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Prognostic role of cardiac power index
in ambulatory patients with advanced
heart failure
Justin L. Grodin, Wilfried Mullens, Matthias Dupont, Yuping Wu,

David O. Taylor, Randall C. Starling, and W. H. Wilson Tang

Background Cardiac pump function is often quantified by left ventricular ejection fraction by various imaging modalities. As the
heart is commonly conceptualized as a hydraulic pump, cardiac power describes the hydraulic function of the heart.
We aim to describe the prognostic value of resting cardiac power index (CPI) in ambulatory patients with advanced
heart failure.

Methods

and results

We calculated CPI in 495 sequential ambulatory patients with advanced heart failure who underwent invasive haemo-
dynamic assessment with longitudinal follow-up of adverse outcomes (all-cause mortality, cardiac transplantation, or
ventricular assist device placement). The median CPI was 0.44W/m2 (interquartile range 0.37, 0.52). Over a median
of 3.3 years, there were 117 deaths, 104 transplants, and 20 ventricular assist device placements in our cohort. Dimin-
ished CPI (<0.44W/m2) was associated with increased adverse outcomes [hazard ratio (HR) 2.4, 95% confidence
interval (CI) 1.8–3.1, P< 0.0001). The prognostic value of CPI remained significant after adjustment for age, gender,
pulmonary capillary wedge pressure, cardiac index, pulmonary vascular resistance, left ventricular ejection fraction,
and creatinine [HR 1.5, 95% CI 1.03–2.3, P= 0.04). Furthermore, CPI can risk stratify independently of peak oxygen
consumption (HR 2.2, 95% CI 1.4–3.4, P= 0.0003).

Conclusion Resting cardiac power index provides independent and incremental prediction in adverse outcomes beyond traditional
haemodynamic and cardio-renal risk factors.

Introduction

The heart is often conceptualized as a muscular hydraulic pump
with the ability to generate both flow (‘cardiac output’) and
pressure. In a purely haemodynamic sense, cardiac output (CO)
describes cardiovascular flow through a closed circuit. Cardiac
output encompasses not only intrinsic cardiac contractility, but also
a complex interplay with vascular compliance and resistance to
flow (impedance) in addition to intravascular volume and cardiac
filling pressures. The heart and blood vessels are better analogized
to a pump creating hydraulic energy and to the pipes that transmit

this energy. In the cardiovascular system, during asystole, blood
flow eventually slows to a standstill as a result of dissipative effect
of turbulence and flow separation. Therefore, the hydraulic energy
of the heart can be characterized by cardiac power output (CPO)
or cardiac power index (CPI) as the product of flow (cardiac index,
CI) and mean arterial pressure.1 The product of flow output and
systemic arterial pressure is the rate of useful work done, or
‘cardiac power output’.2

The heart has a range of power outputs: resting CPO, max-
imal CPO, and reserve CPO (maximal CPO – resting CPO).
As pump dysfunction occurs over time (i.e. incident myocardial



infarction, valvular heart disease, myocarditis, etc.), the maximal
CPO decreases with corresponding decrements in reserve CPO,
and, if severe, is followed by decrements in resting CPO which may
lead to severe heart failure (HF) or even cardiogenic shock.3

In patients with chronic HF, maximal CPO, and reserve CPO,
measured non-invasively or invasively during cardiopulmonary
stress testing (CPX), are strong predictors of mortality.4–9 When
measured in the acute setting, resting CPO can help identify dif-
ferent acute HF syndromes including cardiogenic shock,3 and is
associated with worsening HF and incident mortality.10,11 How-
ever, there are few data regarding the prognostic impact of resting
CPO in chronic HF.9 Because worsening resting CPO may corre-
late with severity of HF,3 we hypothesize that invasively measured
resting CPO indexed to body surface area (commonly known as
CPI), is associated with long-term transplant- and ventricular assist
device-free survival in an advanced HF cohort.

Methods

Study population

This is a retrospective cohort study comprising ambulatory patients
with chronic heart failure seen at the Cleveland Clinic from January
1, 2000, to December 31, 2005. Medical records of all consecutive
patients ≥18 years old with advanced chronic heart failure (ACHF,
>6months) who had undergone pulmonary artery catheterization
(PAC) as part of an outpatient assessment were reviewed. Pulmonary
artery catheterization was indicated for assessment of disease severity
often secondary to progressive signs or symptoms of heart failure.
Patients were excluded if they had complex congenital heart disease,
were on long-term inotropic drug infusions, or if they were admitted
into the hospital directly after PAC for management of decompensated
heart failure. The Cleveland Clinic Institutional Review Board approved
the study.

