify sectional category with the category of the map f . The category of a map f : X → Y

is denoted cat( f ) and is defined to be the least integer n such that X may be covered by open sets U0, . . . ,Un with f |Ui

nullhomotopic for each i. Such a covering is said to be categorical for the map f . Now let’s see how sectional category

relates to the category of “classifying” maps.



Proposition 3.3. Suppose F
i→ E

p→ B is a fibration arising as a pullback of a fibration p̂ : Ê → B̂

E
f̃

p

Ê

p̂

B
f

B̂.

(1) In general, secat(p) � secat( p̂ ).

(2) If Ê is contractible. Then secat(p) = cat( f ).

Proof. (1) Suppose s : Û → Ê has p̂ ŝ = 1|Û . Let U = f −1(Û ) and use the pullback property to define s :U → E as follows:

U

s
sf

j
E

f̃

p

Ê

p̂

B
f

B̂.

The pullback property then gives ps = j = 1U . Hence, a categorical cover for p̂ provides one for p and, consequently

secat(p) � secat( p̂ ).

(2) We shall prove inequalities both ways, thereby establishing the equality of the invariants. Suppose secat(p) = n and

that U0, . . . ,Un form an open covering of B with, for each i, a section si :Ui → E of p. By commutativity of the pullback

diagram, we have p̂ f̃ si = f psi = f since psi = 1B . This says that the map f |Ui
factors through the contractible space Ê , and

so f |Ui
is nullhomotopic. Thus U0, . . . ,Un is categorical for f and therefore cat( f ) � n = secat(p).

Now suppose that cat( f ) = n with categorical covering U0, . . . ,Un . For each i = 1, . . . ,n, consider the homotopy lifting

diagram

Ui × 0
e0

Ê

p̂

Ui × I

G

H
B̂

in which H0 = ∗, H1 = f |Ui
and e0 is the constant map to a point in the fiber over ∗ ∈ B̂ . Since p̂ is a fibration, there is

a lift G that satisfies p̂ ◦ G1 = H1 = f |Ui
up to homotopy. Now, again since p̂ is a fibration, the (topological) pullback is

a homotopy pullback. Therefore, for each i, we have a map si :Ui → E guaranteed by the (homotopy) pullback diagram

Ui

j

si
G1

E
f̃

p

Ê

p̂

B
f

B̂,

in which j :Ui → B is the inclusion. Now p ◦ si = j and therefore si is a section of p over Ui . Hence, secat(p) � n =
cat( f ). �

Proposition 3.3 has immediate relevance for computing catm(X). The m-connected cover X〈m〉 → X arises as the fiber of

the mth Postnikov section, jm : X → X[m], so it is a homotopy pullback

X〈m〉 ∗

X
jm

X[m].
By Propositions 3.3 (2) and 2.2, we see



Theorem 3.4. For a normal ANR X,

catm(X) = cat( jm),

where jm : X → X[m] is the mth Postnikov section.

Corollary 3.5. If π1(X) = π , Bπ = K (π,1) and k is the maximum cup length of a product in the image of j∗1 : Hk(Bπ ; A) →
Hk(X; A), then

k � cat1(X).

Proof. This is simply a translation of the standard cup length bound for the category of a map (in this case for j1).

See [6, Exercise 1.16]. �
Cup length can be refined by the notion of category weight (see, for instance, [6, Definition 8.20 and Proposition 8.22])

originally due, in the non-homotopy invariant case to Fadell–Husseini and in the homotopy invariant case, independently,

to Y. Rudyak and J. Strom.

The category weight of a non-zero cohomology class u ∈ H∗(X; A) (for some, possibly local, coefficient ring A) is defined

by

wgt(u) � k if and only if φ∗(u) = 0 for any φ : Z → X with cat(φ) < k.

The basic facts that we require about category weight are that

– if u ∈ Hs(K (π,1); A), then wgt(u) = s;

– if f : Y → X has f ∗(u) �= 0 for some u ∈ Hs(X; A), then cat( f ) � wgt(u).

The following consequence of Theorem 3.4 is implicit in the more complicated results of [12,20].

Corollary 3.6. If π1(X) = π , Bπ = K (π,1) and k is the maximum degree for which j∗1 : Hk(Bπ ; A) → Hk(X; A) is non-trivial ( for

any local coefficients A), then

k � cat1(X) � cat(Bπ) = dim(Bπ).

Moreover, if X = Bπ and dim(Bπ) > 3, then cat1(X) = dim(Bπ).1

Proof. Because cat1(X) = cat( j1), we can use information about j1 : X → Bπ to obtain estimates for cat1(X). The cate-

gory of a map is always bounded above by the categories of its range and domain, so cat1(X) � cat(Bπ) = dim(Bπ). The

lower bound follows from properties of category weight listed above. Namely, the category weight of any cohomology class

u ∈ Hk(Bπ ; A) has wgt(u) = k and if j∗1(u) �= 0, cat( j1) � wgt(u) = k. The last statement follows immediately from these

remarks (also see the discussion before Proposition 4.2). �
Corollary 3.7. If π1(X) is a non-trivial free group, then cat1(X) = 1.

