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On Privacy of Encrypted  
Speech Communications  

Ye Zhu, Member, IEEE, Yuanchao Lu, and Anil Vikram 

Abstract—Silence suppression, an essential feature of speech communications over the Internet, saves bandwidth by disabling voice 
packet transmissions when silence is detected. However, silence suppression enables an adversary to recover talk patterns from 
packet timing. In this paper, we investigate privacy leakage through the silence suppression feature. More specifically, we propose a 
new class of traffic analysis attacks to encrypted speech communications with the goal of detecting speakers of encrypted speech 
communications. These attacks are based on packet timing information only and the attacks can detect speakers of speech 
communications made with different codecs. We evaluate the proposed attacks with extensive experiments over different type of 
networks including commercial anonymity networks and campus networks. The experiments show that the proposed traffic analysis 
attacks can detect speakers of encrypted speech communications with high accuracy based on traces of 15 minutes long on average. 

Index Terms—Traffic analysis, speaker detection, RTP. 

Ç 

1 INTRODUCTION 

this paper, we investigate privacy leakage through communications. The procedure of the proposed attacks is IN 

silence suppression, an essential feature for speech as follows: First an adversary collects traces of encrypted 
communications over the Internet. Speech communications speech communications made by a speaker, say Alice. The 
over the Internet are needed in a wide variety of Internet adversary then extracts application-level features of Alice’s 
applications such as audiocast [1], e-learning, Internet radio, speech communications and trains a Hidden Markov Model 
online chat, online gaming, and VoIP telephony. To save (HMM) with the extracted features. To test whether one 
bandwidth used for speech communications, the silence speech communication of interest is made by Alice, the 
suppression technique is designed to disable transmissions adversary can extract features from the trace of interest and 
of speech packets when silence is detected. calculate the likelihood of the speech communication being 

The increasing popularity of speech communications made by Alice. The proposed attacks can detect speakers of 
over the Internet has brought a lot of attention and concern encrypted speech communications with high probabilities. 
over security and privacy issues of these speech commu- In comparison with traditional traffic analysis attacks, the 
nications. To protect confidentiality of speech communica­ proposed traffic analysis attacks are different in the 
tions, tools and protocols such as Zfone [2], a tool capable to following aspects: 1) The proposed traffic analysis attacks 
encrypt voice packets, and SRTP [3], the secure version of do not require simultaneous accesses to one traffic flow of 
the realtime transport protocol (RTP), are developed or interest at both sides. 2) The attacks can detect speakers of 
implemented. To further protect privacy of speech commu­ encrypted speech communications made with different 
nications, advanced users are using anonymity networks to 

codecs. 
anonymize speech communications. For this purpose, low-

The major difference between the new attacks and 
latency anonymity networks such as Tor [4] and JAP [5] can 

previous traffic analysis attacks on speech communications 
be used. One of the common anonymizing techniques used 

over the Internet is: Previous traffic analysis attacks are
in anonymity networks is rerouting which usually routes 

based on packet size information and the new attacks
packets through a randomly selected and usually longer 

are based on packet timing information only. In this paper, 
path instead of the shortest path. 

we assume packet size information is not available for traffic In this paper, we propose a class of passive traffic 
analysis attacks because 1) voice packets generated byanalysis attacks to compromise privacy of encrypted speech 
constant bit rate (CBR) codecs are of the same size, 
2) encryption can pad voice packets to the same size during 

.	 Y. Zhu is with the Department of Electrical and Computer Engineering, the encryption process, and 3) packets in anonymity net-
Cleveland State University, 2121 Euclid Ave, SH 433, Cleveland, OH works such as Tor [4] are of the same size to prevent traffic 
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nications. The attacks are passive and based on the 
HMM, a powerful tool to model temporal data. We 
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traffic analysis attacks. 
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TABLE 1  
Major Parameters of G.729B Silence Detector  

.	 We evaluate the proposed traffic analysis attacks 
through extensive experiments over the Internet and 
commercial anonymity networks. For most of speech 
communications made in the experiments, the two 
communication parties are at least 20 hops away and 
the end-to-end delay is at least 80 ms. Our experi­
ments show that the traffic analysis attacks are able 
to detect speakers of encrypted speech communica­
tions with high probabilities based on only a small 
amount of encrypted traffic. 

.	 We propose intersection attacks to improve the 
effectiveness of the proposed traffic analysis attacks. 

.	 We discuss possible countermeasures to mitigate the 
proposed traffic analysis attacks and analyze the 
effect of the countermeasures on the quality of speech 
communications. 

The rest of the paper is organized as following: Section 2 
reviews speech coding and silence suppression in speech 
communications. In Section 3, we formally define the 
problem. The details of the proposed traffic analysis attacks 
are described in Section 4. In Section 5, we evaluate the 
effectiveness of the proposed traffic analysis attacks with 
experiments on commercial anonymity networks. Section 6 
describes speaker detection without the candidate pools. In 
Section 7, we discuss possible countermeasures to mitigate 
the proposed traffic analysis attacks. Section 8 reviews the 
related work. We conclude the paper in Section 9. 

2 BACKGROUND 

In this section, we review the key principles in speech 
coding and the silence suppression technique related to 
both speech communications and the proposed traffic 
analysis attacks. 

