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On the structure of co-Kähler manifolds

Giovanni Bazzoni · John Oprea 

1 Recollections on co-Kähler manifolds In [13], H. Li recently gave a structure result for 
compact co-Kähler manifolds stating that such a manifold is always a Kähler mapping 
torus (see Sect. 6). In this paper, using Li’s characterization, we give another type of 
structure theorem for co-Kähler manifolds based on classical results in [5,16,17,20]. As 
such, much of this paper is devoted to showing how the interplay between the known 
geometry and the known topology of co-Kähler manifolds



creates beautiful structure. Basic results on co-Kähler manifolds themselves come from [4]
(see also [8]).1

Let (M2n+1, J, ξ, η, g) be an almost contact metric manifold given by the conditions

J 2 = −I + η ⊗ ξ, η(ξ) = 1, g(J X, JY ) = g(X, Y ) − η(X)η(Y ), (1)

for vector fields X and Y, I the identity transformation on T M and g a Riemannian metric.
Here, ξ is a vector field as well, η is a 1-form and J is a tensor of type (1, 1). A local J -
basis {X1, . . . , Xn, J X1, . . . , J Xn, ξ} may be found with η(Xi ) = 0 for i = 1, . . . , n. The
fundamental 2-form on M is given by

ω(X, Y ) = g(J X, Y ),

and if {α1, . . . , αn, β1, . . . , βn, η} is a local 1-form basis dual to the local J -basis, then

ω =
n∑

i=1

αi ∧ βi .

Note that ıξω = 0.

Definition 1.1 The geometric structure (M2n+1, J, ξ, η, g) is a co-Kähler structure on M
if

[J, J ] + 2 dη ⊗ ξ = 0 and dω = 0 = dη

or, equivalently, J is parallel with respect to the metric g.

A crucial fact that we use in our result is that, on a co-Kähler manifold, the vector field
ξ is Killing and parallel and the 1-form η is harmonic. This fact is well known, but we were
not able to find a direct proof in the literature, so we give one here.

Lemma 1.2 On a co-Kähler manifold, the vector field ξ is Killing and parallel. Furthermore,
the 1-form η is a harmonic form.

Proof The normality condition implies that Lξ J = 0 (see [3]); in particular, [ξ, J X ] =
J [ξ, X ] for every vector field X on M . Compatibility of the metric g with J is expressed by
the right-hand relation in (1); with ω(X, Y ) = g(J X, Y ), it yields

g(X, Y ) = ω(X, JY ) + η(X)η(Y ). (2)

By definition,

(Lξ g)(X, Y ) = ξg(X, Y ) − g([ξ, X ], Y ) − g(X, [ξ, Y ]). (3)

1 The authors of [4] use the term cosymplectic for Li’s co-Kähler because they view these manifolds as odd-
dimensional versions of symplectic manifolds—even as far as being a convenient setting for time-dependent
mechanics [7]. Li’s characterization, however, makes clear the true underlying Kähler structure, so we have
chosen to follow his terminology.



Substituting (2) in (3), we obtain

(Lξ g)(X, Y ) = ξω(X, JY ) + ξ(η(X)η(Y )) − ω([ξ, X ], JY ) − η([ξ, X ])η(Y )

− ω(X, J [ξ, Y ]) − η(X)η([ξ, Y ])
= ξω(X, JY ) − ω([ξ, X ], JY ) − ω(X, [ξ, JY ]) + (ξη(X))η(Y )

+ η(X)(ξη(Y )) − η([ξ, X ])η(Y ) − η(X)η([ξ, Y ])
= (Lξω)(X, JY ) + η(X)(ξη(Y ) − η([ξ, Y ]))

+ η(Y )(ξη(X) − η([ξ, X ]))
= η(X)(dη(ξ, Y ) + Yη(ξ)) + η(Y )(dη(ξ, X) + Xη(ξ)) = 0.

The last equalities follow from these facts:

• since ω is closed and ıξω = 0, Lξω = 0 by Cartan’s magic formula;
• dη = 0;
• as η(ξ) ≡ 1, one has Xη(ξ) = Yη(ξ) = 0.

This proves that ξ is a Killing vector field. In order to show that ξ is parallel, we use the
following formula for the covariant derivative ∇ of the Levi–Civita connection of g; for
vector fields X, Y, Z on M , one has

2g(∇X Y, Z) = Xg(Y, Z) + Y g(X, Z) − Zg(X, Y )

+ g([X, Y ], Z) + g([Z , X ], Y ) − g([Y, Z ], X). (4)

Setting Y = ξ in (4) and recalling that, on any almost contact metric manifold, g(X, ξ) =
η(X), we obtain

2g(∇X ξ, Z) = Xg(ξ, Z) + ξg(X, Z) − Zg(X, ξ) + g([X, ξ ], Z)

+ g([Z , X ], ξ) − g([ξ, Z ], X) = ξg(X, Z)

−g([ξ, X ], Z) − g([ξ, Z ], X) + Xη(Z)

− Zη(X) − η([X, Z ]) = (Lξ g)(X, Z) + dη(X, Z) = 0.