Proof. The only thing to check is that we cannot have cat1(X) = 0, but this follows because cat1(X) = 0 would imply that

the universal covering X̃ → X has a section and this can only happen if π1(X) is trivial. �
In fact, it is true that π1(X) is free if and only if cat1(X) = 1. This follows from the following characterization of cat1

established in [12] (also see [20]).

Theorem 3.8. For a CW complex X, cat1(X) � n if and only if there is an n-dimensional complex L and a map X → L which induces

an isomorphism on fundamental groups.

Now, if cat1(X) = 1, this then implies π1(X) ∼= π1(L) with dim(L) = 1. Since the fundamental group of any 1-dimensional

complex is free, we see the equivalence.

Finally, the characterization of cat1(−) given in Theorem 3.4 provides an integral analogue of the famous Mapping

Theorem of rational homotopy theory (see [6, Theorem 4.11] for instance). Recall that this says that if there is a map

f : X → Y of simply connected spaces that induces an injection f∗ :π∗(X) ⊗ Q → π∗(Y ) ⊗ Q, then cat(X0) � cat(Y0), where

the subscript 0 denotes rationalization.

1 Because Bπ = K (π,1) is determined only up to homotopy type, we define dim(Bπ) to be the smallest dimension of a CW complex which is a K (π,1).



Theorem 3.9. If f : X → Y is a map of CW complexes that induces an injection f∗ :π1(X) → π1(Y ), then cat1(X) � cat1(Y ).

Proof. Consider the following commutative diagram of Postnikov sections

X
f

jX

Y

jY

K (π1X,1)
f̄

K (π1Y ,1).

By [6, Proposition 1.10], we know that, for CW complexes, we can use closed sets in the definition of category instead

of open sets. Let {Ki | i = 1, . . . ,n} be a closed cover of Y with jY |Ki
� ∗. Then, for Li = f −1(Ki), i = 1, . . . ,n, we have

f̄ j X |Li = jY f |Li = jY |Ki
� ∗. But f̄ j X : Li → K (π1Y ,1) is determined up to homotopy by the induced map on fundamental

groups (since Li is a CW complex) and f∗ is injective. Thus, j X |Li � ∗. Hence, {Li | i = 1, . . . ,n} is a closed categorical cover

for j X and we have

cat1(X) = cat( j X ) � cat( jY ) = cat1(Y ). �
From this we obtain a result of Fox (which can also be proved by applying the homotopy lifting property to the original

definition of cat1(−)).

Corollary 3.10. ([15, Theorem 21.2]) If X is a CW complex and p : X → X is a covering space, then cat1(X) � cat1(X).

4. Products and a splitting theorem

We can also use results on open covers (see Appendix A) to give a variation of the usual proof of the product inequality

for LS category.

Proposition 4.1. If X and Y are CW (or just normal ANR’s), then

catm(X × Y ) � catm(X) + catm(Y ).

Proof. Let {U0,U1, . . . ,Uk} and {V0, V1, . . . , V�} be respective categorical covers for j Xm : X → X[m] and jYm : Y → Y [m]. By
Theorem A.2, there is a (k+ 1)-cover {U0,U1, . . . ,Uk+�} which is categorical for j Xm and an (� + 1)-cover {V0, V1, . . . , Vk+�}
which is categorical for jYm . Clearly then {U0×V0,U1×V1, . . . ,Uk+� ×Vk+�} is categorical for j Xm× jYm : X×Y → X[m]×Y [m],
so we must only show that it is a cover of X ×Y . Let (x, y) ∈ X ×Y . By Lemma A.1, y is in at least (k+1) of the V j . Without

loss of generality by renumbering if necessary, suppose y ∈ V0 ∩ · · · ∩ Vk . Since, {U0,U1, . . . ,Uk+�} is a (k + 1)-cover, x is

contained in at least one of U0, . . . ,Uk , say U0. Therefore, (x, y) ∈ U0 × V0. Thus, {U0 × V0,U1 × V1, . . . ,Uk+� × Vk+�} is

a categorical cover for j Xm × jYm . �
Now we can prove a result we will need later about cat1(−) for products K (π,1) × N , where π1(N) = 0. However,

we must restrict the K (π,1)’s we consider because it is possible that there exist such spaces with cd(K (π,1)) = 2,

cat(K (π,1)) = 2 and dim(K (π,1)) = 3, where cd(−) denotes cohomological dimension. Recall that

cd
(
K (π,1)

) = sup
{
N

∣∣ HN
(
K (π,1); A) �= 0, for some π-module A

}
.

