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Rationalized evaluation subgroups of a map II: Quillen models and
adjoint maps

Gregory Lupton, Samuel Bruce Smith

1. Introduction

In a previous paper [8], we have used the Sullivan model of a map to develop a framework within which rational

homotopy groups of function spaces and related topics may be studied. Here, we construct a corresponding framework

using differential graded Lie algebras. We use the notation and vocabulary established in [8] freely and without

comment. Our main result, Theorem 3.1, identifies the homomorphism induced on rational homotopy groups by the

fibre inclusion map∗(X, Y ; f ) → map(X, Y ; f ) of the evaluation fibration. The basic idea behind this theorem may

be indicated as follows: a map f : Sn × X → Y that restricts to the trivial map on Sn yields a certain morphism

of degree n from the Quillen minimal model of X to that of Y ; this morphism turns out to be a derivation. The

space of these derivations can be endowed with a differential, and the homology of this chain complex yields the

rational homotopy groups of the based mapping space map∗(X, Y ; f ). Theorem 3.3 extends Tanré’s description of

the rationalized Gottlieb group [13, VII.4.(10)] to a description of the rationalized evaluation subgroup of a map.

In Section 4 we consider a generalization of a question of Gottlieb, concerning the difference between the Gottlieb

group and the Whitehead center, in the context of rational homotopy theory. In Section 5 we describe and study the



rationalization of the so-called G-sequence of a map as constructed by Lee and Woo [14]. We obtain results about the

G-sequence that complement those of [8]. In Section 2 we describe an explicit Quillen minimal model for a product

A × X , in terms of the Quillen models of the factors, in the case in which A is a rational co-H -space. The paper also
includes a technical appendix in which we prove a particular result from DG Lie algebra homotopy theory necessary

for our proof of Theorem 3.1.

We finish this introduction by setting some notation, especially with respect to DG Lie algebras. We remind the

reader that we use the same notational conventions and running hypotheses as [8]. A vector space (over the rationals)

generated by a single element v will be written Qv. The kth suspension of V , denoted by sk(V ), is the vector space
defined as (sk (V ) )n = Vn−k . A DG Lie algebra is a pair (L , d) where L is a graded Lie algebra and d is a vector space

differential that satisfies the derivation law d([x, y ]) = [d(x), y] + (−1)|x |[x, d(y)]. We write L(V ) for the free Lie
algebra generated by the vector space V . The coproduct (or “free product”) of (DG) Lie algebras L and L ′ is written

L � L ′. We write L(V, W ) for L(V ) � L(W ) = L(V⊕ W ) and (L(V ), d) as L(V ; d). A DG Lie algebra (L , d) is
minimal if L is free and the differential is decomposable, that is, d(L) ⊆ [L , L].

We assume the reader is familiar with the basic facts of rational homotopy theory from the Quillen point of

view, that is, using DG Lie algebra minimal models. Good references for this material include [13] and [3, Part

IV]. Specifically, w e r ecall t hat e ach s pace X h as a Q uillen m inimal m odel w hich i s a m inimal D G L ie algebra

(LX , dX ) whose isomorphism type is a complete invariant of the rational homotopy type of X . As a Lie algebra,

we have LX = L(s−1 H̃∗(X; Q)). A map of spaces f : X → Y induces a map of Quillen models which we denote
L f :LX → LY .

Given a map ψ : (L , dL) → (K , dK ) of DG Lie algebras, define a ψ- derivation o f d egree n t o b e a linear

map θ : L → K that increases degree by n and satisfies θ([α, β ]) = [θ(α), ψ(β)] + (−1)n|α|[ψ(α), θ (β)] for
α, β ∈ L . Let Dern(L , K ; ψ) denote the space of all ψ-derivations of degree n from L to K . Next, define

D : Dern(L , K ; ψ) → Dern−1(L , K ; ψ) by D(θ) = dK ◦ θ − (−1)|θ |θ ◦ dL . The pair (Der∗(L , K ; ψ), D) is then
a DG vector space. The adjoint map associated to ψ is adψ : K → Der∗(L , K ; ψ) where adψ(α)(β) = [α, ψ(β)].
It is easy to check that adψ is a map of DG vector spaces. We write ad for the adjoint map associated to the identity

1: L → L .

We will need the mapping cone of a map of DG vector spaces φ: V → W (cf. [12, p. 166] or [8, Def. 3.2]).

This is the DG vector space (Rel∗(φ), δ) with Reln(φ) = Vn−1 ⊕ Wn and differential of degree −1 defined as

δ(v, w) = (−dV (v), φ(v) + dW (w)). The inclusion J : Wn → Reln(φ) and the projection P: Reln(φ) → Vn−1 with

J (wn) = (0, wn), respectively, P(vn−1, wn) = vn−1, give a short exact sequence of chain complexes that leads to a
long exact sequence on homology with connecting homomorphism H(φ).

Now apply this construction to the adjoint map adψ : K → Der∗(L , K ;ψ ) from above. We obtain a long exact
homology sequence

· · · �� Hn(K )
H(adψ)�� Hn(Der(L , K ; ψ))

H(J ) �� Hn(Rel(adψ))
H(P) �� · · ·

that we call the long exact derivation homology sequence of ψ . In Theorem 3.2 below, we show that this sequence

corresponds to the long exact homotopy sequence of the evaluation fibration when ψ : L → K is the Quillen model of

a map.

2. Quillen models for certain products

We describe a Quillen minimal model of A × X when A is any rational co-H -space of finite type. Our description

essentially makes explicit that of [13, Prop.VII.1(2)], although our treatment here is self-contained.

Suppose X has Quillen minimal model L(W ; dX ), and that L(V ; d = 0) is the Quillen minimal model of a

simply connected, finite-type rational co-H -space A. Suppose {vi }i∈J is a (connected, finite-type) basis for V , and

|vi | = ni − 1 for each i ∈ J . Topologically, this corresponds to A being of the rational homotopy type of the wedge

of spheres
∨

i∈J Sni . We construct a new minimal DG Lie algebra from these data as follows: For each i ∈ J , set

Wi = sni (W ). Let λ: L(W ) → L(W, V, ⊕i∈J Wi ) denote the inclusion of graded Lie algebras. For each i ∈ J , let

Si : W → Wi denote the ni -fold suspension isomorphism and define a λ-derivation Si : L(W ) → L(W, V, ⊕i∈J Wi ) by

extending Si using the λ-derivation rule. Now define a differential ∂ on L(W, V, ⊕i∈J Wi ) that extends the differentials



on L(W ) and L(V ), by setting

∂(Si (w)) = (−1)ni −1[vi , w] + (−1)ni Si (dX (w))

for each generator w ∈ W (and thus each generator of Wi ). Note that this may also be expressed as a boundary relation

D(Si ) = (−1)ni −1adλ(vi ) in Derni −1(L(W ), L(W, V, ⊕i∈J Wi ); λ).