Since X and Z are arbitrary it follows that ∇ξ = 0.
To prove that η is harmonic, we rely on the following result: a vector field on a Riemannian

manifold (M, g) is Killing if and only if the dual 1-form is co-closed. For a proof, see for
instance [9, page 107]. Applying this to ξ , we see that η co-closed; since it is closed, it is
harmonic. ��
Lemma 1.2 will be a key point in our structure theorem below. In fact, in [13], it is shown
that we can replace η by a harmonic integral form ηθ with dual parallel vector field ξθ and
associated metric gθ , (1, 1)-tensor Jθ and closed 2-form ωθ with iξθ ωθ = 0. Then we have
the following (see Sect. 6 for definitions).

Theorem 1.3 ([13]) With the structure (M2n+1, Jθ , ξθ , ηθ , gθ ), there is a compact Kähler
manifold (K , h) and a Hermitian isometry ψ : K → K such that M is diffeomorphic to the
mapping torus

Kψ = K × [0, 1]
(x, 0) ∼ (ψ(x), 1)

with associated fibre bundle K → M = Kψ → S1.



An important ingredient in Li’s theorem is a result of Tischler (see [19]) stating that a
compact manifold admitting a non-vanishing closed 1-form fibres over the circle. The above
result indicates that co-Kähler manifolds are very special types of manifolds. However it can
be very difficult to see whether a manifold is such a mapping torus. In this paper, we will
give another characterization of co-Kähler manifolds which we hope will allow an easier
identification.

2 Parallel vector fields

From now on, when we write a co-Kähler structure (M2n+1, J, ξ, η, g), we shall mean Li’s
associated integral and parallel structures. Let’s now employ an argument that goes back to
[20], but which was resurrected in [17]. Consider the parallel vector field ξ and its associated
flow φt . Because ξ is Killing, each φt is an isometry of (M, g). Therefore, in the isometry
group Isom(M, g), the subgroup generated by ξ, C , is singly generated. Since M is compact,
so is Isom(M, g) and this means that C is a torus. Using harmonic forms and the Albanese
torus, Welsh [20] actually shows that there is a subtorus T ⊆ C such that M = T ×G F
where G ⊂ T is finite and F is a manifold. Following Sadowski [17], we can modify the
argument as follows.

Let S1 ⊆ C ⊂ Isom(M, g) have associated vector field Y . Because S1 acts on (M, g) by
isometries, the vector field Y is Killing. Now, we can choose Y as close to ξ as we like, so at
some point x0 ∈ M , since η(ξ)(x0) = 0, then η(Y )(x0) = 0 as well. But η is harmonic and
Y is Killing, so this means that η(Y )(x) = 0 for all x ∈ M . Hence, we may take η(Y )(x) > 0
for all x ∈ M . Now let σ be an orbit of the S1 action. Then

∫
σ

η =
1∫

0

η

(
dσ

dt

)
dt =

∫
η(Y ) dt > 0.

This says that the orbit map α : S1 → M defined by g �→ g · x0 induces a non-trivial
composition of homomorphisms

H1(S1; R)
α∗→ H1(M; R)

η→ H1(S1; R),

∼where dη = 0 defines an integral cohomology class η ∈ H 1(M; Z) = [M, S1]. Here we use  
the standard identification of degree 1 cohomology with homotopy classes of maps from M 
to S1. Since  H1(S1; Z) = Z, this means that the integral homomorphism α∗ : H1(S1; Z) → 
H1(M; Z) is injective. Such an action is said to be homologically injective (see [5]). Hence, 
we have

Proposition 2.1 A co-Kähler manifold (M2n+1, J, ξ, η,  g) with integral structure supports 
a smooth homologically injective S1 action.

In fact, it can be shown that there is a homologically injective T k action on M , where  T k 

is Welsh’s torus T . However, we shall  focus on the  S1-case since this will allow a connection 
to Li’s mapping torus result.

3 Sadowski’s transversally equivariant fibrations

Homologically injective actions were first considered by Conner and Raymond in [5] (also  
see [12]) and were shown to lead to topological product splittings up to finite cover (also



see [16]). Homological injectivity for a circle action is very unusual and this points out the
extremely special nature of co-Kähler manifolds. Here we want to make use of the results in
[17] to achieve smooth splittings for co-Kähler manifolds up to a finite cover. We will state
the results of [17] only for the case we are interested in: namely, a mapping torus bundle
M → S1.

Let’s begin by recalling that a bundle map p : M → S1 is a transversally equivariant
fibration if there is a smooth S1-action on M such that the orbits of the action are transversal
to the fibres of p and p(t · x) − p(x) depends on t ∈ S1 only. This latter condition is simply
the usual equivariance condition if we take an appropriate action of S1 on itself (see [17,
Remark 1.1]). Sadowski’s key lemma is the following.