The Eilenberg–Ganea conjecture asserts it is always true that cd(K (π,1)) = cat(K (π,1)) = dim(K (π,1)), but this is un-

resolved at present. As shown by Eilenberg and Ganea [12], however, for dim(K (π,1)) > 3, it is always the case that

cd(K (π,1)) = cat(K (π,1)) = dim(K (π,1)).

Proposition 4.2. If the Eilenberg–Ganea conjecture holds for K (π,1) and N is a simply connected CW complex, then

cat1
(
K (π,1) × N

) = dim
(
K (π,1)

)
.

Proof. Because N is simply connected, the classifying map j1 for the universal cover of K (π,1) × N is the projection

p : K (π,1) × N → K (π,1). By Theorem 3.4, we have cat1(K (π,1) × N) = cat(p). But by Corollary 3.6 and the definition

of cohomological dimension, dim(K (π,1)) � cat(p) = cat1(K (π,1) × N). By Proposition 4.1, we have cat1(K (π,1) × N) �
cat1(K (π,1)) + cat1(N) and we know that cat1(N) = 0 by Lemma 2.1. Hence, cat1(K (π,1) × N) = dim(K (π,1)). �

These results can be used to prove a general result about covering spaces which split off a torus (which of course satisfies

the Eilenberg–Ganea conjecture).



Theorem 4.3. If X is a CW complex and X → X is a covering such that X � T k × Y with Y simply connected, then k = cat1(X) �
cat1(X).

Proof. By Corollary 3.10, we see that cat1(X) � cat1(X) for any covering projection X → X , so we need only show that

k � cat1(X). Now, cat1(X) = cat(T k × Y ), and by Proposition 4.2 we have cat1(X) = k since dim(T k) = k. �
5. Splitting off tori in homotopy theory and geometry

The theorems of Section 1 rely on the fact that we can often split tori off of a space, at least up to a covering. This is

made explicit in the following results. Recall the definition of the Gottlieb group G1(X) ⊆ π1(X) from Section 1.

Properties 5.1. The basic properties of Gottlieb group which we shall use are the following (see [16] or [24] for instance).

(1) G1(X) is contained in the center Zπ1(X) of the fundamental group. In fact, if X = K (π,1), then G(X) = Zπ1(X).

Moreover, Gottlieb’s Theorem states that, for X = K (π,1) a finite complex, if X has non-zero Euler characteristic, then

Zπ1(X) = 0.

(2) If α1, . . . ,αk ∈ G(X), then there exists A : T k × X → X with A|S1
i

= αi and A|X = 1X . To see this, note that, if α,β ∈
G1(X) with associated maps A, B : S1 × X → X respectively, then

S1 × S1 × X
id×B

S1 × X
A

X

restricts to α ∨ β ∨ id : S1 ∨ S1 ∨ X → X .

(3) If p : X → X is a covering and α ∈ π1(X) with p#(α) ∈ G1(X), then α ∈ G1(X).

The Gottlieb group plays an important role in many homotopical structure results.

For example, assume that H1(X;Z) is finitely generated, and define the Hurewicz rank of X to be the number of

Z-summands of H1(X;Z) which are contained in h(G(X)), where h :π1(X) → H1(X;Z) is the Hurewicz map. We then

have the following [17,21].

Theorem 5.2. Let X be a space with H1(X;Z) finitely generated. If X has Hurewicz rank k, then X � T k × Y , where T k is a k-torus.

Corollary 5.3. If G1(X) is finitely generated and rank(G1(X)) = k, then there is a covering X → X with X � T k × Y and Y simply

connected.

Proof. Let X be the cover corresponding to the subgroup Zk ⊆ G1(X) ⊆ π1(X). By [17], G1(X) = π1(X) = Zk , so Theorem 5.2

gives the splitting. �
If we now apply Theorem 4.3 to Corollary 5.3, we obtain the following.

Theorem 5.4. If X is a normal ANR and G1(X) is finitely generated, then

rank
(
G1(X)

)
� cat1(X).

While this result is purely homotopical, we shall give a refinement in Corollary 6.8 in the presence of extra geometric

structure.

A more geometrical splitting result is the famous theorem of Cheeger and Gromoll.

Theorem 5.5 (Cheeger–Gromoll splitting). ([4]) If M is a compact manifold with non-negative Ricci curvature, then there is a finite

cover M of M with a diffeomorphism M ∼= T k × N. Further, N is simply connected and Tk is flat.

In Theorem 5.5, it could be the case that k = 0. Then, since N is simply connected and the covering is finite, π1(M) would

have to be finite. We exclude this case below and focus only on manifolds with infinite fundamental groups. There are many

extensions of this result to cases where almost non-negative Ricci or sectional curvature is assumed together with certain

extra constraints on either injectivity radius or volume (see, for instance, [3,7,30,33]), so this type of splitting is not unusual.