Data synthesis and variable definitions

Data abstraction and adjudication has been described previously.12

If patients had multiple PACs, only data from the first PAC were
used. Collected data include demographic characteristics, medical his-
tory, drug and device therapy, laboratory values, and underlying heart
rhythm. B-type natriuretic peptide (BNP) levels were measured at base-
line and at 1- and 6-month follow-up intervals if available. Cardiopul-
monary stress test data, including peak-exercise oxygen consumption
(peak VO2) and echocardiographic data, were collected if performed
within 1month of the outpatient clinic visit. Cardiopulmonary stress
testing was performed according to the recommendations by the
American Heart Association.13 The left ventricular ejection fraction
(LVEF) was calculated using the biplane modified Simpson’s method.
Left ventricular end diastolic diameter was measured in the paraster-
nal long axis view. Both tests were read by board-certified cardiologists
as part of routine care in accordance with the American Society of
Echocardiography guidelines.14

Assessment of haemodynamics

Pulmonary artery catheterization was performed via cannulation
of the internal jugular vein under fluoroscopic guidance with the

patients in the supine position. Filling pressures including right atrial
pressure (RAP), pulmonary arterial pressure, and pulmonary capillary
wedge pressure (PCWP) were measured at end-expiration at steady
state. Mixed central venous blood gas was collected from the tip
of the catheter in the pulmonary artery and cardiac output (CO)
was estimated using Fick’s equation and indexed to body surface
area (BSA): CO/BSA=CI. Mean arterial pressure was measured
non-invasively by an automated blood pressure cuff at the time of
PAC. Systemic vascular resistance (SVR) was calculated as the mean
arterial pressure – right atrial pressure difference divided by CO.
Pulmonary vascular resistance was calculated as: [mean pulmonary
arterial pressure (MPAP) – PCWP)]/CO. The CPO (in W) was calcu-
lated by the equation: CPO=mean arterial pressure (mmHg)×CO
[L/min]×K, where K= 0.0022 (a conversion factor); and was indexed
to body surface area: CPI (W/m2)=CPO (W)/body surface area (m2).

Endpoints

The time interval from the outpatient visit to either all-cause mortal-
ity, heart transplantation, or ventricular assist device placement was
defined as the duration of follow-up. All-cause mortality was assessed
by analysing data from the electronic health record in addition to query-
ing the Social Security Death Index. All endpoints were censored on
December 31, 2007.

Statistical methods

Continuous variables were expressed as either mean± standard
deviation or median [interquartile range (IQR)] where appropriate.
The unpaired Student’s t-test or Wilcoxon signed-rank test were used
to compare parametric and non-parametric continuous variables,
respectively. Categorical variables were expressed as percentage (%)
with comparisons via Fisher’s exact test or the chi-square method. The
CPI was divided into two partitions stratified by the median in order to
make clinical comparisons of prognostic value. Only non-missing data
were analysed. P-values of <0.05 were considered significant to reject
the null hypothesis that there were no differences in transplant-free
survival between subjects stratified by median CPI and, in subgroups
with serial BNP levels or with additional stratification by peak VO2.
Independent variables include CPI levels stratified by median CPI and
dependent variables include all-cause mortality, cardiac transplan-
tation, ventricular assist device placement, and serial BNP. Survival
analyses were completed via the Kaplan-Meier method and log-rank
analysis to compare transplant- and ventricular assist device-free
survival curves of CPI stratified by median CPI for the cohort and a
subgroup analysis stratified by median peak VO2. Cox-proportional
hazards models were used to compare time-to-event analyses to
determine HRs and 95% CIs for mortality, cardiac transplantation,
and ventricular assist device placement for CPI stratified by median
CPI. Multivariable models adjusted for age, gender, PCWP, Fick CI,
PVR, creatinine, and LVEF. In a subset, BNP levels were added as an
additional covariate. Statistical analyses were performed using JMP Pro
version 10 (SAS Institute, Inc., Cary, NC, USA).