Lemma 3.1 [17, Lemma 1.3] Let p : M → S1 be a smooth S1-equivariant bundle map.
Then the following are equivalent;

(1) The orbits of the S1-action are transversal to the fibres of p;
(2) p∗ ◦ α∗ : π1(S1) → π1(S1) is injective, where α : S1 → M is the orbit map;
(3) One orbit of the S1-action is transversal to a fibre of p at a point x0 ∈ M.

Remark 3.2 Note the following.

(1) Lemmas 1.1 and 1.2 of [17] show that, in the situation of Proposition 2.1, η : M → S1

is a transversally equivariant bundle map.
(2) Note also that, because π1(S1) ∼= H1(S1; Z) ∼= Z, the second condition of Lemma 3.1

is really saying that the action is homologically injective.

As pointed out in [13], every smooth fibration K → M
p→ S1 can be seen as a map-

ping torus of a certain diffeomorphism ϕ : K → K , (also see Proposition 6.4 below). The
following is a distillation of [17, Proposition 2.1 and Corollary 2.1] in the case of a circle
action.

Theorem 3.3 Let M
p→ S1 be a smooth bundle projection from a smooth closed manifold

M to the circle. The following are equivalent:

(1) The structure group of p can be reduced to a finite cyclic group G = Zm ⊆
π1(S1)/(Im(p∗ ◦ α∗)) (i.e. the diffeomorphism ϕ associated to the mapping torus

M
p→ S1 has finite order);

(2) The bundle map p is transversally equivariant with respect to an S1-action on
M, A : S1 × M → M.

Moreover, assuming (1) and (2), there is a finite G-cover K × S1 → M given by the action
(k, t) �→ At (k), where G acts diagonally and by translations on S1.

Sketch of Proof ([17]) (1 ⇒ 2) The bundle is classified by a map S1 → BG or, equivalently,
by an element of π1(BG) = G = Zm (since G is abelian). Now M may be written as a
mapping torus Kϕ for some diffeomorphism ϕ ∈ Diffeo(K ) of order m. (So G is the structure
group of a mapping torus bundle). Define an S1-action by A : S1 × M → M, A(t, [k, s]) =
[k, s + mt]. (Geometrically, the action is simply winding around the mapping torus m times
until we are back to the identity ϕm). Clearly, the action is transversally equivariant.

(2 ⇒ 1) Let At : M → M be the S1-action such that p is transversally equivariant. Let
K be the fibre of p and let

G = {g ∈ S1 | Ag(K ) = K }.



Now, because orbits of the action are transversal to the fibre, G is a proper closed subgroup
of S1. Hence, G = Zm = 〈g | gm = 1〉 for some positive integer m. Also note that the
transversally equivariant condition saying p(At (x))− p(x) only depends on t implies that the
action carries fibres of p to fibres of p. Moreover, fibres are then mapped back to themselves
by G. Hence, letting G act diagonally on K × S1 and by translations on S1, we see that the
action is free and its restriction A| : K × S1 → M is a finite G-cover. Now, if we take the
piece of the orbit from x0 ∈ K to Ag(x0) for fixed x0 and g ∈ G, the projection to S1 gives
an element in π1(S1) = Z. Because the full orbit is strictly longer than this piece, we see
that the corresponding element in π1(S1) = Z can only be in Im(p∗ ◦ α∗) if g = 1. Hence,
G ⊆ π1(S1)/(Im(p∗ ◦ α∗)) which is finite due to homological injectivity. ��

We then have the following consequence for co-Kähler manifolds from Proposition 2.1
and Theorem 3.3.

Theorem 3.4 A compact co-Kähler manifold (M2n+1, J, ξ, η, g) with integral structure and
mapping torus bundle K → M → S1 splits as M ∼= S1 ×Zm K , where S1 × K → M is a
finite cover with structure group Zm acting diagonally and by translations on the first factor.
Moreover, M fibres over the circle S1/(Zm) with finite structure group.

Note that Theorem 3.4 provides the following.

Corollary 3.5 For a compact co-Kähler manifold (M2n+1, J, ξ, η, g) with integral structure
and mapping torus bundle K → M → S1, there is a commutative diagram of fibre bundles:

K

=
��

�� S1 × K

×m

��

�� S1

×m

��
K �� Kψ �� S1.

∼where Kψ = M according to Theorem 1.3 and the notation ×m denotes an Zm -covering.

Remark 3.6 Although we have used the very special results of [17] above, observe that a 
version of Theorem 3.4 may be proved in the continuous case using the Conner-Raymond 
Splitting Theorem [5]. In this case, we obtain a finite cover S1 × Y → M , where  Y → 
K is a homotopy equivalence. This type of result affords a possibility of weakening the 
stringent assumptions on co-Kähler manifolds with a view towards homotopy theory rather 
than geometry.

4 Betti numbers

A main result of [4] was the fact that the Betti numbers of co-Kähler manifolds increase up 
to the middle dimension: b1 ≤ b2 ≤  · · ·  ≤  bn = bn+1 for M2n+1. The argument in [4] 
was difficult, involving Hodge theory and a type of Hard Lefschetz Theorem for co-Kähler 
manifolds. In [13], the mapping torus description of co-Kähler manifolds yielded the result 
topologically through homology properties of the mapping torus. Here, we would like to see 
the Betti number result as a natural consequence of Theorem 3.4. Recall a basic result from 
covering space theory.