2.1 Speech Coding 
In speech communications, an analog voice signal is first 
converted into a voice data stream by a chosen codec. 
Typically in this step, compression is used to reduce the 
data rate. The voice data stream is then packetized in 
small units of typically tens of milliseconds of voice, 
and encapsulated in a packet stream over the Internet. 
In this paper, we focus on constant bit rate codecs since 
most codecs used in current speech communications are 
CBR codecs.1 

2.2 Silence Suppression 
Silence suppression, also called voice activity detection 
(VAD), is designed to further save bandwidth. The main 

1. Variable bit rate (VBR) codecs are primarily used for coding audio files 
instead of real-time speech communications [6], [7]. Recently, there are 
interests in using VBR codec such as Speex [8] for speech communications. 
But majority of existing Internet applications uses CBR codecs for speech 
communications. We believe the proposed traffic analysis attacks can also 
be launched against speech communications using VBR codecs since silence 
suppression is a general feature of speech codecs. 

idea of the silence suppression technique is to disable voice 
packet transmissions when silence is detected. To prevent 
the receiving end of a speech communication from suspect­
ing that the speech communication stops suddenly, comfort 
noise is generated at the receiving end. Silence suppression 
is a general feature supported in codecs, speech commu­
nication software, and protocols such as RTP. 

A silence detector makes voice-activity decisions based 
on the voice frame energy, equivalent to average voice 
sample energy of a voice packet. If the frame energy is below 
a threshold, the voice detector declares silence. Traditional 
silence detectors [7] use fixed energy thresholds. Because of 
the changing nature of background noise, adaptive energy 
thresholds are used in modern silence detectors such as 
NeVoT SD [9] and G.729B [10]. The major parameters of the 
G.729B silence detector, one of the most popular silence 
detectors, are listed in Table 1. 

Hangover techniques are used in silence detectors to 
avoid sudden end-clipping of speeches. During hangover 
time, voice packets are still transmitted even when the frame 
energy is below the energy threshold. Traditional silence 
detectors use fixed-length hangover time. For modern silence 
detectors such as G.729B, the length of hangover time 
dynamically changes according to the energy of previous 
frames and noise. 

Fig. 1 shows an example of the silence suppression. 
Fig. 1a shows the waveform of a sheriff’s voice signal 
extracted from a video published at cnn.com [11]. Fig. 1b 
shows the packet train generated by feeding the voice signal 
to X-Lite [12], a popular speech communication tool. From 
Fig. 1, we can easily observe the correspondence between 
the silence periods in the voice signal and the gaps in the 
packet train. The length of a silence period is different from 
the length of the corresponding gap in the packet train 
because of the hangover technique. 

The proposed traffic analysis attacks exploit the silence 
suppression technique. Different speakers have different 
talk patterns in terms of talk spurts and silence gaps. For 

Fig. 1. An example of silence suppression. 



example, some speakers speak very fast with only a couple 
of short silence gaps while some speak with long silence 
gaps. As shown in Fig. 1, an eavesdropper can learn a 
speaker’s talk pattern from the packet timing. Based on talk 
patterns learned from packet timing, the proposed traffic 
analysis attacks can detect speakers of encrypted speech 
communications with high accuracy. 

3 PROBLEM DEFINITION 

In this paper, we are interested in analyzing the traffic of 

encrypted speech communications through anonymity net­

works. We focus on detecting speakers of encrypted speech 

communications by analyzing talk patterns, the application-

level patterns recovered from network traffic. 

Speaker detection aims to detect the speaker of one specific 

encrypted speech communication such as the presenter of a 

presentation through audiocast or the instructor of an 

e-learning course. For simplification, we assume that the 

speaker of interest is Alice. To launch speaker detection 

attacks, the adversary collects traces of Alice’s previous 

encrypted speech communications in advance so that he or 

she can detect whether Alice is the speaker in one specific 

encrypted speech communication by comparing the trace of 

the specific speech communication with the traces of Alice’s 

previous speech communications. 

In this paper, we assume: 1) The traces used in detection 

can be collected at different time and in different network 

environments. 2) Speech communications of interest can be 

possibly made with different codecs. 

3.1 Network Model 
We assume Alice’s speech communications are encrypted 
with one of the secure versions of the RTP protocol such as 
SRTP [3] or ZRTP used in Zfone [2] to protect confidenti­
ality of her speech communications. 

To better protect privacy of her speech communications, 
we assume Alice routes her encrypted speech communica­
tions through anonymity networks. For better voice quality, 
Alice can use low-latency anonymity networks2 such as Tor 
[4] and JAP [5]. 

3.2 Threat Model 
We focus on passive attacks in this paper. In other words, 
the attacks launched by the adversary will not disturb 
existing network traffic. In comparison with active attacks, 
the proposed attacks are harder to be detected. 

We assume that the adversary can access the links 

connected to the callers to collect traces used for training. 

This assumption is widely used in traffic analysis attacks 

such as attacks on anonymity networks and tracing VoIP 

calls [13], [14], [17], [18], [15]. The threat model is weaker than 

the threaten models defined for traditional privacy-related 

traffic analysis attacks: The threat model does not require 

simultaneous access to the links connected to participants of 

speech communications. Instead, we assume the adversary 

2. Despite of the existing traffic analysis attacks [13], [14], [15], [16], low-
latency anonymity networks can still effectively protect communication 
confidentiality and anonymity. 

can collect Alice’s speech communication traces in advance 

and use these collected traces to detect whether Alice is the 

speaker of the speech communication of interest. 

Our model is similar as the model for identifying a 

human being by fingerprints: Fingerprints of human beings 

are collected in advance by various means such as collecting 

finger prints during the driver license applications. To 

identify a specific person, the fingerprint of interest such as 

a fingerprint in a crime scene will be compared against the 

person’s fingerprints collected in advance. 
As described in Section 1, we assume the packet size 

information is not available for traffic analysis because of 
the CBR codecs and the packet encryption. Since packet 
encryption also prevents access to packet content by an 
adversary, only packet timing information is available to an 
adversary to launch privacy attacks. 