Results

Baseline characteristics

Baseline characteristics of our study cohort are described in
Table 1, which are representative of a population with advanced



Table 1 Baseline characteristics (n= 495)

Variable Overall CPI <0.44W/m2

(n= 247)

CPI ≥0.44W/m2

(n= 248)

P

Age (years) 54± 11 55±11 53±12 0.2

Male (%) 75.8 76.1 75.4 0.9

BMI (kg/m2) 28± 6 27± 5 29± 6 0.002

ICM (%) 48.3 47 49.6 0.6

LVEF (%) 20 (15, 25) 15 (15, 20) 20 (15, 30) <0.0001

LVEDD (cm) 6.6± 1.1 6.8±1.2 6.4±1.0 <0.0001

ICD (%) 38.8 44.1 33.5 0.02

CRT (%) 9.5 10.9 8.1 0.3

NYHA class

II (%) 3.6 2.8 4.4 0.5

III (%) 90.7 91.9 89.5

IV (%) 5.5 5.3 5.7

Medications

ACEI/ARB (%) 88.3 87.5 87.1 1

Beta-blocker (%) 69.9 69.2 70.6 0.8

MRA (%) 37.9 42.7 33.1 0.03

Abbreviations: CPI, cardiac power index; BMI, body mass index; ICM, ischaemic cardiomyopathy; IQR, interquartile range; LVEF, left ventricular ejection fraction; LVEDD,
left ventricular end diastolic diameter; ICD, implantable cardioverter defibrillator; CRT, cardiac resynchronization therapy; NYHA, New York Heart Association; ACEI,
angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist.
Missing values: LVEDD: n= 101 and LVEF n= 106.
*Values in brackets are interquartile range.

Figure 1 Cardiac power index (CPI) levels in study cohort
(n= 495).Mean was 0.46± 0.13W/m2 and the median was
0.44W/m2 (IQR 0.37, 0.52).

HF. The CPI levels were distributed with a right skew (Figure 1).
The median CPI was 0.44W/m2 (IQR 0.37, 0.52) .Lower CPI was
associated with features consistent with more advanced disease
status, including lower body mass index, higher ICD, and miner-
alocorticoid receptor antagonist use, with lower LVEF and higher
LVEDD.

Baseline CPI, haemodynamics,
and laboratory values

Baseline haemodynamics are shown stratified by median CPI
(Table 2). Lower CPI was associated with lower mean arterial
pressure (MAP) and CI (P< 0.0001 for both), but higher RAP,
pulmonary arterial pressures, PCWP, SVR, and PVR (P< 0.001
for all). Lower CPI was associated with higher baseline creatinine
(P= 0.0008) and BNP (P< 0.0001). In a subset of patients with
available BNP data (n= 135) at the time of clinical evaluation, base-
line BNP and CPI levels were moderately correlated (Spearman’s
rho=−0.43, p< 0.0001). Lower baseline CPI was associated with
higher BNP levels at baseline, and subsequently at 1-month and
6-month follow-up visits (P< 0.001 for all) (Figure 2).

Cardiac power index and transplant
and ventricular assist device-free survival

Of the 495 patients followed for all-cause mortality, cardiac
transplantation, or ventricular assist device placement, 234 (47%)
patients either died (n=117), underwent cardiac transplantation
(n= 104), or received a ventricular assist device (n= 20) at a
median follow-up of 3.3 years after the haemodynamic evalua-
tion. Lower baseline CPI was associated with a significantly lower
transplant- and ventricular assist device-free survival (Log-rank,
chi-square 43.9, P< 0.0001, Figure 3). A CPI below the median
predicted a 2.4-fold increase in mortality, cardiac transplanta-
tion, or assist device placement (Table 3) when compared with

© 2015 The Authors
European Journal of Heart Failure © 2015 European Society of Cardiology



Table 2 Baseline resting haemodynamic and laboratory values (n= 495)

Variable Overall CPI <0.44W/m2

(n= 247)

CPI ≥0.44W/m2

(n= 248)