We will show that L(W, V, ⊕i∈J Wi ; ∂) is the Quillen minimal model of A × X . First, note that ∂ is a differential,

since we have

(∂)2(Si (w)) = ∂((−1)ni −1[vi , w] + (−1)ni Si (dX (w)))

= [vi , dX (w)] + (−1)ni ∂Si (dX (w)) = Si dX (dX (w)) = 0.

Theorem 2.1. Let X be a simply connected space of finite type with Quillen minimal model L(W ; dX ). Let A be
a rational co-H-space of finite type and of the rational homotopy type of the wedge of spheres

∨
i∈J Sni . Then

L(W, V, ⊕i∈J Wi ; ∂), as above, is the Quillen minimal model of A × X.

Proof. L(V ) ⊕ L(W ; dX ) is a non-minimal model for A × X [3, p. 332, Ex. 3]. We will show that the obvious

projection

p: L(W, V, ⊕i∈J Wi ; ∂) → L(V ) ⊕ L(W ; dX )

is a quasi-isomorphism. Since the domain is a minimal DG Lie algebra, this will suffice to show that it is the Quillen

minimal model of the product.

Consider the following commutative diagram of DG Lie algebra maps:

0 �� K
i ��

p′
��

L(W, V, ⊕i∈J Wi ; ∂)
q ��

p

��

L(V ) ��

1

��

0

0 �� L(W ; dX )
i ′ �� L(V ) ⊕ L(W ; dX )

q ′
�� L(V ) �� 0

(1)

Here, q and q ′ are the obvious (quotient) projections onto L(V ), and i and i ′ are the inclusions of the kernels, so that

the rows are short exact sequences of DG Lie algebras. We will argue that p′: K → L(W ; dX ) is a quasi-isomorphism.

As a sub-DG Lie algebra of a connected, free DG Lie algebra, K is itself a connected, free DG Lie algebra. Indeed,

we may write

K = L(W, ⊕i Wi , [V, W ], ⊕i [V, Wi ], [V, [V, W ]], ⊕i [V, [V, Wi ]], . . . ; ∂K )

or more succinctly K = L({ad j (V )(W )} j≥0, {⊕i ad j (V )(Wi )} j≥0; ∂K ). We now claim that (∂K )0, the linear part of

the differential in K , induces isomorphisms

(∂K )0: ⊕i∈J ad j (V )(Wi ) → ad j+1(V )(W )

for each j ≥ 0. Suppose (vr1 , vr2 , . . . , vr j ) ∈ V j is a j-tuple and w ∈ W . Then write ad(vr1 , vr2 , . . . , vr j )(w) for

[vr1 , [vr2 , [. . . , [vr j−1 , [vr j , w]] . . .]]] and likewise for elements of ad j (V )(Wi ). From the definition of ∂ above, we

have

∂(ad(vr1 , vr2 , . . . , vr j )(Si (w))) = ±ad(vr1 , vr2 , . . . , vr j )(∂(Si (w)))

= ±ad(vr1 , vr2 , . . . , vr j , vi )(w)

± ad(vr1 , vr2 , . . . , vr j )(Si dX (w)).

Now dX (w) is decomposable in L(W ) and thus Si dX (w) is decomposable in L(W, Wi ) ⊆ K . Since K is an ideal,

the last term displayed above, namely ad(vr1 , vr2 , . . . , vr j )(Si dX (w)), is decomposable in K . It follows that the linear

part of the differential in K induces isomorphisms (∂K )0: ad j (V )(Wi ) ∼= ad j (V )ad(vi )(W ) for each i ∈ J and each

j ≥ 0, and hence isomorphisms (∂K )0: ⊕i ad j (V )(Wi ) ∼= ad j+1(V )(W ) for each j ≥ 0, as claimed. Notice that as a

consequence of this, we must have (∂K )0 = 0 on each vector space of generators ad j+1(V )(W ) in K , for j ≥ 0, since

the linear part of a differential is itself a differential. Finally, notice that (∂K )0 = 0 on the vector space of generators



W in K . It now follows that the DG vector space (Q(K ), (∂K )0) obtained by linearizing K may be written as a direct

sum

(Q(K ), (∂K )0) ∼= W ⊕ j≥0

(
(⊕i ad j (V )(Wi )) ⊕ (ad j+1(V )(W )), (∂K )0

)

in which each summand
(
(⊕i ad j (V )(Wi )) ⊕ (ad j+1(V )(W )), (∂K )0

)
is an acyclic DG vector space. It is now evident

that H(Q(K ), (∂K )0) ∼= W and that the linearization of p′, that is, (p′)0: (Q(K ), (∂K )0) → (W, ∂0 = 0), is a quasi-

isomorphism of DG vector spaces. By [3, Proposition 22.12], p′ is a quasi-isomorphism of DG Lie algebras.

In (1), left and right vertical arrows are now quasi-isomorphisms. Therefore, by passing to homology and applying

the five-lemma, we obtain that p is a quasi-isomorphism. �

Since it is the main case we require here, we write out explicitly what this gives for the model of Sn × X , with a

slight easing of notation.

Corollary 2.2. Let X be a simply connected CW complex of finite type with Quillen minimal model L(W ; dX ).
Let L(v) with |v| = n − 1 and zero differential be the Quillen model of Sn, and set W ′ = sn(W ). Let
λ: L(W ) → L(W, v, W ′) be the inclusion, and S: L(W ) → L(W, v, W ′) be the λ-derivation that extends the linear
map S(w) = w′. Define a differential ∂ on L(W, v, W ′) by ∂(w) = dX (w), ∂(v) = 0, and for each w ∈ W

∂(w′) = (−1)n−1[v, w] + (−1)n S(dX (w)).