In Section 6, we shall consider almost non-negative sectional curvature alone using the results of [19].

The Cheeger–Gromoll splitting has the special feature that the cover M is a finite cover. This will allow us to link the

invariants of M and M by the following well-known result.

Lemma 5.6. Suppose that p : X → X is a finite covering space. Then p∗ : H∗(X;Q) → H∗(X;Q) is injective. In particular, if π ⊆ G is

a finite index subgroup, then p∗ : H∗(G;Q) → H∗(π ;Q) is injective.



Proof. A finite covering of degree m has associated to it a transfer homomorphism τ : H∗(X;Q) → H∗(X;Q) with the

property that τ ◦ p∗(α) = m · α. For Q coefficients, multiplication by m is an isomorphism, so p∗ is a (split) injection. The

second statement follows since K (π,1) → K (G,1) is a finite cover. �
Now we can state and prove the main result.

Theorem 5.7. If M is a compact manifold with non-negative Ricci curvature and infinite fundamental group, then b1(M) � cat1(M),

where b1(M) is the first Betti number of M.

Proof. By Theorem 5.5, there is a splitting M ∼= T k × N . By Lemma 5.6, we see that b1(M) � b1(M) = b1(T
k) = k. We now

apply Theorem 4.3 to obtain the result. �
The bounds rank(G1(X)) � cat(X) (for a manifold X ) and b1(M) � cat(M) from [22,23] had the property that equality

only held for (flat) tori. The following example shows that this is not the case for the new cat1 bound.

Example 5.8. Let X = T 2 × S2. Then X has a metric with non-negative Ricci curvature and from Proposition 4.2, b1(X) =
2 = cat1(X). But we also have cat1(X) < cat(X) = 3 by the standard cup length lower bound for category and the standard

product inequality for category (see [6]):

3 = cupQ(X) � cat(X) � cat
(
T 2

) + cat
(
S2

) = 2+ 1 = 3.

Example 5.9. Since, under the hypotheses of Theorem 5.7, we have the inequalities

b1(M) � cat1(M) � cat(M) � dim(M),

and b1(M) = cat(M) implies M ∼= Tm , it is tempting to conjecture that cat1(M) = cat(M) only when the manifold M is

a K (π,1). That this is not true is exemplified by M = RPm . By Corollary 3.6 applied to RPm j1−−→ RP∞ = K (Z/2Z,1),

we know that m � cat1(RPm). But we also know that cat1(RPm) � cat(RPm) � dim(RPm) = m, so we have cat1(RPm) =
cat(RPm) = m, but RPm is not a K (π,1). An interesting question is whether cat1(M) = cat(M) only when M is a K (π,1)

or a skeleton of a K (π,1).

6. Manifolds of almost non-negative sectional curvature

It is not generally true that a Cheeger–Gromoll type splitting theorem holds for manifolds of almost non-negative sec-

tional curvature (without extra side conditions). However, there are results which are “one step away” from producing

splittings.

A closed smooth manifold Mm is said to be almost non-negatively (sectionally) curved (or ANSC) if it admits a sequence of

Riemannian metrics {gn}n∈N whose sectional curvatures and diameters satisfy

sec(M, gn) � −1

n
and diam(M, gn) � 1

n
.

ANSC manifolds generalize almost flat manifolds as well as manifolds with non-negative sectional curvature. Here is

a Bochner type result for ANSC manifolds due to Yamaguchi. (Also, there are versions for almost non-negatively Ricci-curved

manifolds, see [5,7].)

Theorem 6.1. ([34]) If Mm is an ANSC manifold, then:

(1) a finite cover of M is the total space of a fibration over a torus of dimension b1(M);

(2) if b1(M) =m, then Mm is diffeomorphic to T b1(M) .

More recently, in [19] it was shown that an ANSC manifold Mm has a finite cover that is a nilpotent space in the

sense of homotopy theory and that the following fiber bundle result holds. (Note that this does not hold for non-negatively

Ricci-curved manifolds, see [1].2)

Theorem 6.2. ([19]) If M is an ANSC manifold, then there is a finite cover M that is the total space of a fiber bundle

F → M
p−→ N,

where N = K (π,1) is a nilmanifold and F is a simply connected closed manifold.

2 Thanks to Wilderich Tuschmann for this observation.



Remark 6.3. (1) In fact, the fiber F is almost non-negatively curved in a certain generalized sense. Because we will not deal

with this property, we refer the interested reader to [19] for the precise definition.