3.3 Formal Definition 
The goal of the proposed traffic analysis attacks is to identify 

Alice’s speech communication trace from a pool of 

candidate traces including the trace of Alice’s speech 

communication. We define the pool size as the number of 

candidate traces in the pool.3 The performance of the 

speaker identification can be evaluated with detection rate, 

false positive rate, and false negative rate. We define the 

detection rate as the ratio of the number of successful 

detections to the number of attempts. One detection is 

defined as successful if Alice’s trace is correctly identified 

from the pool and we defined attempt as one trial of 

the identification. The false negative rate is defined as the 

proportion of Alice’s speech communications that are 

detected as speech communications made by other speakers. 

The false positive rate is defined as the proportion of speech 

communications made by other speakers that are detected 

as Alice’s speech communications. 

4 DETECTING SPEAKERS OF VOIP CALLS 

In this section, we describe the traffic analysis attacks to 

detect speakers of encrypted speech communications. We 

begin the section with an overview of the proposed traffic 

analysis attacks and then proceed with the details of each 

step in the attacks. 

4.1 Overview 
The proposed traffic analysis attacks are based on packet 

timing information only. As described in Section 2.2, the 

silence suppression technique enables adversaries to re­

cover talk patterns in terms of talk spurts and silence gaps 

from packet timing. Adversaries can create a Hidden 

Markov Model to model Alice’s talk pattern recovered 

from her encrypted speech communications. When adver­

saries want to determine which trace of encrypted speech 

communications in a pool of candidate traces is made by 

Alice, adversaries can check talk patterns recovered from 

the candidate traces against Alice’s model. 

3. The model without the assumption of the pool and the corresponding 
performance evaluation are described in Section 6. 



Fig. 2. Steps of the proposed attack. 

The proposed attacks can be divided into two phases: the 
training phase and the detection phase as shown in Fig. 2. 
The two steps in the training phase are feature extraction 
and HMM training. The detection phase consists of three 
steps: feature extraction, speaker detection, and intersection 
attack. The last step, the intersection attack, is optional. We 
describe the details of each step below. 

4.2 Feature Extraction 
The input and the output of the feature extraction step are 
raw traces of encrypted speech communications and feature 
vectors, respectively. The feature vector used in the 
proposed attacks is shown below 

  
ts1 ts2    tsn ; 
sg1 sg2    sgn

where tsi and sgj denote the length of the ith talk spurt and 
the jth silent gap, respectively, and n is the length of a 
feature vector. 

Talk spurts and silent gaps are differentiated by a silence 
threshold Tsilence : If an interpacket time (IPT) is larger 
than the threshold, the IPT is declared as a silence gap. 
Otherwise the IPT is declared as a part of one talk spurt. 

Obviously the threshold Tsilence is critical to the overall 
detection performance. Our initial experiments focus on 
the suitable range of the threshold for detection: We code 
voice signals with different codecs and collect generated 
voice packets. Different values of the threshold Tsilence are 
used to determine silence gaps. Actual silence gaps can be 
found by checking the marker bits in RTP packets which 
indicate the beginnings of talk spurts.4 We evaluate a value 
of the threshold by two metrics: false positive rate and 
false negative rate. The false positive rate of the silence test is 
the fraction of talk spurts that are erroneously declared as 
silence gaps. The false negative rate of the silence test is the 
fraction of silences gaps that are erroneously declared as 
talk spurts. The experiment results with different codecs5 

are shown in Fig. 3. 
We can observe that for a wide range of the threshold 

Tsilence , both the false positive rate and the false negative 
rate are low: When Tsilence is larger than 70 ms, the false 
positive rates are below 10 percent for all the codecs. The 
false negative rates are below 20 percent when Tsilence is less 
than 100 ms. The range of the threshold Tsilence suitable for 
silence tests is wide because of the big difference between 

4. Only in our initial experiments, voice packets are not encrypted so that 
we can determine actual silence gaps from marker bits and then find the 
suitable range of the threshold for detection. For all the other experiments, 
voice packets are encrypted and the proposed traffic analysis attacks have 
no access to packet headers such as the marker bit in the RTP protocol. 

5. Details of these codecs can be found in Table 2. 

Fig. 3. Experiment results on the Threshold Tsilence . 

IPTs of silent gaps and IPTs during talk spurts: Silence gaps 
are in order of seconds. The length of the IPTs during talk 
spurts is usually close to the packetization delay of 20 or 
30 ms for most codecs. 

We can also observe that increasing the threshold Tsilence 
decreases the false positive rate and increases the false 
negative rate. The changes in these two rates are again 
because the IPTs of silence gaps are longer than the IPTs 
during talk spurts. 

A big challenge in feature extraction is to filter out the 
noise caused by the random network delay in the silence 
tests since the random network delay can cause incon­
sistency in the silence tests based on voice packets collected 
from different links on the path of a speech communication. 
For example, an IPT during a talk spurt at the sending side 
may be declared as a silence gap at the receiving side just 
because the random network delays can possibly cause the 
IPT to be larger than the threshold Tsilence . Obviously, the 
inconsistency in silence tests will in turn degrade the 
performance of the speaker detection based on voice 
packets collected from different links on the path. 

The main idea of filtering the noise caused by random 

network delays in the silence tests is to determine a silence 

gap based on N successive IPTs instead of one IPT. The 

silence test with the filtering technique works as follows: If 

one IPT is larger than the threshold Tsilence , we declare a 

new silence gap only when none of the following 
Tsilenceb c - 16 IPTs are shorter than Tspurt , the thresh­packetization delay

old used to filter out long IPTs caused by the network delay. 