Then L(W, v, W ′; ∂) is the Quillen minimal model of Sn × X. �

3. Lie derivations and homotopy groups of function spaces

Say two maps of vector spaces f : U → V and g: U ′ → V ′ are equivalent if there exist isomorphisms α and β for

which β ◦ f = g ◦ α. We extend this notion of equivalence in the obvious way to exact sequences of vector spaces

and any other diagram of vector space maps. Given any map f : X → Y , we have the homomorphism

j# ⊗ 1: πn(map∗(X, Y ; f )) ⊗ Q → πn(map(X, Y ; f )) ⊗ Q

induced on rational homotopy groups by the fibre inclusion of the general evaluation fibration

map∗(X, Y ; f )
j �� map(X, Y ; f )

ω �� Y hand, we have the homomorphism

H(J ): Hn(Der(LX ,LY ;L f )) → Hn(Rel(adL f ))

that forms part of the long exact derivation homology sequence of the Quillen minimal model of f . In Theorem 3.1,

we establish that these two homomorphisms are equivalent. This result and one immediate consequence will occupy

the remainder of this section.

The main step is to establish vector space isomorphisms

Φ: πn(map∗(X, Y ; f )) ⊗ Q → Hn(Der(LX ,LY ;L f ))

Ψ : πn(map(X, Y ; f )) ⊗ Q → Hn(Rel(adL f )),

that give the equivalence. To this end, we define group homomorphisms

Φ′: πn(map∗(X, Y ; f )) → Hn(Der(LX ,LY ;L f ))

Ψ ′: πn(map(X, Y ; f )) → Hn(Rel(adL f ))

for n ≥ 2. Then the isomorphisms Φ and Ψ are obtained as the rationalizations of these homomorphisms.

In the following, we assume a fixed choice of Quillen minimal model L f :LX → LY . Write LX = L(W ; dX )

and LY = L(V ; dY ). Now define Φ′ as follows. Let α ∈ πn(map∗(X, Y ; f )) be represented by a map a: Sn →
map∗(X, Y ; f ). Then the adjoint A: Sn × X → Y of a has Quillen minimal model LA:LSn×X → LY . From

Corollary 2.2 we have LSn×X = L(W, v, W ′; ∂). Since a is a (based) map into the function space of based maps,

A is a map under (∗ | f ): Sn ∨ X → Y . (See Appendix A for this and other terminology we use in the course

of this proof.) From Proposition A.3, we may take the Quillen minimal model of A to be a DG Lie algebra map



LA: L(W, v, W ′; ∂) → LY under L(∗| f ): L(W, v) → LY , that is, such that LA(v) = 0 and LA(w) = L f (w) for each

w ∈ W . Now define a linear map θA: L(W ) → LY that increases degree by n as the composition

L(W )
S �� L(W, v, W ′)

LA �� LY ,

where S: L(W ) → L(W, v, W ′) is the derivation from Corollary 2.2. A straightforward check shows that θA is an

L f -derivation and a cycle in Dern(LX ,LY ;L f ). We set Φ′(α) = 〈θA〉.
We define Ψ ′, and thus its rationalization Ψ , in a similar manner. Here, the adjoint A: Sn × X → Y of

a: Sn → map(X, Y ; f ) still satisfies A ◦ i2 = f : X → Y , but the composition A ◦ i1: Sn → Y may give a non-

trivial element of πn(Y ). By Proposition A.3, the Quillen minimal model of A satisfies LA(w) = L f (w) for each

w ∈ W , but LA(v) ∈ LY is now some non-trivial dY -cycle. As before, setting θA = LA ◦ S: L(W ) → LY defines

an L f -derivation in Dern(LX ,LY ;L f ). It is easy to check that ((−1)nLA(v), θA) ∈ Reln(adL f ) is a cycle of the

mapping cone. We set Ψ ′(α) = 〈(−1)nLA(v), θA〉.
Theorem 3.1. Let f : X → Y be a map between simply connected CW complexes with X finite. Then we have:

(A) Φ′ and Ψ ′ are well-defined homomorphisms;
(B) Their rationalizations Φ and Ψ are isomorphisms;
(C) The following square is commutative (n ≥ 2):

πn(map∗(X, Y ; f )) ⊗ Q
Φ
∼=

��

j#⊗1

��

Hn(Der(LX ,LY ;L f ))

H(J )

��
πn(map(X, Y ; f )) ⊗ Q

Ψ

∼= �� Hn(Rel(adL f ))

Proof. Throughout the proof we will give full details for arguments concerning Φ; the arguments for Ψ are similar

and we will only indicate them briefly. Appendix A contains a careful justification of some technical details about DG

Lie algebra homotopy theory used in the following proof. We will make free use of the material from Appendix A.

(A) Φ′ is well-defined: Suppose that a, b: Sn → map∗(X, Y ; f ) are homotopic representatives of the homotopy

class α. The adjoint of the homotopy from a to b gives a homotopy of their adjoints A, B: Sn × X → Y . Because

the homotopy from a to b is a based homotopy, A and B are homotopic under (∗ | f ): Sn ∨ X → Y . By

Proposition A.3, the Quillen minimal models LA,LB :LSn×X → LY are DG Lie homotopic under L(∗| f ):LSn∨X →
LY . This means that, with respect to the relative cylinder c: L(W, v, W ′

1, W ′
2; ∂) → L(W, v, W ′, sW ′, Ŵ ′; ∂I )

for the inclusion L(W, v) → L(W, v, W ′; ∂) described in Example A.1, we have a DG Lie algebra homotopy

H: L(W, v, W ′, sW ′, Ŵ ′; D) → LY that satisfies H ◦ c = (LA | LB). Let j : L(W ; dX ) → L(W, v, W ′
1, W ′

2; ∂)

denote the inclusion and let S1: L(W ) → L(W, v, W ′
1, W ′

2) denote the j-derivation defined on generators by

S1(w) = w′
1. Now define a linear map Θ : L(W ) → LY of degree n + 1 as the composition Θ = H ◦ σ ◦ c ◦ S1. Here,

σ is the derivation of degree +1 of L(W, v, W ′, sW ′, Ŵ ′) defined in Example A.1. Because H ◦ c = L f on L(W ), Θ
is an L f -derivation. In Lemma A.2 we show that c(w′

2) = w′ + ŵ′ + σ ◦ ∂I (w
′). With this identity, we may compute

as follows:

θB(w) = LB(w′) = (LA | LB)(w′
2) = H ◦ c(w′

2) = H(w′ + ŵ′ + σ ◦ ∂I (w
′))

= H(w′) + H(∂I (σ (w′))) + H ◦ σ((−1)n−1[v, w] + (−1)n SI ∂I (w)).

Now w′ = c ◦ S1(w) and SI ∂I (w) = c ◦ S1(dX (w)). Since σ is zero on all generators other than W ′, and H is a DG

map, we may continue:

θB(w) = H ◦ c ◦ S1(w) + dY (H ◦ σ ◦ c ◦ S1(w)) + (−1)nH ◦ σ ◦ c ◦ S1(dX (w))

= θA(w) + dY (Θ(w)) + (−1)nΘ(dX (w)).