(2) Because π1(F ) = 0 and N = K (π,1), the bundle F → M → N is homotopy equivalent to the classifying fibration for

the universal cover, M̃ → M
j1−−→ K (π,1). (Here, note that M̃ is the universal cover of M as well as of M .) Of course, π is

an infinite (in fact, torsionfree nilpotent) group, so M̃ is non-compact. Therefore, it seems strange on the face of it that we

have M̃ � F with F compact, but in fact, this is not so unusual. For instance, the universal cover of S2 × S1 is S2 × R while

the fiber of S2 × S1 → S1 is the compact manifold S2 of the same homotopy type as S2 × R.

Now, because of the equivalence of the KPT bundle and the universal cover fibration, we see from Theorem 3.4 that

cat1(M) = cat( j1) = cat(p).

We then obtain the following Bochner-type theorem.

Theorem 6.4. Suppose M is an ANSC manifold with associated finite cover M and fiber bundle F → M
p→ N, where N = K (π,1) is

a nilmanifold and F is a simply connected closed manifold. Then:

(i) b1(M) � dim(N) � dim(M) = dim(M);

(ii) if M̃ has non-zero Euler characteristic, then b1(M) � dim(N) � cat1(M).

Proof. We are given that M → M is a finite cover, so Lemma 5.6 gives b1(M) � b1(M). But H1(M;Q) ∼= H1(π ;Q) ∼=
H1(N;Q), so b1(M) = b1(N).

Now, N is a nilmanifold, so it has a (rational homotopy theoretic) minimal model (Λ(x1, x2, . . . , xk),d), where each

generator has degree(x j) = 1 and k is the rank of the torsionfree nilpotent group π (see Appendix B or [13, Theorem 3.22]).

By the general theory, the differential d is zero on x1, . . . , xs for some 2 � s � k and k = dim(N). (The case s = k is a torus.)

Then b1(N) = s � k = dim(N). Since F → M
p−→ N is a bundle, we see that dim(N) � dim(M) = dim(M). This proves (i).

For (ii), because F � M̃ and χ(M̃) �= 0, the bundle F → M
p−→ N has a transfer map τ : H∗(M;Z) → H∗(N;Z) with

τ ◦ p∗(α) = χ(F ) · α, for all α ∈ H∗(N;Z) [2]. This implies that p∗ is injective on rational cohomology. Since N is ori-

entable by the discussion on nilmanifolds following Theorem B.1, Corollary 3.6 implies that dim(N) � cat1(M). Together

with Corollary 3.10, we obtain dim(N) � cat1(M). �
Remark 6.5. If π1(M) is torsionfree, then Serre’s theorem on the cohomological dimension of finite index subgroups

says that cd(π) = cd(π1(M)) since π has finite index in π1(M). Because cd(π) = dim(K (π,1)) < ∞, we then have

dim(K (π1(M),1)) � cat1(M). All of this simply points out that there are other types of invariants that we can use instead

of just b1 in Bochner-type theorems.

On the face of it, there seems to be no way to go from KPT to Yamaguchi. But, in fact, it turns out we can use cat1(−)

to provide a bridge from the Kapovitch–Petrunin–Tuschmann Theorem 6.2 to Yamaguchi’s Theorem 6.1. Unfortunately, the

method only seems to give a topological version for (2) in Theorem 6.1. Nevertheless, because this approach is so simple,

it reveals an interesting relationship between the geometry of, and homotopy theory associated to, ANSC manifolds. In the

following, we only assume the existence of the fiber bundle of Theorem 6.2.

Theorem 6.6. Suppose a closed manifold M has a finite cover M that is the total space of a fiber bundle

F → M
p→ N,

where N = K (π,1) is a nilmanifold and F is a simply connected closed manifold. Then:

(1) a finite cover of M is the total space of a fibration over a torus of dimension b1(M);

(2) if b1(M) =m = dim(M), then Mm is homeomorphic to T b1(M) .

Proof. Now, b1(M) � b1(M) by Lemma 5.6 and the general construction of the nilmanifold N via iterated principal S1-bun-

dles shows that we may start the iteration by a bundle over T b1(M) or any torus of lower dimension. Thus, (1) follows since

a composition of fibrations is a fibration.

Now assume b1(M) =m = dim(M). By Theorem 6.4 (i), we see that dim(N) =m = dim(M). Hence, dim(F ) = 0 and (since

F is connected) we have M = N . Furthermore, the proof of Theorem 6.4 (i) shows that b1(M) � b1(M) = b1(N) � dim(M),

so we also have b1(N) =m = dim(N). For a nilmanifold, this can only happen if N is a torus Tm and π ∼= Zm . (By Mostow

rigidity (see [14] for example), N is diffeomorphic to Tm .) Now, M = Tm covers M , so M is a K (G,1) where G = π1(M). Since

M is a closed m-manifold, we have that G is torsionfree. Now, π has finite index in G and b1(π) =m = b1(M) = b1(G). By

Lemma 6.7 below, we have G ∼= Zm . Hence M = K (Zm,1) is a homotopy torus. By [14, Theorem 6.1], we know that M is

then homeomorphic to Tm . �



Lemma 6.7. If π ∼= Zm is a finite index subgroup of a torsionfree group G and b1(G) =m, then G ∼= Zm.