The rationale behind the new silence test method is as 

follows: If an IPT is erroneously declared as a silence gap 

because the random network delay increases the length of 

the IPT, then the following IPTs must likely be shorter than 

the normal IPTs during talk spurts. 
We compare the new silence test with the original silence 

test through empirical experiments: The two communica­
tion parties in a speech communication through the Internet 
are at least 20 hops away from each other. In this set of 
experiments, we evaluate the choices of the parameter Tspurt 
with the match rate Rmatch 

Rmatch ¼ fnumber of gaps found at both the sending side 

and the receiving sideg=fnumber of gaps found 

at the sending sideg: 
ð1Þ 

6. We use bc to denote the floor function. 

VernM
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Fig. 4. Match rate versus Threshold Tspurt (1law Codec). 

Ideally, the match rate Rmatch should be 1 meaning that 

silence gaps detected at the sending side can match silence 

gaps detected at the receiving side exactly. The experiment 

results are shown in Fig. 4. 
Fig. 4 shows that the filtering technique can significantly 

increase the match rate Rmatch : The original silence test can 

only achieve a match rate of 0.21. The silence test with the 

filtering technique can achieve a match rate of 0.99 when 

Tspurt is between 3 and 20 ms. The match rate is low when 

Tspurt is less than 0:3 ms  because the threshold Tspurt is too 

low to filter out large IPTs caused by network delays. The 

match rate is also low when Tspurt is larger than 20 ms. It is  

because normal IPTs during talk spurts are of 20 ms for the 

1law codec and a threshold Tspurt larger than 20 ms filters 

out most of actual silence gaps. In following experiments, 

we set the threshold Tspurt to be 10 ms. 
Feature vectors generated in this step are used for 

training or detection in future steps. 

4.3 HMM Training 
The input and the output of this step are feature vectors and 

trained HMMs, respectively. 
The Markov Model is a tool to model a stochastic process 

with the Markov property that the transition from the 

current state to the next state depends only on the current 

state and not on the past states. In a Hidden Markov Model, 

the state is not directly visible, but outputs influenced by the 

state are observed. Each state has a probability distribution 

over the possible output. Therefore, the sequence of outputs 

generated by an HMM gives some information about the 

sequence of states. The HMM is a well-known tool to model 

temporal data and it has been successfully used in temporal 

pattern recognition such as speech recognition [19], hand­

writing recognition [20], and gesture recognition [21]. In the 

proposed attacks, HMMs are trained to model talk patterns 

used for the speaker detection. 
In our paper, we consider each talk period including 

one talk spurt and the following silence gap as a hidden 

(invisible) state. The output observation from one state is 

the length of a talk spurt and the length of the following 

silence gap. Since each state corresponds to a talk period, a 

trace of one speech communication is a process going 

through these hidden states. So we use HMMs to model 

talk patterns. With the use of HMMs in our modeling, we 

assume the Markov property holds. This assumption is 

widely used in speech and language modeling. Even when 

Fig. 5. HMM. 

the assumption does not hold strictly, the extended HMM 

can still work well [22]. 
The HMM used in traffic analysis attacks is the modified 

left-right HMM [22] as shown in Fig. 5. It is based on left-

right models because of the nonergodic nature of speech 

signals [22], i.e., the attribute of signals whose properties 

change over time. The fundamental property of all left-

right HMMs is that the state transition coefficient from the 

ith state to the jth state (denoted as aij) is zero, when j is 

less than i. Additional constraints are placed on the state 

transitions in left-right models to make sure that large 

changes in state indices do not occur, i.e., aij ¼ 0, when 

j > i  þ6. For the well-known banded left-right model [22] 

and Bakis model [23], 6 is 1 and 2, respectively. 
We extended classical left-right models to allow transi­

tions from the ith state to the ðiþ 3Þth state, i.e., 6 ¼ 3, as  

shown in Fig. 5. Our modification on the left-right model is 

because of the possible false negative errors made in the 

feature extraction step and the adaptive silence thresholds 

used in silence detectors as described in Section 2: 
False negative errors are made when some silent gaps are 

not detected in feature extraction. The false negative errors 

can be caused by a large threshold Tsilence or the hangover 

time as described in Section 2. The hangover time reduces 

the length of silence gaps recovered from the packet timing 

since speech packets are still being sent during the beginning 

and the end of a silence duration to avoid end clipping of 

speeches. The reduction can cause false negative errors in 

silence tests. 
Adaptive silence thresholds used in silence detectors 

can cause different silence detection results for the same 

speech in different speech communications. For modern 

codecs, the threshold used in a silence detector dynamically 

changes to adapt to the changes in background noise. 

Because of the dynamically changing threshold, one silent 

gap in the same speech can be detected as silence in one 

speech communication or as a part of a talk spurt in another 

speech communication by the same codec. Although the 

inconsistent detection results because of the adaptive 

silence threshold are not very often observed, it can cause 

low speaker detection performance. 
To take into account the possible false negative errors 

made in the feature extraction and the possible inconsis­

tency of silence detectors, we allow state transitions from 

the ith state to the (iþ 3)th state because up to three actual 

neighboring talk periods can be detected as one talk period 

in our analysis of speech communication traces. Our 

experiments with different left-right models also show that 

the modified left-right model can achieve better detection 

performance than the other left-right models. In the 



modified HMM, the number of states are heuristically set to 
be 10 according to the length of feature vectors.7 

We use Gaussian distributions to model the observation 
distributions. The mean and variance of the Gaussian 
distributions are estimated from the training data. 