P

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heart rate (bpm) 80±18 79±16 81±19 0.1
MAP (mmHg) 86±13 81± 12 91±12 <0.0001
RAP (mmHg)* 7 (4, 10) 8 (5, 12) 6 (3, 9) <0.0001
PASP (mmHg)* 40 (30, 54) 45 (32, 57) 38 (28, 50) 0.0002
PADP (mmHg)* 20 (12, 25) 22 (16, 27) 18 (12, 22) <0.0001
MPAP (mmHg)* 27 (19, 35) 30 (21, 37) 24 (17, 32) <0.0001
PCWP (mmHg)* 18 (23, 10) 20 (13, 25) 14 (10, 21) <0.0001
Fick CO (L/min) 4.7±1.3 4.1± 0.9 5.6±1.2 <0.0001
Fick CI (L/min.m2) 2.4± 0.6 2.0± 0.4 2.8± 0.5 <0.0001
PVR (WU) 2.4±1.5 2.7±1.7 2.0±1.2 <0.0001
SVR (dyn•s/cm5) 1443± 429 1530± 461 1357± 376 <0.0001
Haemoglobin (g/dL) 13.5± 1.7 13.6±1.6 13.4± 1.7 0.2
Creatinine (mg/dL)* 1.1 (0.9, 1.4) 1.2 (1.0, 1.5) 1.0 (0.9, 1.3) 0.0008
Sodium (mEq/L) 139± 5 139± 4 139± 6 0.6
BNP (pg/mL)* 348 (137, 782) 605 (230, 1150) 228 (81, 484) <0.0001

Abbreviations: CPI, cardiac power index; MAP, mean arterial pressure; RAP, right atrial pressure; PASP, pulmonary arterial systolic pressure; PADP, pulmonary arterial diastolic
pressure; MPAP, mean pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; CO, cardiac output; CI, cardiac index; PVR, pulmonary vascular resistance;
SVR, systemic vascular resistance; BNP, B-type natriuretic peptide.
Missing values: SVR n= 7; PVR n= 8; haemoglobin n= 47; creatinine n= 39; sodium n= 37; BNP n= 360.
*Values in brackets are interquartile range.

CPI above the median (HR 2.38, 95% CI 1.83–3.11, P< 0.0001;
c-statistic 0.62, 95% CI 0.59–0.65). After multivariable adjustment
for age, gender, PCWP, Fick CI, creatinine, and LVEF lower CPI still
remained independently associated with an increased risk of death,
cardiac transplantation, or ventricular assist device placement (HR
1.52, 95% CI 1.03–2.28, P= 0.04). Furthermore, lower CPI was
still independently associated with an increased risk of death, car-
diac transplantation, or ventricular assist device placement when
BNP was added to the multivariable adjustment mentioned previ-
ously (HR 2.8 95% CI 1.2–7.3, P= 0.02, n= 135). Although SVR
index (SVRI) is similar to the inverse of CPI, high SVR was asso-
ciated with a lower hazard ratio was for the composite outcome
(HR 1.5, 95% CI 1.1–1.9, P= 0.0004). Further, SVRI was modestly
correlated with CPI (Spearman rho −0.20, P< 0.0001) and venous
adjusted CPI (MAP-RAP, Spearman rho −0.16, P= 0.0003). When
analysed as a continuous predictor, CPI was inversely associated
with these adverse outcomes in univariable (per 0.05 unit change,
HR 0.80, 95% CI 0.76–0.85, P< 0.0001; c-statistic 0.66, 95% CI
0.62–9.69) and multivariable analyses (per 0.05 unit change, HR
0.84, 95% CI 0.75–0.94, P= 0.004).

Overall, the median CPI levels were not different when stratified
by age [<50 years (n= 140): 0.45W/m2 (0.38, 0.54); 50–65 years
(n= 272): 0.43 [0.37, 0.52] 0.43W/m2, and >65 years (n= 83):
0.42W/m2 [0.35, 0.50]; P= 0.29). Indeed, the point estimates
for hazard ratios were different in subgroups by age. At age
<50 years, low CPI was associated with 3.7-fold increased risk of
death, cardiac transplantation, or ventricular assist device place-
ment (n= 56/140, HR 3.7, 95% CI 2.1–7.1, P< 0.0001); at age
50–65 years low CPI was associated with a 2.4-fold increased
risk of death, cardiac transplantation, or ventricular assist device
placement (n=139/272, HR 2.4, 95% CI 1.7–3.5, P< 0.0001); and

Figure 2 Follow-up B-type natriuretic peptide (BNP) levels
stratified by cardiac power index (CPI) level. *P< 0.001. Subset
with serial BNP: n= 121. Values are expressed as median and
P-values calculated via Wilcoxon Signed Rank Test.

at age >65 years the were was a non-significant trend towards
increased risk of death, cardiac transplantation, or ventricu-
lar assist device placement with low CPI (n= 46/83, HR 1.6,
0.9–2.8, P= 0.14). Patients taking all evidence-based therapies
(beta-blocker, renin-angiotensin system blocker, and mineralocorti-
coid antagonist, n=124 (25.1%), below median CPI still remained
associated with adverse outcomes (HR 1.99, 95% CI 1.18–3.49,
P= 0.01). In a sensitivity analysis for outcomes censored at 1 year
of follow-up (death, n= 29; cardiac transplantation, n= 65; and
ventricular assist device placement, n= 10), below median CPI