Proof. Note first that Lemma 5.6 implies that H∗(π ;Q) → H∗(G;Q) is surjective. In particular, we have a surjection on

rationalized abelianizations,

πab ⊗ Q = H1(π ;Q) → H1(G;Q) = Gab ⊗ Q.

But b1(π) = b1(G), and a surjection of rational vector spaces of the same dimension is an isomorphism, so Qm ∼= πab ⊗ Q ∼=
Gab ⊗ Q. We have the following commutative diagram:

π ∼= Zm i

∼=

G

p

πab
∼= Zm iab

⊗Q

Gab

⊗Q

Qm
∼=

Qm.

Note that, because the bottom row is an isomorphism, iab is an injection. We claim that Ker(p) = 0, so p is an isomorphism

(since it is a surjection by definition). Suppose x ∈ G and p(x) = 0. Now, π has finite index in G and if xsπ = xtπ (for s > t

say), then xs−t ∈ π , so there exists some r ∈ N such that xr ∈ π . But then we have the contradiction

0 �= iab
(
xr

) = p
(
i
(
xr

)) = 0.

Therefore, xr = e, where e is the identity of G . But G is torsionfree, so r = 0 and x = e. Hence p is injective and p :G → Gab

is an isomorphism. Therefore, G is a finitely generated torsionfree abelian group; hence G ∼= Zm (since b1(G) =m). �
Now we can give a result that is a combination of Theorems 5.4 and 5.7 in the presence of the special geometric structure

provided by ANSC and a hypothesis on the associated nilmanifold.

Corollary 6.8. Suppose M is an ANSC manifold with associated finite cover M and fiber bundle F → M
p→ N, where N = K (π,1) is

a symplectic nilmanifold and F is a simply connected closed manifold. If M̃ has non-zero Euler characteristic (or more generally, p∗ is

injective), then

cat1(M) � b1(M) � rank(Zπ) � rank
(
G1(M)

)
,

where Zπ denotes the center of π .

Proof. Note that b1(M) = b1(N) = b1(π) and G1(M) ⊆ Zπ1(M) = Zπ since F is simply connected. We then apply Proposi-

tion B.3 and Theorem 6.4. �
Appendix A. Generalities on open covers

The main results about open covers that we shall use are described (and proved) in [10,11], but other relevant papers

include [25,18,9] as well as [6, Exercise 1.12]. We take the exact statements below from [27].

An open cover W = {W0, . . . ,Wm+k} of a space X is an (m + 1)-cover if every subcollection {W j0 ,W j1 , . . . ,W jm } of

m+1 sets from U also covers X . The following simple, but slippery, observation (see [25] for instance) is the basis for many

arguments in this approach.

Lemma A.1. A cover W = {W0,W1, . . . ,Wk+m} is an (m + 1)-cover of X if and only if each x ∈ X is contained in at least k + 1 sets

of W .

Proof. If W is an (m + 1)-cover and x ∈ X is only in k sets in W , then k + m + 1 − k = m + 1 sets of the cover do not

contain x. These m + 1 sets do not cover X , contradicting the supposition on W .

Suppose each x ∈ X is contained in at least k+1 sets from W and choose a subcollection V of m+1 sets from W . There

are only k +m + 1 − (m + 1) = k sets not in V , so x must belong to at least one set in V . Thus V covers X , and W is an

(m + 1)-cover. �
An open cover can be lengthened to a (k + 1)-cover, while retaining certain essential properties of the sets in the cover.

Theorem A.2. ([9,10]) Let U = {U0, . . . ,Uk} be an open cover of a normal space X. Then, for any m = k,k + 1, . . . ,∞, there is an

open (k + 1)-cover of X , {U0, . . . ,Um}, extending U such that for n > k, Un is a disjoint union of open sets that are subsets of the U j ,

0 � j � k.



In Theorem A.2, because the Un for n > k are disjoint unions of subsets of the original covering sets, the Un also possess

any properties of the original cover that are inherited by disjoint unions and open subsets. In particular, if the cover U is

categorical (or m-categorical), then the extended cover is also categorical (or m-categorical).

Appendix B. Nilmanifolds and minimal models

The following is culled from [13, Chapter 3]. A nilmanifold N is the quotient of a simply connected nilpotent Lie group G

by a co-compact discrete subgroup π . A simply connected nilpotent Lie group is diffeomorphic to a Euclidean space, so

a nilmanifold has a fundamental group π that is a finitely generated torsionfree nilpotent group and has higher order

homotopy groups which are trivial. Nilmanifolds then provide prime examples of K (π,1)-manifolds; that is, compact man-

ifolds with the fundamental group as the only non-trivial homotopy group. Clearly, any nilmanifold is orientable. Examples

are given by any torus Tn = Rn/Zn and the Heisenberg manifold formed by the quotient of the Lie group of matrices of the

form (
1 a b

0 1 c

0 0 1

)
,

with a, b and c real numbers, by the subgroup of the corresponding matrices with integer entries.