In this step, a speaker-specific model can be obtained by 
training the HMM with traces of Alice’s speech commu­
nications. The trained HMMs are used in the following 
speaker detection step. 

4.4 Speaker Detection 
The inputs to this step are the Alice’s HMM trained in the 
previous step and the feature vectors generated from a 
pool of raw speech communication traces of interest. The 
output of this step is the intermediate detection result, i.e., 
Ktop speakers from the candidate pool with talk patterns 
closest to Alice’s talk pattern. 

The detection step can be divided into two phases: 
1) First, the likelihood of each feature vector is calculated 
with the trained HMM. 2) The trace with the highest 
likelihood is declared as Alice’s trace if the intersection 
step is not used. To improve the detection accuracy, the 
intermediate detection results can be fed into the optional 
intersection attack step. 

4.5 Intersection Attack 
The intersection step is designed to improve detection 
accuracy. The input to this step is the intermediate 
detection result from the previous step. The output is a 
final detection result. 

The main idea of the intersection attack step is similar as 
described in [24], [25], [26]: Instead of making a detection 
decision based on one trial, we can improve detection 
accuracy with a number of trials and the final detection 
result is determined by combining (or intersecting) the 
results from all trials. 

More specifically, for the proposed attacks, suppose it is 
possible to get m speech communication traces made by the 
same speaker, m trials can generate m intermediate 
detection results as described in Section 4.4. In other words, 
from each trial, the adversary can obtain Ktop traces with the 
Ktop highest likelihood values. The overall rank for each 
speaker is calculated by adding up the ranks in the m trials. 
The speaker with the highest rank is determined to be Alice. 
A tie can be broken by comparing the sum of the likelihood 
values in the m trials. 

In summary, the proposed traffic analysis attacks can be 
divided into two phases: the training phase and the 
detection phase. Since the attack is based on the talk 
patterns, the traffic analysis attacks are independent from 
codecs used in speech communications. In other words, it is 
possible to train HMMs with traces of speech communica­
tions made with one codec and then use the trained HMMs 
to detect speakers of speech communications made with 
another codec. We evaluate the proposed traffic analysis 
attacks with the empirical experiments described below. 

7. Following the principle of Occam’s razor, the number of states should 
be small enough to avoid overfitting and large enough to model the ergodic 
nature of speech communications. We get similar detection performance for 
different number of states when the number of states is larger than five. 
When the number of state is too large, the training of HMMs fails to 
converge to an optimal solution. 

Fig. 6. Experiment Setup. 

5 EMPIRICAL EVALUATION 

In this section, we evaluate the effectiveness of the proposed 

traffic analysis attacks with empirical experiments. 

5.1 Experiment Setup 
The experiment setup is as shown in Fig. 6. Speech packets 

are first directed to the anonymity network managed by 

findnot.com before arriving at the receiving side. We use 

the commercial anonymous communication services pro­

vided by findnot.com8 mainly because it is possible to select 

entry points into the anonymity network [28]. In our 

experiments, speech packets are directed through entry 

points in England, Germany, and United States as shown in 

Fig. 6. For these speech communications made through the 

anonymity networks, the end-to-end delay is at least 80 ms 

and the two communication parties are at least 20 hops 

away from each other. About a quarter of the speech 

communications are made through the campus network so 

that traces of speech communications over different type of 

networks are available for our experiments. 
The audio signals are extracted from videos hosted on 

Research Channels [29] and these audio signals can be 

downloaded from [30]. Traces used in both training and 

detection are 14.7 minutes long on average if not specified.9 

At least three different speeches are available for each 

speaker and the speeches are sent through four different 

network entry points.10 

We choose three popular and representative codecs of 

high, medium, and low bit rates for our experiments. More 

information about these three codecs is listed in Table 2. 
For better training, all the traces used in training are 

collected on the link connected to Alice’s computer. The 

traces used in the detection phase can be collected on any 

link in the path from the sending side to the receiving side. 

The timing of packets collected on the link connected to the 

receiving side is usually the noisiest due to the accumulated 

randomness of the network delay. If not specified, the traces 

used in the detection phase are all collected on the links 

connected to the receiving side. 

8. We did not use Tor [4] to anonymize speech communications because 
Tor has no direct support of anonymizing UDP packets and in general, 
speech communication packets are sent as UDP packets. Wang et al. [27] 
experimented on the anonymous communication services provided by 
find.com instead of Tor for the same reason. 

9. For fair comparison, traces used in experiments should contain the 
same number of talk periods. In other words, feature vectors generated 
from these traces should be of the same size. Because of the difference in the 
length of talk periods in different traces, traces used in experiments are of 
different length in minutes. 

10. The campus network entry point is one of the choices. 

http:find.com
http:points.10
http:findnot.com


TABLE 2  
Codec Information  

5.2 Metrics 
We use detection rate to measure the effectiveness of the 
proposed attacks. In this paper, the detection rate is defined 
as the ratio of the number of successful detections to the 
number of attempts. 

For speaker detection with traces generated by the same 
1codec, the detection rate for a random guess is about ,109 

because in each trial, there are around 109 candidate traces 
in the pool if the pool size is not specified. One of the traces 
in the pool is the “right” trace, i.e., Alice’s trace. In each trial 
of speaker detection, one trace of Alice’s speech is used as 
one of the candidate traces and Alice’s traces generated 
from Alice’s other speeches are used for training. 

If not explicitly specified, all detection rates reported in 
this section are averaged over experiments of all possible 
combinations of the training traces and the candidate traces. 
In all the experiments below, the training traces and the 
candidate traces are all collected from different speech 
communications. 