Lemma 4.1 If X → X is a finite G-cover, then

H∗(X; Q) = H∗(X; Q)G ,



where the designation H G denotes the fixed algebra under the action of the covering trans-
formations G.

In order to see the Betti number relations, we need to know that the “Kähler class” on K
is invariant under the covering transformations. The following result guarantees that such a
class exists.

Lemma 4.2 There exists a class ω̄ ∈ H 2(K ; R)G ⊂ H2(S1 × K ; R) which pulls back to
ω ∈ H2(K ; R) via the inclusion K → S1 × K contained in Corollary 3.5.

Proof Let θ : S1 × K → M denote the G = Zm- cover of Theorem 3.4 and Corollary 3.5.
Then θ∗ω = η × α + ω̄, where η generates H 1(S1; R), α ∈ H1(K ; R) and ω̄ ∈ H2(K ; R).
Note that ω̄ pulls back to ω ∈ H2(K ; R). Also, θ∗ω is G-invariant, so for each g ∈ G, we
have

α × η + ω̄ = g∗(α × η + ω̄)

= g∗(α) × g∗(η) + g∗(ω̄)

= g∗(α) × η + g∗(ω̄),

using the fact that G acts on K × S1 diagonally and homotopically trivially on S1. We then
get

(α − g∗(α)) × η = g∗(ω̄) − ω̄.

This also means that g∗(ω̄) − ω̄ ∈ H2(K ; R) and (α − g∗(α)) × η ∈ H1(K ; R) ⊗ H1(S1).
Thus, the only way the equality above can hold is that both sides are zero. Hence, ω̄ is
G-invariant. ��
Theorem 4.3 If (M2n+1, J, ξ, η, g) is a compact co-Kähler manifold with integral structure
and splitting M ∼= K ×Zm S1, then

H∗(M; R) = H∗(K ; R)G ⊗ H∗(S1; R),

where G = Zm. Hence, the Betti numbers of M satisfy:

(1) bs(M) = bs(K ) + bs−1(K ), where bs(K ) denotes the dimension of G-invariant coho-
mology H s(K ; R)G;

(2) b1(M) ≤ b2(M) ≤ · · · ≤ bn(M) = bn+1(M).

Proof Lemma 4.1 and the fact that G acts by translations (so homotopically trivially) on
S1 produce H∗(M; R) = H∗(K ; R)G ⊗ H∗(S1; R). If we denote the Betti numbers of the
G-invariant cohomology by b, then the tensor product splitting gives

bs(M) = bs(K ) + bs−1(K ),

using the fact that H̃1(S1; R) = R and vanishes otherwise.
Let {α1, . . . , αk} be a basis for Hs−2(K ; R)G . According to Lemma 4.2, the class

ω ∈ H 2(M; R), which comes from H2(K ; R), provides a G-invariant class in H2(K ; R).
Furthermore, since K is compact Kähler, H∗(K ; R) obeys the Hard Lefschetz Property with
respect to ω. Namely, for j ≤ n, multiplication by powers of ω,

· ωn− j : H j (K ; R) → H2n− j (K ; R),

is an isomorphism. In particular, this means that multiplication by each power ωs, s ≤
n − j , must be injective. Therefore, for any s ≤ n, we have an injective homomorphism



· ω : H s−2(K ; R) → Hs(K ; R). Thus, since ω ∈ H2(K ; R)G , we obtain a linearly inde-
pendent set {ωα1, . . . , ωαk} ⊂ Hs(K ; R)G . But then we see that, for all s ≤ n,

bs−2(K ) ≤ bs(K ).

Now, let’s compare Betti numbers of M . We obtain

bs(M) − bs−1(M) = bs(K ) + bs−1(K ) − bs−1(K ) − bs−2(K )

= bs(K ) − bs−2(K ) ≥ 0,

by the argument above. Hence, the Betti numbers of M increase up to the middle dimension.
��

In [4] it was shown that the first Betti number of a co-Kähler manifold is always odd.
(Indeed, it was shown later that, for M co-Kähler, S1 × M is Kähler, so this also follows by
Hard Lefschetz). Here, we can infer this as a simple consequence of our splitting. Now, K is
a Kähler manifold, so dim(H1(K ; R)) is even and there is a non-degenerate skew symmetric
bilinear (i.e. symplectic) form b : H1(K ; R) ⊗ H1(K ; R) → H2n(K ; R) ∼= R defined by

b(α, β) = α · β · ωn−1.