That is, we have DΘ = θB − θA ∈ Dern(LX ,LY ;L f ) and Φ′ is well-defined.

Φ′ is a homomorphism: Let ν: Sn → Sn ∨ Sn denote the usual pinching comultiplication. For α, β ∈
πn(map∗(X, Y ; f )), we have α + β = (α | β) ◦ ν. Suppose α, β have adjoints A, B: Sn × X → Y , respectively.



Let i1, i2: Sn → Sn ∨ Sn denote the inclusions, and let (A | B) f : (Sn ∨ Sn) × X → Y be the map defined by

(A | B) f ◦(i1×1) = A and (A | B) f ◦(i2×1) = B. Then the adjoint of α+β is C := (A | B) f ◦(ν×1): Sn ×X → Y .

We focus on identifying the Quillen minimal model of (A | B) f , and it will follow that Φ′
f is a homomorphism.

Since (A | B) f is a map under (∗ | ∗ | f ): Sn ∨ Sn ∨ X → Y , we may combine Theorem 2.1 and

Proposition A.3 and write the Quillen minimal model of (A | B) f in the form Γ : L(W, v1, v2, W1, W2; ∂) → LY
with Γ (v1) = 0 = Γ (v2) and such that Γ restricts to L f on L(W ). Now the restriction of Γ to L(W, v1, W1; ∂) is a

Quillen minimal model of A. Moreover, since the composition (α | β) ◦ i1 is determined up to based homotopy as α,

the composition (A | B) f ◦ (i1 × 1): Sn × X → Y is determined up to a homotopy under (∗ | f ) as A. Therefore, the

restriction of Γ to L(W, v1, W1; ∂) is actually DG Lie homotopic as a map under L(∗| f ) to LA, by Proposition A.3.

Following the argument given above to show that Φ′ is well-defined, we see that 〈Γ ◦ S1〉 = Φ′(α). Here,

S1: L(W ) → L(W, v1, v2, W1, W2) denotes the derivation, relative to the inclusion, defined by S1(w) = w1 for each

w ∈ W as in Section 2. A similar argument results in an identification 〈Γ ◦S2〉 = Φ′(β). Finally, since ν: Sn → Sn∨Sn

has Quillen model Lν : L(v) → L(v1, v2) given by Lν(v) = v1 + v2, it follows that ν × 1: Sn × X → (Sn ∨ Sn) × X
has Quillen model Lν×1: L(W, v, W ′; ∂) → L(W, v1, v2, W1, W2; ∂) that satisfies Lν×1(w

′) = w1 + w2. Thus we

have 〈LC (w′)〉 = 〈Γ ◦ Lν×1(w
′)〉 = 〈Γ (w1 + w2)〉 = 〈Γ (S1(w) + S2(w))〉 = 〈θA(w)〉 + 〈θB(w)〉. It follows that

Φ′(α + β) = Φ′(α) + Φ′(β), that is, Φ′ is a homomorphism.

Ψ ′ is a well-defined homomorphism: This is established by making small adjustments to the preceding arguments

for Φ′. In this case, the homotopy of the adjoints is stationary at f on X , but is not necessarily stationary on Sn .

Therefore, we adjust the relative cylinder to that for the Quillen minimal model of the inclusion i2: X → Sn × X ,

namely

c: L(W, v1, v2, W ′
1, W ′

2; ∂) → L(W, v, sv, v̂, W ′, sW ′, Ŵ ′; ∂I ).

Since ∂I (v) = 0, we have c(v2) = v + v̂ and hence LB(v) = (LA | LB)(v2) = H ◦ c(v2) = H(v) + H(∂I (sv)) =
LA(v) + dYH(sv). A careful check – use (7) and the remark that follows it – reveals that the formula of Lemma A.2

remains valid for this cylinder. We define an L f -derivation Θ = H ◦ σ ◦ c ◦ S1 and proceed as before.

(B) Φ is a surjection: Suppose given θ ∈ Dern(LX ,LY ;L f ), a cycle derivation of degree n. Define a Lie algebra

map LA: L(W, v, W ′; ∂) → LY by setting LA(w) = L f (w), LA(v) = 0 and LA(w′) = θ(w) for w ∈ W . Just as

in the definition of Φ′, LA ◦ S is an L f -derivation and by construction we have LA ◦ S = θ . It is straightforward

to check that LA commutes with differentials. Let A: Sn
Q

× XQ → YQ be the geometric realization of LA, from

the correspondence between (homotopy classes of) maps between rational spaces and DG Lie algebra maps between

Quillen models. Let i1: Sn
Q

→ Sn
Q

× XQ and i2: XQ → Sn
Q

× XQ denote the inclusions. Since LA ◦ Li1 = 0 and

LA ◦ Li2 = L f , we have A ◦ i1 ∼ ∗ and A ◦ i2 ∼ fQ. Altering the geometric realization A up to homotopy,

if necessary, we may assume A ◦ i1 = ∗ and A ◦ i2 = fQ. Thus, the adjoint a: Sn
Q

→ map∗(XQ, YQ; fQ) of

A represents an element α ∈ πn(map∗(XQ, YQ; fQ)). Since X is finite, [6, Th. II.3.11] and [11, Th. 2.3], imply

πn(map(X, Y ; f )) ⊗ Q ∼= πn(map(XQ, YQ; fQ)). By definition, Φ(α) = 〈θ〉, and so Φ is surjective.

Φ is an injection: Since Φ is a homomorphism, it is sufficient to check that Φ(α) = 0 implies α = 0 ∈
πn(map∗(X, YQ; fQ)). As before, write Φ(α) = 〈θA〉 and suppose θA ∈ Dern(LX ,LY ;L f ) is a boundary so that

θA = D(Θ) for Θ ∈ Dern+1(LX ,LY ;L f ). We refer to the relative cylinder described in Example A.1. Define a

relative homotopy G: L(W, v, W ′, sW ′, Ŵ ′; ∂I ) → LY by setting G = LA on L(W, v, W ′) (so that G starts at LA).

Then set G(sw′) = −Θ(w) and G(ŵ′) = −dY Θ(w) for w ∈ W and extend G as a Lie algebra map. It is automatic

from this definition that G is a DG map. Since σ = 0 on all generators other than those of W ′, it follows that G ◦σ ◦ SI
acts as the L f -derivation −Θ in Dern+1(LX ,LY ;L f ). With the formula from Lemma A.2, we compute as follows:

G ◦ c(w′
2) = G(w′ + ŵ′ + σ(∂I (w

′)))
= LA(w′) − dY Θ(w) + G(σ ((−1)n−1[v, w] + (−1)n SI dX (w)))

= LA(w′) − dY Θ(w) + (−1)nG(σ (SI dX (w)))

= LA(w′) − dY Θ(w) − (−1)nΘ(dX (w)) = LA(w′) − D(Θ)(w) = 0.