5.3 Threshold Tsilence 
This series of experiments are designed to test the effect of 
the parameter Tsilence , the threshold used in silence tests. 

Fig. 7 shows the speaker detection performance with 
different values of the threshold Tsilence . Each detection rate 
in Fig. 7 is obtained based on 120 trials with 109 traces in the 
candidate pool. The length of traces used in both training 
and detection is 14.7 minutes on average. 

From Fig. 7, we can observe: 1) The detection rate for 
speaker detection can reach 0.32, about 35-fold improve­
ment over a random guess, when the size of the candidate 
pool is 109. 2) In general, the detection rate increases when 
the threshold Tsilence increases. When Tsilence becomes large, 
the detection rate may drop simply because shorter feature 
vectors are used for training and detection. When Tsilence is 
larger than 0:512 s, feature vectors are too short for 
detection so that the HMM training cannot converge for 
certain traces. 3) The detection rate for candidate traces 
collected from the sending end is comparable with the 

detection rate for candidate traces collected from the 
receiving end. It is because the filtering technique used in 
the silence test can largely filter out noise caused by the 
random network delay at the receiving end. In the 
following experiments, we set Tsilence to be 0.412 seconds. 

5.4 Length of Training and Test Traces 
This set of experiments is designed to investigate the effect 
of the length of the training and the test traces on the 
detection performance. Since in general, training traces 
should be longer than test traces for better training, we 
vary the average length of the training traces from 5.4 to 
14.7 minutes and the average length of the test traces varies 
from 1.9 minutes to the average length of the training 
traces used in the same detection. 

From experiment results shown in Fig. 8, we can observe 
that even for five-minute-long training and test traces, the 
detection rate for the speaker detection can achieve 0.12, 
about 13-fold improvement over a random guess. Fig. 8 also 
shows that the detection rate increases with the length of 
training traces and the length of test traces. In the following 
experiments, we fix the average length of the training traces 
and the test traces to be 14.7 minutes. 

5.5 Pool Size 
In this set of experiments, we investigate the detection 
performance with different sizes of the candidate pool. 
From the experiment results shown in Fig. 9, we can 
observe that when the pool size increases, the detection rate 
slightly decreases for all the codecs. The reason is that it is 
harder to find the right one from a larger pool. But the ratio 
between the speaker detection rate and the detection rate of 
a random guess changes from 12 to 37, when the pool size 
changes from 28 to 109. It means that the traffic analysis 
attacks are more effective when the pool size is larger. We 
can also observe that for the 1law codec, one of the most 
frequently used codecs in speech communications, the 
detection rate can reach 0.42 when the pool size is 28, 
approximately 37-fold improvement over a random guess. 

Fig. 7. Speaker detection performance with different Threshold Tsilence . 



Fig. 8. Speaker detection performance with different length of training 
traces and test traces. 

5.6 Cross-Codec Detection 
In this set of experiments, the training traces and the traces 
to be detected are generated with different codecs. We 
believe this set of experiments is important because: 
1) Practically training traces and the traces to be detected 
can be collected from speech communications made with 
different codecs. 2) Since speech packets are encrypted and 
possibly padded to a fixed length, adversaries may not be 
able to differentiate speech communications made with 
different codecs. 

In this set of experiments, the threshold Tsilence is set to 
0.412 s. If the size of the candidate pool is not specified, then 
there are around 325 candidate traces in the pool including 
the “right” trace. So the detection rate for a random guess is 

1about . In each trial of the speaker detection, one trace of 325 

Alice’s speech is used as one of the candidate traces and 
Alice’s traces generated from Alice’s other speeches are 
used for training. If the length of the traces used for training 
and detection are not specified, then the length of these 
traces is 14.7 minutes on average. 

Fig. 10 shows the detection performance with different 
length of training traces and test traces. We can again 
observe that the detection rate increases with the length of 
training traces and test traces. The detection rate of the 
speaker detection with only five minutes of training traces 
and test traces can reach 0.12, about 40-fold improvement 
over a random guess. 

Fig. 11 shows the detection performance with different 
sizes of the candidate pool. We can observe that the 
detection rate decreases slightly with the increase of pool 
size. When the pool size is 82, the detection rate can reach 
0.60. By comparing the performance results shown in Fig. 9 
with the performance results shown in Fig. 11, we can also 
observe that even for larger pool sizes, the detection rate for 

Fig. 10. Cross-codec detection performance with different length of 
training trace and test traces. 

the cross-codec detection is higher than the single-codec 
detection. It is mainly because more traces are available for 
training HMMs in the cross-codec detection and only traces 
made by the same codec are available for training in the 
single-codec detection. 

5.7 Intersection Attack 
In this set of experiments, we evaluate the effectiveness of 
the intersection attacks on the cross-codec speaker detec­
tion. On average, there are 37 candidate speakers in each 

1trial. So the detection rate for a random guess is about .37 
Each candidate speaker has nine traces available for 
detection. So the final detection result is obtained by 
combining the intermediate detection results of nine trials. 
In this set of experiments, the length of traces used for 
training and detection is 14.7 minutes long on average and 
Tsilence ¼ 0:412 s. 

Table 3 shows the performance of the intersection attack: 
First, the intersection attacks greatly improve the perfor­
mance of the cross-codec speaker detection. Second, the 
detection rate can reach 0.625, about 25-fold improvement 
over a random guess. 

In summary, the proposed traffic analysis attacks can 
detect speakers of encrypted speech communications with 
high accuracy based on traces of about 15 minutes long 
on average. 