Let G = Zm = 〈ϕ | ϕm = 1〉, note that invariance of ω implies ϕ∗ω = ω and compute:

ϕ∗(b)(α, β) = b(ϕ∗α, ϕ∗β)

= ϕ∗α · ϕ∗β · ωn−1

= ϕ∗α · ϕ∗β · ϕ∗ωn−1

= ϕ∗(α · β · ωn−1)

= α · β · ωn−1

= b(α, β),

where the second last line comes from the fact that α · β · ωn−1 = k · ωn and ϕ∗ωn = ωn . 
Hence, ϕ∗ is a symplectic linear transformation on the symplectic vector space H1(K ; R). 
But now the symplectic eigenvalue theorem says that the eigenvalue +1 occurs with even 
multiplicity. Thus b1(K ) = dim(H1(K ; R)G ) is even. Hence, by Theorem 4.3 (1), we have 
the following result.

Corollary 4.4 The first Betti number of a compact co-Kähler manifold is odd.

5 Fundamental groups of co-Kähler manifolds

An important question about compact Kähler manifolds is exactly what groups arise as their 
fundamental groups. For instance, every finite group is the fundamental group of a Kähler 
manifold, while a free group on more than one generator cannot be the fundamental group of a 
Kähler manifold (see [1] for more properties of these groups). Li’s mapping torus result shows 
that the fundamental group of a compact co-Kähler manifold is always a semidirect product of 
the form H �ψ Z, where  H is the fundamental group of a Kähler manifold. As an alternative, 
because the finite cover of Theorem 3.4 corresponds to the subgroup Ker(π1(M) → Zm ), 
Theorem 3.4 implies the following.



Theorem 5.1 If (M2n+1, J, ξ, η, g) is a compact co-Kähler manifold with integral structure
and splitting M ∼= K ×Zm S1, then π1(M) has a subgroup of the form H × Z, where H is
the fundamental group of a compact Kähler manifold, such that the quotient

π1(M)

H × Z

is a finite cyclic group.

5.1 Co-Kähler manifolds with transversally positive definite Ricci tensor

Now let’s see how to use our general approach to recover a result of De León and Marrero ([6])
concerning compact co-Kähler manifolds with transversally positive definite Ricci tensor.
Let (M2n+1, J, ξ, η, g) be an almost contact metric manifold and let F be the codimension
1 foliation ker(η). Let T F be the vector subbundle of the tangent bundle of M consisting on
vectors that are tangent to F : at a point x ∈ M , then

TxF = {v ∈ Tx M | ηx (v) = 0}.
Let S be the Ricci curvature tensor of M.S is called transversally positive definite if Sx is
positive definite on TxF for all x ∈ M . In [6], the authors prove the following result.

Theorem 5.2 ([6, Theorem 3.2]) If M is a compact co-Kähler manifold with transversally
positive definite Ricci tensor, then π1(M) is isomorphic to Z.

Their result relies, in turn, on the following theorem of Kobayashi ([11]).

Theorem 5.3 ([11, Theorem A]) A compact Kähler manifold with positive definite Ricci
tensor is simply connected.

We now give an alternative proof of Theorem 5.2 from our viewpoint.

Proof Let (M2n+1, J, ξ, η,  g) be a co-Kähler manifold and let F be the foliation given by 
ker(η). Assume that the Ricci curvature tensor is transversally positive. Using Li’s approach, 
we can pass to an integer co-Kähler structure and this process uses the flow of the Reeb 
vector field ξ to deform the leaves of F into the Kähler submanifold K . Now recall that ξ is 
Killing on a co-Kähler manifold, so its flow consists of isometries of M . In particular, if S is 
transversally positive definite on F , then  K is a Kähler manifold with positive definite Ricci 
tensor. By Theorem 5.3, K is simply connected. Therefore π1(M) is the semi-direct product 
of the trivial group with Z, hence isomorphic to Z. ��
5.2 Co-Kähler manifolds with solvable fundamental group

There has been much work done in the past 20 years regarding the question of whether 
Kähler solvmanifolds are tori. In [10], for instance, it is shown that such a manifold is a finite 
quotient of a complex torus which is also the total space of a complex torus bundle over a 
complex torus. In [8], Hasegawa’s result was applied to show the following.

Theorem 5.4 A solvmanifold has a co-Kähler structure if and only if it is a finite quotient 
of torus which has a structure of a torus bundle over a complex torus. As a consequence, a 
solvmanifold M = G/  of completely solvable type has a co-Kähler structure if and only if 
it is a torus.

Note that we have changed the terminology of [8] to match ours. We can use Theorem 3.4 
to contribute something in this vein.



Theorem 5.5 Let (M2n+1, J, ξ, η, g) be an aspherical co-Kähler manifold with integral
structure and suppose π1(M) is a solvable group. Then M is a finite quotient of a torus.

Proof We know that every aspherical solvable Kähler group contains a finitely generated
abelian subgroup of finite index (see [2, section 1.5] for instance). Now, if M = Kϕ is the
Li mapping torus description of M , we see that K is Kähler and aspherical with solvable
fundamental group (as a subgroup of π1(M)). Hence, K is finitely covered by a torus. By
Theorem 3.4, there is a finite Zm-cover K × S1 → M and this then displays M itself as a
finite quotient of a torus. ��

6 Automorphisms of Kähler manifolds

In this section, we connect our results above with certain facts about compact Kähler mani-
folds and their automorphisms. In order to do this, we first need some general results about
mapping tori. Let M be a smooth manifold and let ϕ : M → M be a diffeomorphism. Let
Mϕ denote the mapping torus of ϕ. We have the following result.