Hence we have G ◦ c = (LA | L f ◦p2), where p2: : Sn × X → X denotes projection onto the second factor and L f ◦p2

denotes the Quillen minimal model of the composition f ◦ p2: Sn × X → Y . It follows that A ∼ f ◦ p2: Sn × X → YQ.

Taking adjoints, we obtain that a ∼ ∗: Sn → map∗(X, Y ; f ). Actually, we only obtain this last homotopy as a

free homotopy by taking adjoints, since the homotopy between A and f ◦ p2 is based, but not necessarily under



(∗ | f ): Sn ∨ X → Y . However, a based map from a sphere is based-homotopic to the constant map if it is freely

homotopic to the constant map [12, p. 27]. Thus Φ is injective.

Ψ is an isomorphism: Once again, we need only make slight adjustments to the preceding arguments for Φ. Suppose

given (y, θ) a δ-cycle in Reln(adL f ). Then dY (y) = 0 and D(θ) + adL f (y) = 0, or dY θ(χ) − (−1)nθdX (χ) +
[y,L f (χ)] = 0 for χ ∈ LX . Now define LA: L(W, v, W ′; ∂) → LY by LA(w) = L f (w), LA(v) = (−1)n y, and

LA(w′) = θ(w). Check that LA is a DG map and then argue that Ψ is surjective following the same steps as were

taken for Φ.

To show injectivity of Ψ , suppose that ((−1)nLA(v), θA) ∈ Reln(adL f ) is a boundary in the mapping cone, so that

((−1)nLA(v), θA) = δ(y,Θ). That is, θA = adL f (y) + dY Θ − (−1)n+1ΘdX and dY (y) = (−1)n−1LA(v). Here, we

use the same relative mapping cylinder as was used to show Ψ ′ a homomorphism above. Define a DG homotopy by

setting G = LA on L(W, v, W ′), G(sv) = (−1)n y, G (̂v) = −LA(v), G(sw′) = −Θ(w), and G(ŵ′) = −dY Θ(w).

Argue as for Φ to show that Ψ is injective.

(C) The commutativity of the diagram follows directly from the definitions. Notice that j : map∗(X, Y ; f ) →
map(X, Y ; f ) is the fibre inclusion of the evaluation fibration. Therefore, if a is a representative of α ∈
πn(map∗(X, Y ; f )), we may also take a to be a representative of j#(α) ∈ πn(map(X, Y ; f )). Consequently, the

Quillen minimal model of the adjoint of a representative of j#(α) may be taken as LA with LA(v) = 0. Hence, before

rationalizing, we have Ψ ′( j#(α)) = 〈0, θA〉 = 〈J (θA)〉 = H(J )(〈θA〉) = H(J ) ◦ Φ′(α). �

We deduce some immediate consequences of this result. To begin, we obtain a description of the long exact rational

homotopy sequence of the evaluation fibration map∗(X, Y ; f )
j �� map(X, Y ; f )

ω �� Y for a map f : X → Y .

Stepping back in the Barratt–Puppe sequence, we obtain a fibration

ΩY
∂ �� map∗(X, Y ; f )

j �� map(X, Y ; f )

and thus a long exact sequence in homotopy

· · · ∂# �� πn
(
map∗(X, Y ; f )

) j# �� πn(map(X, Y ; f ))
ω# �� πn−1(ΩY )

∂# �� · · · (2)

Here, we are identifying πn−1(ΩY ) with πn(Y ) in the usual way.

Theorem 3.2. Let f : X → Y be a map between simply connected CW complexes of finite type with X finite. Then
the rationalization of the long exact homotopy sequence (2), as far as the term π1(ΩY ) ⊗ Q, is equivalent to the long
exact derivation homology sequence of the Quillen minimal model L f :LX → LY of f , that is,

· · ·
H(adL f )

�� Hn(Der(LX ,LY ;L f ))
H(J ) �� Hn(Rel(adL f ))

H(P) �� Hn−1(LY )
H(adL f )

�� · · ·
as far as the term H1(LY ).

Proof. The result follows from Theorem 3.1 and the uniqueness of the “third rung” in a commutative ladder (see [8,

Lem. 3.1]) for n ≥ 2. Checking the result at the last square is straightforward using the ideas of the proof of

Theorem 3.1. �

Theorem 3.3. Let f : X → Y be a map between simply connected CW complexes of finite type with X finite. Then,
for n ≥ 2, we have

Gn(Y, X; f ) ⊗ Q ∼= ker{H(adL f ): Hn−1(LY ) → Hn−1(Der(LX ,LY ;L f ))}.
Proof. The group Gn(Y, X; f ) ⊗ Q corresponds to the kernel of ∂: πn−1(ΩY ) ⊗ Q → πn−1(map∗(X, Y ; f )) ⊗ Q in

the long exact rational homotopy sequence of the evaluation fibration. The result thus follows from Theorem 3.2. �

Specializing to the identity map we recover a result of Tanré:

Corollary 3.4 ([13, Cor. VII.4(10)]). Let X be a simply connected, finite complex. Then, for n ≥ 2, we have

Gn(X) ⊗ Q ∼= ker{H(adLX ): Hn−1(LX ) → Hn−1(Der(LX ))}. �



4. Evaluation subgroups and Gottlieb’s question

Let [ , ]w denote the Whitehead bracket in π∗(X) and let P∗(X) denote the subgroup of π∗(X) consisting of

homotopy elements with vanishing Whitehead product with all elements of π∗(X) — the so-called Whitehead center
of π∗(X). It is well known that G∗(X) ⊆ P∗(X); Gottlieb’s question asks when is the inclusion strict? Ganea gave

the first example of inequality in [4]. See [9] for a recent reference and some interesting examples of G1(X) �= P1(X)

with X a finite complex.

Gottlieb’s question admits the following generalization. Given a map f : X → Y set

Pn(Y, X; f ) = {α ∈ πn(Y ) | [α, f#(β)]w = 0 for all β ∈ π∗(X)}.
Then Gn(Y, X; f ) is a subgroup of Pn(Y, X; f ) and we may ask whether these groups can be different. We give

a rather complete answer to this question for rational spaces. Notice that although the relative evaluation subgroup

behaves well with respect to rationalization, in the sense that G∗(Y, X; f ) ⊗ Q = G∗(YQ, XQ; fQ) (at least for X
finite), the inclusion P∗(X, Y ; f ) ⊗ Q ⊆ P∗(XQ, YQ; fQ) is usually strict.