6 DETECTING SPEAKER WITHOUT CANDIDATE 
POOLS 

The initial threat model assumes that the “right” speaker is 
in the candidate pool. Although the assumption is valid for 
applications similar as identifying a human being with a 
group of fingerprints collected from a crime scene, we 
would like to investigate the detection performance with­
out the assumption of the candidate pool. Instead, we 

Fig. 9. Detection performance with different pool sizes. Fig. 11. Cross-codec detection performance with different pool sizes. 



TABLE 3 
Performance of Intersection Attacks Combined 

with Cross-Codec Speaker Detection 

assume that the adversary possesses traces of speech 
communications made by Alice and other speakers. We 
call these traces as labeled traces since these traces 
are collected in advance and the adversary knows the 
identities of the speakers. The goal of the adversary is to 
detect whether Alice is the speaker of a speech commu­
nication of interest. 

6.1 Detection Approach 
We modify the detection approach for the new traffic 
analysis attack as follows: 

1.	 The adversary splits the labeled traces of Alice’s 
speech communications into two halves. An HMM 
to model Alice’s talk pattern is established based on 
the first half of the traces. 

2.	 A detection threshold Tlik is determined based on 
the remaining labeled traces including the second 
half of the labeled traces of Alice’s speech commu­
nications. The adversary evaluates each of these 
traces against Alice’s model and calculates its like­
lihood. Given a threshold Tlik, the adversary calcu­
lates the false positive rate and the false negative rate 
on the remaining labeled traces as follows: a) False 
negative rate is defined as the proportion of Alice’s 
speech communications detected as speech commu­
nications made by other speakers, i.e., the proportion 
of Alice’s speech communications with likelihood 
values less than Tlik. b) False positive rate is defined 
as the proportion of speech communications made 
by other speakers detected as Alice’s speech com­
munications, i.e., the proportion of other speakers’ 
traces with likelihood values larger than Tlik . The 
threshold Tlik is selected so that the detection rates 
on the remaining labeled traces are maximized and 
both the false negative rate and the false positive rate 
on the remaining labeled traces are below a tolerance 
threshold Ttol. 

3.	 The adversary makes a detection decision by 
evaluating a given trace with Alice’s HMM. If the 
calculated likelihood is larger than Tlik, the given 
trace is declared as Alice’s trace. Otherwise, the trace 
is declared as a trace made by another speaker. 

6.2 Performance Evaluation 
We evaluate the detection performance with four metrics: 
detection rate, false negative rate, false positive rate, and 
percentage of traces which can be tested. The two metrics, 
the false negative rate and the false positive rate used in 
performance evaluation, are calculated on the test traces. 
The last metric, percentage of traces which can be tested, is 
needed because for certain group of labeled traces, it is 
impossible to find a threshold Tlik so that both the false 
negative rate and the false positive rate on the labeled traces 
are below a given tolerance Ttol . 

In this set of experiments, the average length of labeled 
traces and test traces are 14.7 minutes. In each detection 
attempt, there are 54 labeled traces and six Alice’s traces. 
The experiment results are averaged over 120 tests. 

Experiment results shown in Fig. 12 indicate that the 
detection rate decreases when the tolerance Ttol increases 
and in the mean time, the percentage of trace which can be 
tested increases. A smaller tolerance Ttol means better 
training, and in turn, better detection performance. A 
smaller tolerance Ttol also means stricter requirements so 
fewer traces can be tested. We can also observe that the 
detection rate can reach 0.89 when Ttol ¼ 0:1 and only 
one percent traces can be tested. When Ttol ¼ 1, i.e., all the 
traces can be tested, the detection rate is 0.63. 

7 DISCUSSION 

From the experiment results shown above, it is apparent 
that the proposed traffic analysis attacks can greatly 
compromise the privacy of encrypted speech communica­
tions. Countermeasures are needed for privacy protection. 
In this section, we discuss possible countermeasures which 
can protect privacy with only marginal effect on the quality 
of service (QoS) of speech communications. 

Simple countermeasures to the proposed traffic analysis 
attacks include padding speech traffic to constant rate traffic 
or randomly delaying speech packets to hide talk patterns. 
These simple approaches may render the proposed traffic 

Fig. 12. Detection performance. 



Fig. 13. Countermeasure: Camouflaging Alice’s speech communication. 

analysis attacks ineffective. But these approaches can cause 
significant waste of bandwidth or degrade the QoS of 
speech communications significantly. 

A better approach is to camouflage the timing of Alice’s 
speech packets according to another speaker’s trace. As 
shown in Fig. 13, Alice’s speech packets are first kept in a 
buffer. A token will be generated when it is time to send a 
packet according to Speaker X’s trace. The transmissions of 
Alice’s speech packets are controlled by these tokens. The 
transmission control in Fig. 13 functions as follows: 

1.	 Each packet transmission consumes a token. 
2.	 When a token is generated and the buffer is not 

empty, the transmission control will transmit the 
first packet in the buffer. 

3.	 When a token is generated and the buffer is empty, a 
dummy packet is transmitted by the transmission 
control. 

4.	 When Nbuf f packets are held in the buffer and no 
token is available, the first packet in the buffer will 
be transmitted. 

For the proposed countermeasure, dummy packets are 
sent only when necessary for camouflaging. The parameter 
Nbuf f is used to control the queuing delay. This parameter 
should be carefully chosen to balance the QoS of speech 
communications and the privacy protection to defeat traffic 
analysis attacks. 

The two metrics used in our initial analysis of the 
countermeasure are: 1) The detection rate defined in Sec­
tion 5.2: It is used to measure the performance of the privacy 
protection of speech communications. 2) Additional packet 
delay caused by the countermeasure: It measures the 
degradation of the QoS of speech communications. 