Proposition 6.1 The mapping torus Mϕ is trivial as a bundle over S1 (i.e. Mϕ
∼= M × S1

over S1) if and only if ϕ ∈ Diff0(M), where Diff0(M) denotes the connected component of
the identity of the group Diff(M).

Proof First assume the mapping torus is trivial over S1. We have the following commutative
diagram with top row a diffeomorphism.

Mϕ

p
���

��
��

��
�

f �� M × S1

pr2����
��

��
��

�

S1

where pr2( f ([x, t])) = [t] = p([x, t]). This means that f maps level-wise, so we have
f ([x, t]) = (gt (x), t), where each gt : M → M is a diffeomorphism. The mapping torus
relation (k, 0) ∼ (ϕ(k), 1) gives

(g0(x), [0]) = f ([x, 0]) = f (ϕ(x), 1) = (g1(ϕ(x)), [1]) = (g1(ϕ(x)), [0]),
and then we have g0(x) = g1(ϕ(x)).

Define an isotopy F : M × I → M by F(x, t) = g−1
0 gt (ϕ(x)). Then F(x, 0) =

g−1
0 g0(ϕ(x)) = ϕ(x) and F(x, 1) = g−1

0 g1(ϕ(x)) = g−1
0 g0(x) = x . Hence, ϕ is isotopic to

the identity.
Conversely, suppose that ϕ ∈ Diff0(M). Then there exists a smooth map H : M×[0, 1] →

M such that

H(m, 0) = m and H(m, 1) = ϕ(m)

and H(·, t) is a diffeomorphism for all t ∈ [0, 1]; in particular, for all t ∈ [0, 1], there exists
a diffeomorphism H−1(·, t). Define a map f : M × S1 → Mϕ by

f (m, [t]) = [H(m, t), t];
where we identify M × S1 = 

( ,
M 

)
×[0

(
,1

,
] 
) . It is enough to check that f is well defined, as it

m 0 ∼ m 1
is clearly smooth, but this is guaranteed by our definition of H . Next we define an inverse 
g : Mϕ → M × S1 by setting



g([m, t]) = (H−1(m, t), [t]).
Again, g is smooth, and we must prove that it is well defined. Indeed, we have

g([m, 0]) = (H−1(m, 0), [0]) = (m, [0])
and

g([ϕ(m), 1]) = (H−1(ϕ(m), 1), [1]) = (ϕ−1(ϕ(m)), [1]) = (m, [1]).
But [m, [0]] = [m, [1]] in M × S1, so g is well-defined and is an inverse for f . ��
Remark 6.2 For reference, we make the simple observation that, for a diffeomorphism
ϕ ∈ Diff0(M), which is isotopic to the identity, the induced map on cohomology
ϕ∗ : H∗(M; Z) → H∗(M; Z) is the identity map.

The proposition suggests that, in order to obtain non-trivial examples of mapping tori,
one should consider diffeomorphisms that do not belong to the identity component of the
group of diffeomorphisms. It is then interesting to look at the groups Diff(M)/Diff0(M) or
Diff+(M)/Diff0(M), the latter in case one is interested in orientation-preserving diffeomor-
phisms.

Remark 6.3 In case M is a compact complex manifold, one can replace Diff(M) by the
group Aut(M) of holomorphic diffeomorphisms of M . Further, when M is compact Kähler,
one may consider the subgroup Autω(M) of elements which preserve the Kähler class (but
not necessarily the Kähler form). In each case, the corresponding mapping torus is trivial if
and only if the automorphism belongs to the identity component.

Now let’s consider the structure group of a mapping torus. Let M be a smooth manifold
and let ϕ : M → M be a diffeomorphism. Then the mapping torus Mϕ is a fibre bundle over
S1 with fibre M . In general, the structure group of a fibre bundle F → E → B is a subgroup
G of the homeomorphism group of F such that the transition functions of the bundle take
values in G.

Proposition 6.4 The structure group G of a mapping torus Mϕ is the cyclic group 〈ϕ〉 ⊂
Diff(M).

Sketch of Proof (see [18, Section 18]) The mapping torus Mϕ is a fibre bundle over S1 with
fiber the manifold M . We can cover S1 by two open sets U, V such that U ∩ V = {U0, U1}
consists of two disjoint open sets. Then Mϕ

∣∣
U = M × U and Mϕ

∣∣
V = M × V , and the

mapping torus is trivial over U and V . To describe Mϕ it is sufficient to give the transition
function g : U ∩ V → Diff(M). We can assume that g is the identity on U0 and g = ϕ on
U1. Then ϕ generates G. ��
Remark 6.5 Another way to describe the mapping torus of a diffeomorphism ϕ : M → M
is as the quotient of M × R by the group Z acting on M × R by

(m, (p, t)) �→ (ϕm(p), t − m).