We show that, rationally, the difference between the evaluation subgroup of a map and the generalized Whitehead

center is governed by the “induced derivation” map

I : Hn(Der(LX ,LY ;L f )) → Dern(H(LX ), H(LY ); H(L f ))

which we now introduce. A D-cycle θ ∈ Dern(L , K ; ψ) induces a map H(θ) ∈ Dern(H(L), H(K ); H(ψ)) defined

by H(θ)(〈ξ〉) = 〈θ(ξ)〉 for ξ a cycle of L . If θ is a D-boundary then it carries cycles of L to boundaries of K . Thus

we obtain a linear map I : Hn(Der(L , K ; ψ)) → Dern(H(L), H(K ); H(ψ)) given by I (〈θ〉) = H(θ) for θ a cycle

of Dern(L , K ; ψ).

Now consider the commutative diagram

Hn(LY )
H(adL f )

��

adH(L f ) ���������������������� Hn(Der(LX ,LY ;L f ))

I
��

Dern(H(LX ), H(LY ); H(L f )).

Theorem 4.1. Let f : X → Y be a map between simply connected CW complexes of finite type with X a finite complex.
For n ≥ 1, we have

Pn+1(YQ, XQ; fQ)

Gn+1(YQ, XQ; fQ)
∼= ker(I ) ∩ im(H(adL f )).

Proof. The map H(adL f ) induces a map

H(adL f ):
ker(adH(L f ))

ker(H(adL f ))
→ ker(I ) ∩ im(H(adL f ))

that is easily checked to be an isomorphism. By Theorem 3.3, we may identify ker(H(adL f )) with

Gn+1(YQ, XQ; fQ). We may also identify ker(adH(L f )) with Pn+1(YQ, XQ; fQ) by the correspondence between

the Samelson product in π∗(ΩY ) ⊗ Q and the product on H(LY ). It is easy to check that these identifications are

compatible. �

Example 4.2. We give an example with G∗(YQ, XQ; fQ) �= P∗(YQ, XQ; fQ). Consider f : CP2 → S4 obtained by

pinching out the 2-cell of CP2. This map has Quillen minimal model

L f : L(x1, x3; dX ) → L(u3; dY = 0)

with L f (x1) = 0 and L f (x3) = u3. Here, the subscript of a generator denotes its degree and dX (x1) = 0, dX (x3) =
[x1, x1]. Now adL f (u3) ∈ Der3(LX ,LY ;L f ) is defined by adL f (u3)(x1) = 0 and adL f (u3)(x3) = [u3, u3]. On the

other hand, D = 0 in Der3(LX ,LY ;L f ). Therefore, H(adL f )(〈u3〉) �= 0 and G4(YQ, XQ; fQ) = 0.



We next give a class of examples for which the equality G∗(YQ, XQ; fQ) = P∗(YQ, XQ; fQ) holds. For this, we

review the notion of coformality and some terminology associated with this concept. Suppose that a minimal DG Lie

algebra L(V ; d) has a second (or “upper”) grading on the generating subspace V = ⊕i≥0 V i . This extends to a second

grading of L(V ) in the obvious way, and we write L(V )i for the sub-vector space of L(V ) consisting of all elements

of L(V ) of second grading equal to i . We also write V (i) for the sub-vector space of V consisting of all elements of

V of second grading less than or equal to i . Then we say that L(V ; d) is a bigraded minimal DG Lie algebra if the

differential decreases second degree homogeneously by one, that is, if d(V 0) = 0 and d(V i ) ⊆ L(V )i−1 for i ≥ 1. If

L(V ; d) is a bigraded minimal DG Lie algebra, then the second grading passes to homology, making H(L(V ; d)) a

bigraded Lie algebra. We write Hi (L(V ; d)) for the sub-vector space of H(L(V ; d)) consisting of homology classes

represented by cycles of upper degree equal to i , and we have H(L(V ; d)) = ⊕i≥0 Hi (L(V ; d)).

Definition 4.3. Let L(V ; d) be a bigraded minimal DG Lie algebra in the above sense. We say L(V ; d) is coformal
if Hi (L(V ; d)) = 0 for i > 0, so that H(L(V ; d)) = H0(L(V ; d)). We say that a space X is a coformal space if its

Quillen minimal model is coformal.

There are many interesting examples of coformal spaces: Moore spaces and more generally rational co-H-

spaces, including suspensions; some homogeneous spaces; products and wedges of coformal spaces. This notion

of coformality extends to a map. Suppose that φ: L(V ; d) → L(W ; d′) is a map of bigraded minimal DG Lie algebras

as defined above. If φ(V i ) ⊆ L(W )i for each i ≥ 0, then we say that φ is a bigraded map.

Definition 4.4. A map φ: L(V ; d) → L(W ; d′) of bigraded minimal DG Lie algebras is a coformal map if both

L(V ; d) and L(W ; d′) are coformal, and φ is a bigraded map (with respect to the second gradings that display the

coformality of L(V ) and L(W )). A map of coformal spaces f : X → Y is a coformal map if its Quillen minimal

model L f :LX → LY is a coformal map of bigraded minimal DG Lie algebras.

Theorem 4.5. Let f : X → Y be a coformal map between CW complexes of finite type with X finite. Then
P∗(YQ, XQ; fQ) = G∗(YQ, XQ; fQ).

Proof. Suppose LX = L(W ; dX ) and LY = L(V ; dY ) are coformal, and that L f is bigraded. Take α ∈ Hn(LY ).

With reference to Theorem 4.1, we show that if I ◦ H(adL f )(α) = 0, then H(adL f )(α) = 0. Since Y is coformal, we

may assume α = 〈ξ〉 for a dY -cycle ξ ∈ L(V )0. Observe that adL f (ξ) ∈ Dern(LX ,LY ;L f ) is then a D-cycle that

preserves upper degree. If I ◦ H(adL f )(α) = 0, then for each dX -cycle χ ∈ L(W ), we have adL f (ξ)(χ) = dY (η) for

some η ∈ L(V ). We now use this to construct θ ∈ Dern+1(LX ,LY ;L f ) such that D(θ) = adL f (ξ).