To any nilmanifold, we can associate a rational nilpotent Lie algebra g with the property that there exists a basis in g,
e1, e2, . . . , en , such that the structure constants cki j arising in brackets

[ei, e j] =
∑
k

cki jek

are rational numbers for all i, j, k. In fact, corresponding to g, there is a simply connected nilpotent Lie group G which

admits a discrete co-compact subgroup π so that N = G/π is a compact nilmanifold.

Let g have basis {X1, . . . , Xs}. Then the dual of g, g∗ , has basis {x1, . . . , xs} and there is a differential δ on the exterior

algebra Λg∗ given by defining it to be dual to the bracket on degree 1 elements,

δxk(Xi, X j) = −xk
([Xi, X j]

)
,

and then extending δ to be a graded derivation. Now, [Xi, X j] = ∑
cli j Xl , where cli j are the structure constants of g, so

duality then gives

δxk(Xi, X j) = −cki j

and the differential has the form (on generators)

δxk = −
∑
i< j

cki jxi ∧ x j .

We note that the Jacobi identity in the Lie algebra is equivalent to the condition δ2 = 0. Therefore, we obtain a commutative

differential graded algebra (or cdga) (Λg∗, δ) associated to the Lie algebra g. The fundamental result here is the following.

Theorem B.1. If N = G/π is a nilmanifold, then the cdga (Λg∗, δ) associated to g is a minimal model for N and, thus computes all of

the rational homotopy information about N.

The crucial homotopy fact here is that rational homotopy theory is completely algebraic. That is, there is an equivalence

between the categories of rational homotopy types and isomorphism classes of minimal cdga’s. Again we refer to a general

source such as [13] for specifics.

Now, the minimal model of N has the form

MN = (
Λ(x1, . . . xk),d

)
with |xi | = 1,

where the nilpotency of g converts by duality into the condition that the differential on x j is a polynomial in xr with

r < j. In fact, this can be refined to say that the generators are added in stages and the generators in the jth stage have

differentials that are polynomials in the generators of stages 1 through j − 1. In particular, because g is nilpotent, there is

a non-trivial complement to [g,g] ⊂ g which is isomorphic to g/[g,g] ∼= H1(N;Q). Duality then says that there is some s

with 2 � s � k such that dxi = 0 for i � s.

The geometry behind the form of the minimal model comes from a description due to Malcev of a nilmanifold N = G/π
as an iterated sequence of principal circle bundles, one for each generator x j , 1 � j � k (see [13, Chapter 3]). The condition

that for some s with 2 � s � k we have dxi = 0 for i � s means that the first s principal bundles are trivial. That is, the

construction of N begins by taking a torus T s and then proceeds by taking successive principal circle bundles.



The minimal model MN is an exterior algebra so, since degree(x j) = 1 for 1 � j � k, the top degree of a non-zero

element is k and a vector space generator is x1 · x2 · · · xk . This element is obviously a cocycle, so Hk(N;Q) = Q; thus, N is

orientable and any K (π,1) must have dimension at least k.

The minimal model MN = (Λ(x1, . . . , xk),d) reflects the structure of g as a nilpotent Lie algebra. In particular, the center

of g (corresponding to the center of π ) has the property that a bracket of any of its elements with any other element of gn
is zero and this is reflected (by duality) in the fact that, for some t � 2, xt+1, . . . , xk do not appear in the differentials of any

of the x j generators. In this notation, we have that

rank(Zπ) = dim
(Z(g)

) = k − t.

That is, the rank of the center of the fundamental group of a nilmanifold is the number of generators of the minimal model of the

nilmanifold that do not appear in differentials of generators.

Now, nilmanifolds can sometimes be symplectic manifolds. Rather than give the definition of a symplectic manifold

here, we can make use of a facet of a theorem due to Nomizu to identify symplectic nilmanifolds as the ones with a

degree 2 cohomology class whose cup product power is a non-zero top degree (i.e. the dimension of the nilmanifold)

rational cohomology class. Again, see [13,32] for all of this.

Example B.2. The first example of a closed symplectic non-Kähler manifold was given by Thurston (and Kodaira earlier).