Table 3 Cox proportional hazards models according

to resting cardiac power index (CPI) for death,

mortality, and ventricular assist device placement

Variable Hazard

ratio*

95% Confidence

Interval

P

Unadjusted
Age (years) 1.02 1.004–1.03 0.006
Male 1.31 0.97–1.81 0.08
PCWP (mm Hg) 1.05 1.03–1.06 <0.0001
Fick CI (L/min/m2) 0.38 0.29–0.49 <0.0001
PVR (WU) 1.22 1.14–1.29 <0.0001
Creatinine (mg/dL) 1.64 1.32–2.01 <0.0001
LVEF (%) 0.97 0.95–0.98 <0.0001
CPI† 2.38 1.83–3.11 <0.0001

Adjusted
Age (years) 1.81 0.99–1.02 0.20
Male 1.32 0.91–1.97 0.14
PCWP (mm Hg) 1.01 0.99–1.03 0.16
Fick CI (L/min/m2) 0.69 0.45–1.04 0.08
PVR (WU) 1.12 1.03–1.21 0.007
Creatinine (md/dL) 1.51 1.12–1.98 0.007
LVEF (%) 0.98 0.96–1.00 0.06
CPI† 1.52 1.03–2.28 0.04
CPI† ‡ 2.84 1.17–7.30 0.02

Abbreviations: CPI, cardiac power index; PCWP, pulmonary capillary wedge
pressure; CI, cardiac index; PVR, pulmonary vascular resistance; LVEF, left
ventricular ejection fraction; BNP, B-type natriuretic peptide.
*Per unit change if continuous.
†CPI ≥0.44 vs. CPI <0.44W/m2, 241 events.
‡Multivariable adjustment for the previous variables with the addition of BNP in
a subset (n= 135) with available BNP values.

Figure 3 Kaplan–Meier estimates of transplant and ventricular
assist device-free survival according to cardiac power index (CPI)
level. Log-rank, 𝜒2 43.9, P< 0.0001. A total of 117 deaths,104
orthotopic heart transplants, and 20 ventricular assist device
placements occurred during a median follow-up of 3.34 years
(IQR 1.35, 5.32).

Figure 4 Peak-stress oxygen consumption (Peak VO2) in the
subset with cardiopulmonary stress testing (n= 174). Mean
was 14.9± 3.8mL/kg.min and median was14.6 (IQR 12.6, 16.9)
mL/kg.min.

Discussion

Our cohort has several key findings that add to our understand-
ing of the clinical consequences of cardiac hydraulic function in
ambulatory patients with advanced HF. First, resting CPI was asso-
ciated with other common markers of severity of HF at baseline
and over time. Second, in a large cohort of ambulatory patients
with advanced HF, we observed a strong association between CPI
and transplant- and ventricular assist device-free survival. Being the
largest series of patients on this topic with long-term follow-up,

remained associated with an increased risk after multivariable 
adjustment (HR 2.24, 95% CI 1.12–4.47,  P = 0.02).

Cardiac power index and transplant
and ventricular assist device-free survival
in a subset with cardiopulmonary stress
testing

A total of 174 of the original 495 patients had cardiopulmonary 
stress testing (Figure 4) and were followed cardiac transplantation, 
ventricular assist device placement, or all-cause mortality. There 
was no linear association with baseline CPI and peak VO2 lev-
els (R2 = 0.001). In total, 85 (49%) patients either died (n = 38), 
underwent cardiac transplantation (n = 39), or received a ventric-
ular assist device (n = 8) at a median follow-up of 3.1 years after 
the initial clinical visit. The median peak VO2 was 14.6 mL/kg.min 
and below-median peak VO2 was associated with a trend towards 
increased mortality (HR 1.47, 95% CI 0.98–2.23, P = 0.06). Regard-
less of median stratified peak VO2, lower CPI remained a strong 
predictor of cardiac transplantation, ventricular assist device place-
ment, or all-cause mortality (Log-Rank, chi-square 21.6, P < 0.0001 
at 3 years; Figure 5).