Since X is coformal, we have W = ⊕i≥0 W i , and each w ∈ W 0 is a dX -cycle. Therefore, we have adL f (ξ)(w) =
dY (η) for some η ∈ L(V ). Furthermore, since L is bigraded, we may choose η ∈ L(V )1. Use this to define a linear

map θ0: W 0 → L(V )1 and extend to an L f -derivation θ0 ∈ Dern+1(L(W 0),LY ;L f ). By construction, we have

D(θ0)(χ) = dY (θ0(χ)) = adL f (ξ)(χ) for χ ∈ L(W 0).

Assume inductively that θm ∈ Dern+1(L(W (m)),LY ;L f ) is defined, increasing upper degree homogeneously

by 1, and satisfying D(θm) = adL f (ξ) on L(W (m)). For w ∈ W m+1, consider adL f (ξ)(w) + (−1)n+1θm(dXw).

Since adL f (ξ) is a D-cycle, and dXw ∈ L(W )m ⊆ L(W (m)), we see that this is a dY -cycle. Now use the

coformality of LY – specifically, that H+(LY ) = 0 – to conclude that there exists some ζ ∈ LY with dY (ζ ) =
adL f (ξ)(w) + (−1)n+1θm(dXw). Furthermore, we may choose ζ ∈ L(V )m+2. Clearly, ζ may be chosen so as to

depend linearly on w. So use this to define a linear map θm+1: W m+1 → L(V )m+2 with θm+1(w) = ζ , and extend θm
to an L f -derivation θm+1 ∈ Dern+1(L(W (m+1)),LY ;L f ). By construction, we have

Dθm+1(w) = dY θm+1(w) − (−1)n+1θm+1(dXw)

= dY ζ − (−1)n+1θm(dXw) = adL f (ξ)(w)

for w ∈ W m+1; since D(θm+1) is an L f -derivation, this gives D(θm+1)(χ) = adL f (ξ)(χ) for χ ∈ L(W (m+1)). This

completes the induction and gives an L f -derivation θ ∈ Dern+1(L(W ),LY ;L f ) that satisfies D(θ) = adL f (ξ). The

result follows. �

The following special case is well known.



Corollary 4.6. Let X be a simply connected, finite CW complex. If X is coformal, then P∗(XQ) = G∗(XQ). �

5. The rationalized G-sequence

The G-sequence of a map f : X → Y is a chain complex featuring the Gottlieb groups Gn(X) and the evaluation

subgroups Gn(Y, X; f ). The G-sequence may be constructed as follows. The map f induces a diagram

Ω X
Ω f ��

∂

��

ΩY

∂

��
map∗(X, X; 1)

f∗ �� map∗(X, Y ; f ),

in which the vertical maps are the connecting maps arising from the evaluation fibrations ω: map(X, X; 1) → X and

ω : map(X, Y ; f ) → Y as in Section 3. The maps Ω f and f∗ lead to long exact homotopy sequences and the vertical

maps give homomorphisms of corresponding terms, yielding a homotopy ladder in the usual way. Whenever we have

such a ladder, with exact rows, there is an associated “kernel sequence”, that is, a sequence obtained by restricting the

maps in the top row to the kernels of the vertical rungs. The G-sequence of the map f may be defined, with a shift in

degree, as the kernel sequence of the above homotopy ladder. A portion of this construction is shown here:

· · · p �� Gn+1(X)� �

��

(Ω f )# �� Gn+1(Y, X; f )� �

��

j �� Grel
n+1(Y, X; f )

� �

��

p �� · · ·

· · · p �� πn(Ω X)

∂#

��

(Ω f )# �� πn(ΩY )

∂#

��

j �� πn(Ω f )

Δ
��

p �� · · ·

· · · p̂ �� πn(map∗(X, X; 1))
( f∗)#�� πn(map∗(X, Y ; f ))

ĵ �� πn( f∗)
p̂ �� · · ·

Note that the maps in the G-sequence are just the restrictions of the maps in the long exact homotopy sequence of

the map Ω f : Ω X → ΩY . Thus compositions of consecutive maps in the G-sequence are trivial. However, the kernel

sequence of a commutative ladder of exact sequences need not be exact, and so the G-sequence is a chain complex (of

Z-modules). The original description given in [14,7] (see also [8, Section 1]) represents the G-sequence as an image

sequence, in a way obviously equivalent to the above.

We imitate the above construction in the framework of Lie derivations spaces and adjoints introduced in Section 1.

Begin with the commutative square

L

ad

��

�� K

ad

��
Der(L , L; 1)

ψ∗ �� Der(L , K ; ψ)

of DG vector spaces. We then obtain the following commutative ladder of long exact homology sequences:

· · · H(P) �� Hn(L)

H(ad)

��

H(ψ) �� Hn(K )

H(adψ)

��

H(J ) �� Hn(Rel(ψ))

H(ad,adψ)

��

H(P) �� · · ·

· · · H(P̂) �� Hn(Der(L , L; 1))
H(ψ∗) �� Hn(Der(L , K ; ψ))

H( Ĵ ) �� Hn(Rel(ψ∗))
H(P̂) �� · · ·

(3)

To obtain unambiguous notation, we have written Ĵ : Dern(L , K ; ψ) → Reln(ψ∗) and P̂: Reln(ψ∗) → Dern−1(L) for

the usual inclusion and projection maps in the lower sequence.

Definition 5.1. Let ψ : L → K be a DG Lie algebra map. The nth evaluation subgroup of ψ is the subgroup

Gn(K , L; ψ) = ker{H(adψ): Hn−1(K ) → Hn−1(Der(L , K ; ψ))}



of Hn−1(K ). The nth Gottlieb group (L , d) is the subgroup

Gn(L) = ker{H(ad): Hn−1(L) → Hn−1(Der(L))}
of Hn−1(L). The nth relative evaluation subgroup of ψ Grel

n (K , L; ψ) is the subgroup

Grel
n (K , L; ψ) = ker{H(ad, adψ): Hn−1(Rel(ψ)) → Hn−1(Rel(ψ∗))}

of Hn−1(Rel(ψ)). The G-sequence of is the sequence of kernels from the commutative ladder (3). That is, the

sequence

· · · H(P) �� Gn(L)
H(ψ) �� Gn(K , L; ψ)

H(J ) �� Grel
n (K , L; ψ)

H(P) �� · · · .