This Kodaira–Thurston manifold KT is the product of a circle S1 with the 3-dimensional Heisenberg manifold obtained as

the quotient of 3×3 real upper triangular matrices with 1’s on the diagonal by the discrete subgroup of such matrices with

integral entries. The minimal model of KT is given by (Λ(x, y,u, z),d) with dx = dy = du = 0 and dz = xy. A representative

of the symplectic cohomology class is ω = xz + yu. Note that, in order for dω = 0, it is necessary for dx = 0 since z does

not appear in any differentials. Note that ω2 = 2xzyu = 2xyuz using the commutativity of the minimal model. In general,

it is always the case that the product of all the generators of the minimal model is a top class for the manifold. (Note that

x2j = 0 for all j by (anti-)commutativity as well.) Now, the Lie algebra g in this case is given by

g = 〈
X, Y ,U , Z

∣∣ [X, Y ] = Z
〉
,

with all other brackets equal to zero. Hence, we see the center is 〈Z ,U 〉 and this corresponds to the generators z and u not

appearing in any differential. Finally, note that b1(N) = 3 since x, y and u are degree 1 cocycles and dim(Zg) = 2.

The following result generalizes the example of the Kodaira–Thurston manifold.

Proposition B.3. If N = K (π,1) is a symplectic nilmanifold N = G/π , then

b1(N) = b1(π) � rank(Zπ) = dim(Zg).

Proof. Write the minimal model as(
Λ(x1, . . . , xb, y1, . . . , y�, z1, . . . , zt),d

)
,

where the xi are the generators that are cocycles, the yi are generators with dyi �= 0 that appear in some differential and

the zi are the generators with dzi �= 0 that do not appear in any differential (and so are dual to the center of the Lie

algebra g). We also take b to be maximal in the sense that no linear combination of the y j and z j can be a cocycle. We

first assume that every cocycle generator x j appears in the differential of some other generator.3

Note that the symplectic class representative ω must include all generators of the minimal model since this is the only

way a power of ω can give a top class (which is a product of all generators). Now write ω as

ω = σ +
t∑

j=1

α j z j +
∑
r<s

crszr zs,

where σ is a sum of terms that are products of xi ’s and yi ’s and each αi is a linear combination of xi ’s and yi ’s only. Note

that the final term can always be written in the form indicated (i.e. r < s). Using dω = 0, we see that

0 = dσ +
∑

dα j z j −
∑

α jdz j +
∑

crsdzr zs −
∑

crszrdzs.

Because we require r < s in the final sum of ω, we see that the only terms in dω = 0 involving zt are dαt zt and
∑

crtdzr zt .

Because the algebra is freely generated, we have 0 = (dαt + ∑
crtdzr)zt . Hence we have

0 = dαt +
∑

crtdzr = d
(
αt +

∑
crt zr

)
.

3 Thanks to Greg Lupton for pointing out the necessity of this step.



But this implies that αt ∈ 〈x1, . . . , xb〉 and crt = 0 for all r = 1, . . . , t − 1 since all degree one cocycles are in 〈x1, . . . , xb〉.
Hence,

ω = σ +
t∑

j=1

α j z j +
∑
r<s<t

crszr zs.

Now by considering zt−1, the same argument as above shows that αt−1 ∈ 〈x1, . . . , xb〉 and cr(t−1) = 0 for all r = 1, . . . , t − 1.

Iterating this procedure, we end with

ω = σ +
t∑

j=1

α j z j

with all α j �= 0 and all α j ∈ 〈x1, . . . , xb〉. (The first condition follows since ω must contain all degree one generators.)

Now, ωn �= 0, where 2n = b+ �+ t since ωn = c · x1 · · · xb y1 · · · y�z1 · · · zt . If we write ω = σ +β , where β = ∑
α j z j , then

ωn =
∑(

n

p

)
σ pβn−p .

Now, βt+u = 0 for u > 0 since some z j would occur with an exponent higher than one. On the other hand, the monomial ωn

must contain all z j generators and this only happens if βt �= 0.4 But we have

βt =
(∑

α j z j

)t = t!α1 · · ·αt z1 · · · zt,
and clearly, for βt �= 0, it is necessary that α1, . . . ,αt be linearly independent. Since 〈α1, . . . ,αt〉 ⊆ 〈x1, . . . , xb〉, we must

have t � b. But b = b1(N) and, from our remarks above, t = dim(Zg) = rank(Zπ). Hence, the result is proved under the

assumption that the xi always appear in some differential of another generator (i.e. the xi never represent elements in the

center).

Suppose, on the other hand, that (without loss of generality) x1, . . . , xh never appear in the differential of another gen-

erator. Then clearly, the model may be written(
Λ(x1, . . . , xh,d = 0)

) ⊗ (
Λ(xh+1, . . . , xb, y1, . . . , y�, z1, . . . , zt),d

)
,

corresponding to a rational splitting N � T h × K (π ′,1). By the proof above, we have b − h � rank(Zπ ′). But each circle

factor in T h contributes one to both the Betti number of N and to the center of g, so we obtain b � rank(Zπ) and we are

done. �
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