It is then clear that the structure group of Mϕ is isomorphic to the group generated by ϕ.

Let (K , h, ω)be a compact Kähler manifold, where h denotes the Hermitian metric andω is
the Kähler form. A Hermitian isometry is a holomorphic map ϕ : K → K such that ϕ∗h = h,
where h is the Hermitian metric of K . Note that ϕ preserves both the Riemannian metric and



the symplectic form associated to h. Let Isom(K , h) ⊆ Aut(K ) denote the group of Hermitian
isometries of K and let ψ ∈ Isom(K , h). Then ψ is a holomorphic diffeomorphism of K
which preserves the Hermitian metric h. In particular, ψ∗ω = ω. Li’s theorem [13] says that
the mapping torus of ψ , denoted by Kψ is a compact co-Kähler manifold and, conversely,
compact co-Kähler manifolds are always such mapping tori. We say that a mapping torus
is a Kähler mapping torus if it is a mapping torus Kϕ of a Hermitian isometry ϕ : K → K
of a Kähler manifold K . If Kψ is non-trivial, then according to Proposition 6.1, ψ defines a
non-zero element in

H := Isom(K , h)/Isom0(K , h).

Our results prove that, up to a finite covering, Kψ
∼= K ×Zm S1 (Theorem 3.4), and the Zm

action is by translations on the S1 factor. Furthermore, we get a fibre bundle Kψ → S1 with
structure group the finite group Zm . Notice that when we display Kψ as a fibre bundle with
fibre K , the structure group of this bundle is 〈ψ〉, the cyclic group generated by ψ in H . We
then have the following theorem.

Theorem 6.6 If K is a Kähler manifold, then all elements of the group H have finite order.

Proof Pick an element ψ ∈ H and form the mapping torus Kψ . The discussion above proves
that ψ has finite order in H . Since ψ is arbitrary, the result follows. ��

Indeed, Lieberman [14] proves a much more general result, but in a much harder way.

Theorem 6.7 ([14, Proposition 2.2]) Let K be a Kähler manifold and let Autω(K ) denote
the group of automorphisms of K preserving a Kähler class (but not necessarily the Kähler
form). Let Aut0(K ) be the identity component. Then the quotient

Autω(K )/Aut0(K )

is a finite group.

Remark 6.8 In [13], Li also shows that the almost cosymplectic manifolds of [4] arise as
symplectic mapping tori. That is, if M is almost cosymplectic in the terminology of [4], then
there is a symplectic manifold S and a symplectomorphism ϕ : S → S such that M ∼= Sϕ . Li
calls these manifolds co-symplectic. By the discussion in Sect. 3 and the results above, we
see that there is a version of Theorem 3.4 for Li’s co-symplectic manifolds when the defining
symplectomorphism ϕ is of finite order in

Symp(S)/Symp0(S).

Thus, knowledge about when this can happen would be very interesting.

In general, one can not expect a non-zero element in Symp(S)/Symp0(S) to have finite
order. As an example, consider the torus T 2 with the standard symplectic structure and let
ϕ : T 2 → T 2 be the diffeomorphism covered by the linear transformation A : R2 → R2 with
matrix

A =
(

2 1
1 1

)

Then ϕ is an area-preserving diffeomorphism of T 2, hence a symplectomorphism. Notice
that the action of ϕ on H1(T 2; R), which is represented by the matrix A, is nontrivial. Hence
the symplectic mapping torus T 2

ϕ is not diffeomorphic to T 3 = T 2 × S1; according to

Proposition 6.1, ϕ is non-zero in Symp(T 2)/Symp0(T 2). Clearly ϕ has infinite order.



7 Examples

The first example of a compact co-Kähler manifold that is not homeomorphic to the global
product of a Kähler manifold and S1 was given in [4]. This example was generalized to
every odd dimension in [15]. Each of these examples is a solvmanifold (i.e. a compact
quotient of a solvable Lie group by a lattice) and can be described as a mapping torus of a
suitable Hermitian isometry of the torus T 2n . Although the examples were constructed in
every dimension 2n + 1, it was not clear whether they could be the product of some compact
Kähler manifold of dimension 2n and a circle. Of course, from what we have said above,
they are products up to a finite cover.

In this section we analyze these examples from both Li’s mapping torus and our finite
cover splitting points of view. We also show that these examples are never the global product
of a compact manifold and a circle, thus producing, in every odd dimension, examples of
compact co-Kähler manifolds that are not products.