In this set of experiments, we use real speech commu­
nication traces collected from the experiment environment 
described in Section 5.1. 

Fig. 14 shows the performance of the countermeasure. 
The threshold Tsilence is set to 0.412 s in this series of 
experiments. Fig. 14a shows that the countermeasure can 
protect the privacy of speech communications since most 
detection rates are around the probability of a random 
guess. Fig. 14b shows the additional packet delays caused 
by the countermeasure. When Nbuf f is 50 and 100, the 
additional delays caused by the countermeasure are less 
than 36 and 68 ms with a probability larger than 0.95, 
respectively. So the countermeasure will not cause any 
significant change in the quality of speech communications 
since the additional delays for Nbuf f ¼ 50 and Nbuf f ¼ 100 
are still less than one third of and half of the delay budget 
for speech communications [31], respectively. The detection 
rates for small Nbuf f , such as Nbuf f ¼ 1 and Nbuf f ¼ 10, 
cannot be obtained from experiments, because Nbuf f is too 
small and no silence gaps can be found in the speech 
communication traces. 

8 RELATED WORK 

In this section, we review privacy-related traffic analysis 
attacks at the application level and describe the relation 
between the proposed attack based on packet timing and 
side channel attacks on a cryptosystem to recover a 
cryptographic key. 

The application-level traffic analysis attacks target at 
disclosing sensitive information at the application level. 
Song et al. [32] found that despite encryption and 
authentication mechanisms used in SSH, it is possible to 
obtain interkeystroke timing information from SSH packets 
since SSH sends out each keystroke in one separate packet 
during the interactive mode. Based on the interkeystroke 
timing information, they demonstrated that it was possible 
to reveal passwords used in SSH logins. Sun et al. [33] gave a 
quantitative analysis for identifying a webpage even if 
encryption and anonymizing proxies are used. They took 
advantage of the fact that a number of HTTP features such 
as the number and size of objects can be used as signatures 
to identify webpages with some accuracy. Unless the 
anonymizer addresses this, these signatures are visible to 
the adversary. Herrmann et al. [34] proposed to identify 
websites by applying common text mining techniques to the 
normalized frequency distribution of observable IP packet 
sizes. Lu et al. [35] showed the feasibility of website 
fingerprinting based on packet ordering information. 

Fig. 14. Performance of the possible countermeasure. 



Wright et al. [36] showed packet size information of VoIP 
packets can be used by an adversary to identify a spoken 
phrase in VoIP calls. In [37], it was shown that packet size 
information of VoIP packets could also be used to detect 
languages used in conversations even the conversations 
were encrypted. 

The application-level traffic analysis attacks can be 
classified into two categories based on features of the 
network traffic used in these attacks. Most existing 
application-level traffic analysis attacks are based on packet 
size information [33], [34], [36], [35]. Wright et al. [38] 
proposed approaches to counter traffic analysis attacks on 
VoIP calls and their approaches are based on modifying 
packet sizes. Only a few application-level traffic analysis 
attacks are based on packet timing only. One example is the 
keystroke detection based on SSH packets [32]. 

The traffic analysis attacks proposed in this paper are 
based on packet timing information only since 1) CBR 
codecs  generate voice packets  of  the same size  and  
2) encryption can easily pad voice packets to the same size 
during the encryption process. The countermeasure dis­
cussed in Section 7 protects communication privacy by 
modifying packet timing so that the original talk patterns 
can be camouflaged. 

Concurrently with our research, Backes et al. [39] 
proposed an approach to detect speakers by measuring 
distance between distributions of silence gaps and talk 
spurts and the comparable detection performance is 
reported in [39]. The major differences between our traffic 
analysis attacks and the attacks proposed by Backes et al. 
[39] are: 1) Our attacks can filter out the noise caused by the 
random network delay so that the traces to be detected can 
be collected even from the last hop of a speech commu­
nication path. Extensive experiments show that the attacks 
are effective even for international speech communications 
routed through the commercial anonymity networks. 2) Our 
attacks are effective to compromise privacy of encrypted 
speech communications with different codecs and we 
evaluate the attacks with the cross-codec detection experi­
ments. The capability of cross-codec detection is desired 
since encrypted speech communications prevent attackers 
from knowing codecs in use and different codecs are used 
in different network settings. 

Conceptually the timing-based traffic analysis attacks 
proposed in this paper are similar as classical timing attacks 
[40], [41], [42], [43] on cryptosystems, one type of side-
channel attacks. In Kocher’s seminal paper [40], it was 
shown that the timing information of private key operations 
can be used to compromise secret keys. In this paper, 
similarly we show that timing information of encrypted 
speech communication systems can be used to compromise 
privacy of encrypted speech communications. More speci­
fically, the proposed traffic analysis attacks use the packet 
timing information to detect speakers of encrypted speech 
communications. A slight difference between these two 
types of timing attacks is: Usually classical timing attacks on 
cryptosystems are implementation-specific, i.e., exploiting 
the implementation of a cipher instead of the internals of a 
cipher. The timing attacks proposed in this paper exploit 
silence suppression, an essential feature of speech commu­
nications to save bandwidth. 

9 CONCLUSIONS 

In this paper, we propose a class of passive traffic analysis 
attacks to compromise privacy of speech communications. 

The proposed attacks are based on application-level 
features extracted from speech communication traces. We 
evaluated the proposed attacks by extensive experiments 
over different types of networks including commercial 
anonymity networks and the campus network. The experi­
ments show that the proposed traffic analysis attacks can 
detect speakers of encrypted speech communications with 
high detection rates based on speech communication traces 
of 15 minutes long on average. 
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