Figure 5 Kaplan–Meier estimates of transplant and ventricular assist device-free survival according to cardiac power index (CPI) and peak
VO2. Subset with peak-stress oxygen consumption (Peak VO2) measured, n= 174. A total of 38 deaths, 39 orthotopic heart transplants, and
eight ventricular assist device placements occurred during a median follow-up of 3.12 years [IQR 0.97, 4.83] .Log-Rank, 𝜒2 21.6, P< 0.0001
for outcomes at 3 years. Units are W/m2 for CPI.

we had the opportunity to conduct a more rigorous evaluation to
understand the determinants of resting CPI. We observed that the
prognostic value of CPI remained robust after multivariable adjust-
ment for demographic, laboratory, and adverse haemodynamic risk
factors including renal function and BNP. Third, although peak VO2

is a well known prognostic factor in advanced HF,15 there was
no correlation with CPI and peak VO2 during CPX. Yet, CPI was
independently associated with mortality, incident cardiac trans-
plantation, and incident ventricular assist device placement despite
stratification by peak VO2. These findings highlight the potential for
resting CPI to be a useful metric in stratifying risk in patients with
advanced HF.

Cardiac output and systemic arterial pressure are both measures
of cardiac function, but one does not necessarily predict the other.
For example, cardiogenic shock is characterized by both low CO
and MAP, whereas distributive shock is characterized by a high CO
in the setting of low MAP. However, CPI is an integration of both
measures and is a more accurate representation of cardiac pump
efficiency.

In this study, resting CPI was associated with common markers
of worsening cardiac dysfunction. Because invasive haemodynamic
measurements, including elevated right- and left-sided filling pres-
sures, PVR, and CI, are commonly associated with adverse events
including renal dysfunction and death in HF, 16–18 it is not surprising
that these factors are associated with and may be secondary to car-
diac pump function. Plasma natriuretic peptide levels are markers
of myocardial stress and are strongly correlated with adverse out-
comes in chronic HF.19,20 Renal function, a marker of end-organ

perfusion, is also strongly associated with both mortality and
progression of HF in patients with left ventricular dysfunction.21

Our observation regarding the inverse relationship between base-
line resting CPI and baseline BNP or creatinine and higher BNP on
follow-up assessment suggested that factors related to cardio-renal
disease progression may represent the consequences of cardiac
inefficiency and suggest that the incremental prognostic value of
CPI is a combined metric of the severity of HF.

The concept of cardiac power has been previously put forward
in single-centre clinical studies with small sample sizes and event
rates. In a series of 50 HF patients with New York Heart Associa-
tion (NYHA) Class II and III symptoms,9 patients who had adverse
cardiac events (admission owing to HF, pulmonary oedema, or ven-
tricular arrhythmia) or died during follow-up (21.2±1.2months,
total 19 events) had a non-significant trend towards lower resting
CPO. In another series with 219 patients with HF, resting CPO was
associated with survival in univariable analyses (total 12 events),
but not after multivariable adjustment for other exercise-derived
parameters. The present study provided adequate event rates to
demonstrate a robust association with resting cardiac pump func-
tion and transplant- and ventricular assist device-free survival. This
association was independent of haemodynamic and cardio-renal
risk factors, and thus supports the hypothesis that resting CPI pro-
vides clinically meaningful prognostic information that may be used
when stratifying ACHF patients for left ventricular assist device or
heart transplantation.

In patients with HF, the combination of reduced cardiac pump-
ing capacity of the heart in conjunction with dysregulated vascular



device therapies. Although, a majority were on renin–angiotensin
system blockers, beta-blockers, and a portion on mineralocorti-
coid antagonists. The QRS duration was not available in all subjects,
some were paced so this was not included in the multivariable
analysis. The subjects’ estimated metabolic rate was used in lieu
of measured oxygen consumption (at the time of haemodynamic
assessment) in order to compute cardiac output by the Fick prin-
ciple. We also cannot exclude error introduced by calculating the
MAP via non-invasive blood pressure measurements, although this
bias would be non-differential.

Conclusion

Lower resting CPI is associated with higher left- and right-sided
filling pressures and abnormal cardio-renal biomarkers at baseline
and follow-up. Resting CPI provides independent and incremental
prediction in transplant- and ventricular assist device free-survival
beyond haemodynamic, demographic, and cardio-renal risk factors
or cardiopulmonary stress testing. These findings suggest that CPI
is a robust phenotypic and prognostic measure and support its use
for risk stratification in patients with advanced heart failure.
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