Let us begin with the CDM example. Consider the matrix

A =
(

0 1
−1 0

)

in GL(Z, 2) and note that it defines a Kähler isometry of T 2 which we can write as A(x, y) =
(y,−x). Li’s approach says to form the mapping torus

T 2
A = T 2 × [0, 1]

(x, y, 0) ∼ (A(x, y), 1)
,

and then T 2
A is a co-Kähler manifold with associated fibre bundle T 2 → T 2

A → S1 given by
the projection

[x, y, t] �→ [t].
Now, A has order 4, so the picture is quite simple: namely, a central circle winds around the
mapping torus 4 times before closing up. Therefore, we see that we have a circle action on
T 2

A given by

S1 × T 2
A → T 2

A, ([s], [x, y, t]) �→ [x, y, t + 4s].
When the orbit map S1 → T 2

A, [s] �→ [x0, y0, 0] is composed with the projection map
T 2

A → S1, we get

S1 → S1, [s] �→ [4s]
which induces multiplication by 4 on H1(S1; Z). Hence, the S1-action is homologically
injective and Theorem 3.4 then gives a finite cover of T 2

A of the form T 2 × S1. Hence, T 2
A is

finitely covered by a torus. Now let’s look at the Betti numbers of T 2
A using Theorem 4.3.

The diffeomorphism A acts on H1(T 2; R) by the matrix P∗ = At , P∗(x, y) = (−y, x),
and on H 2(T 2; R) by the identity; hence the Kähler class is invariant (as we know in general).
Otherwise, there are no invariant classes in degrees greater than zero. To see this, suppose
P∗(ax + by) = −ay + bx = ax + by. Thus, a = b and a = −b, so a = b = 0. Now we
have the following.

• b1(T 2
A) = b1(T 2) + 1 = 0 + 1 = 1;

• b2(T 2
A) = b2(T 2) + b1(T 2) = 1 + 0 = 1;

• b3(T 2
A) = b3(T 2) + b2(T 2) = 0 + 1 = 1.



As noted in [4], this shows that T 2
A is not a global product. For, as an orientable 3-manifold

with first Betti number 1, there is no other choice but S1 × S2 and this is ruled out since the
fibre bundle T 2 → T 2

A → S1 shows that T 2
A is aspherical.

The CDM example also fits in the scope of Theorem 5.1. To see this, we compute the
fundamental group of T 2

A explicitly. The fibre bundle T 2 → T 2
A → S1 shows that we have a

short exact sequence of groups

0 → Z2 →  → Z → 0,

where  = π1(T 2
A). Since Z is free,  is a semidirect product Z2 �φ Z. The action of Z on

Z2 is given by the group homomorphism φ : Z → SL(2, Z) sending 1 ∈ Z to φ(1) = A ∈
SL(2, Z). As we remarked above, T 2

A is covered 4 : 1 by a torus T 3 and this covering gives
a map ψ : Z3 → . The map ψ sends (m, n, p) ∈ Z3 to (m, n, 4p) ∈ , hence the quotient
/Z3 is isomorphic to Z4.

For any n ≥ 1 we give an example of a compact co-Kähler manifold of dimension (2n+1)

which is not homeomorphic to the global product of a compact manifold of dimension 2n
and a circle. This example was constructed by Marrero and Padrón (see [15], example B1).
We describe it according to our mapping torus and splitting approach.

Let ζ = e2π i/6 and consider the lattice � ⊂ C spanned by 1 and ζ . Set T 2 = C/�

and T 2n = T 2 × · · · × T 2︸ ︷︷ ︸
n times

. Then T 2n is a compact Kähler manifold, with Kähler struc-

ture inherited by Cn . Let B : T 2n → T 2n be the map covered by the linear transformation
B̃ : Cn → Cn, B̃ = diag(ζ, . . . , ζ ). Then B is a Hermitian isometry of the torus T 2n . Let T 2n

B
be the mapping torus of B; then T 2n

B is a co-Kähler manifold and the associated fibre bundle
T 2n → T 2n

B → S1 is given by the projection [p, t] �→ t , where p ∈ T 2n . The Hermitian
isometry B has order 6, so we obtain a circle action on T 2n

B given by

S1 × T 2n
B → T 2n

B , ([s], [p, t]) �→ ([p, t + 6s]).
Composing the orbit map with the projection T 2n

B → S1, we obtain S1 → S1, s �→ 6s,
which induces multiplication by 6 in cohomology. The S1-action is homologically injective,
and Theorem 3.4 gives us a finite cover of T 2n

B of the form T 2n × S1. Hence T 2n
B is finitely

covered by a torus.
The fundamental group of T 2n

B is the semidirect product  = �n �φ Z, where the action of
Z on �n is given by the group homomorphism φ : Z → SL(�n), φ(1) = B. The commutator
subgroup [,] is �n , so in particular,  is a solvable group. The first homology of T 2n

B is

H1(T 2n
B ; Z) ∼= 

[,]
∼= Z,

so b1(T 2n
B ) = 1. Now assume that T 2n

B is the product of a compact manifold K and a circle,
T 2n

B
∼= K × S1. The fundamental group of K is solvable, being a subgroup of . Applying

the Künneth formula with integer coefficients to T 2n
B = K × S1, we see that H1(K ; Z) = 0.

Hence, π1(K ) ∼= [π1(K ), π1(K )], but this is not possible because π1(K ) is solvable. We
conclude that TB

2n is not homeomorphic to the product of a compact, 2n-dimensional manifold 
and a circle.
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