Theorem 5.2. Let f : X → Y be a map between simply connected CW complexes of finite type, with X finite. Then
the rationalization of the G-sequence of f

· · · �� Gn(X)
(Ω f )#⊗1�� Gn(Y, X; f ) ⊗ Q

j �� Grel
n (Y, X; f ) ⊗ Q �� · · ·

down to the term Grel
3 (Y, X; f ) ⊗ Q is equivalent to the G-sequence of the Quillen model L f :LX → LY of f ,

· · · �� Gn(LX )
H(L f ) �� Gn(LY ,LX ;L f )

H(J ) �� Grel
n (LY ,LX ;L f ) �� · · ·

down to the term Grel
3 (LY ,LX ;L f ).

Proof. The result is a consequence of Theorem 3.2 but some care must be taken due to the non-natural choices

involved in identifying the long exact homotopy sequence of the evaluation fibration. The argument needed to

overcome this difficulty is the same as that used to deduce the corresponding result, Theorem 3.5, of [8]. �

Remark 5.3. Under our hypotheses, G2(X) ⊗ Q = 0, and there seems little to be gained by trying to extend

Theorem 5.2 beyond this point.

As an application of the above, we consider the question of exactness of the G-sequence for cellular extensions.

We focus on the rationalized G-sequence at the Gn(X) term. Following Lee and Woo [7], define the ω-homology of

a map f : X → Y at this term by setting

Haω
n (Y, X; f ) = ker{ f#: Gn(X) → Gn(Y, X; f )}

im{p: Grel
n+1(Y, X; f ) → Gn(X)} .

For a single cell-attachment, the following is a complete result for the lowest degree in which the (rationalized) G-

sequence can be non-exact at the Gn(X)-term.

Theorem 5.4. Let X be a simply connected finite complex and Y = X ∪α en+1 for some α ∈ πn(X). Suppose the
following three conditions hold:

(1) αQ �= 0;
(2) αQ ∈ Gn(XQ);
(3) Y is not rationally equivalent to a point.

Then the G-sequence of the inclusion i : X → Y is non-exact at the Gn(X) term; indeed, we have Haω
n (Y, X; i) ⊗

Q = Q. Conversely, if any of (1)–(3) do not hold, then Haω
n (Y, X; i) ⊗ Q = 0, that is,

Grel
n+1(Y, X; i) ⊗ Q

p⊗1 �� Gn(X) ⊗ Q
i#⊗1 �� Gn(Y, X; i) ⊗ Q

is exact.



Proof. Clearly, the kernel of i# ⊗ 1: πn(XQ) → πn(YQ) is the subspace Q(αQ) of πn(XQ). If αQ = 0, then

i# ⊗ 1: πn(XQ) → πn(YQ) is injective, and if αQ �∈ Gn(XQ), then the restriction of i# ⊗ 1 to Gn(XQ) of i# is

injective. In either case, Haω
n (Y, X; i) ⊗ Q = 0 by definition. Suppose next that (1) and (2) hold. Then n must be

odd since G2k(X) ⊗ Q = 0 for all k by [2, Th. III]. Suppose (3) does not hold, so that Y �Q ∗. In this case we must

have X �Q Sn for n odd with α a non-trivial class in πn(Sn) ⊗ Q. Now it is straightforward to check that the map

H(P): Grel
n+1(LY ,LX ;Li ) → Gn(LX ) is an isomorphism.

So suppose (1)–(3) hold; again, n is odd. Let HurQ: π∗(X) → H∗(X; Q) denote the rational Hurewicz

homomorphism and consider two cases. First suppose that HurQ(α) = 0. We show that H(ad, adLi ): Hn(Rel(Li )) →
Hn(Rel((Li )∗)) is injective and conclude that Grel

n+1(Y, X; i) ⊗ Q = 0 from Theorem 5.2. Write the Quillen model

for X as L(W ; dX ). A Quillen model for i : X → Y is an inclusion L(W ) → L(W ) � L(y) with y of degree n. The

differential d for L(W ) � L(y) satisfies d(y) = χ ∈ L(W ) a cycle of degree (n − 1) in LX whose homology class

represents αQ. Since HurQ(α) = 0, χ may be taken to be decomposable in LX . Thus L(W ) � L(y) with differential

d is actually the Quillen minimal model for Y .

Any cycle ζ ∈ Reln(Li ) = (LX )n−1 ⊕(LY )n may be written in the form ζ = (−dY (λy +ξ), λy +ξ) for λ ∈ Q and

ξ ∈ (LX )n . Suppose that H(ad, adLi )(〈ζ 〉) = 0. Then (ad, adLi )(ζ ) = δ(θ, ϕ) for some (θ, ϕ) ∈ Reln+1((Li )∗). In

particular, we have adLi (λy + ξ) = (Li )∗(θ) + Dϕ ∈ Dern(LX ,LY ;Li ). Now choose any indecomposable w ∈ W .

On this indecomposable, we evaluate as follows:

adLi (λy + ξ)(w) = λ[y, w] + [ξ, w] (4)

and

((Li )∗(θ) + Dϕ)(w) = Li ◦ θ(w) + dY ϕ(w) − (−1)n+1ϕdX (w). (5)

It is direct to check that all terms of (5) are independent of [y, w]. Thus the kernel of H(ad, adLi ): Hn(Rel(Li )) →
Hn(Rel((Li )∗)) consists of classes represented by cycles of the form ζ = (−dY (ξ), ξ) for ξ ∈ (LX )n . Since

dY (ξ) = dX (ξ), we have δ(ξ, 0) = (−dX (ξ), ξ) = ζ . So H(ad, adLi ): Hn(Rel(Li )) → Hn(Rel((Li )∗)) is injective

and hence by Theorem 5.2, Grel
n+1(Y, X; i) ⊗ Q = 0.

Finally, suppose that HurQ(α) �= 0. In this case, a result due to Oprea ([10] but see also [5, Lem. 1.1]) implies

we have a rational splitting X �Q X ′ × Sn such that X ′ is non-trivial and α corresponds to a non-trivial class in

πn(Sn) ⊗ Q. From Corollary 2.2, we may write the Quillen model of X as L(W, v, W ′; ∂), with v of degree n − 1

and ∂ given by ∂(v) = 0, ∂(w) = dX ′(w) and ∂(w′) = [v, w] − S(dX ′(w)) (recall that n is odd). Then a Quillen

model for i : X → Y is given by the projection Li : L(W, v, W ′) → L(W, W ′) defined by Li (v) = 0 and Li (x) = x
for x ∈ W ⊕ W ′. The differential ∂ ′ in L(W, W ′) is the projection of ∂ , that is, ∂ ′ = Li ◦ ∂ . If 〈v〉 ∈ Gn(LX )

is in the image of H(P): Grel
n+1(LY ,LX ;Li ) → Gn(LX ), then without loss of generality we may assume that

(ad(v), 0) = δ(θ, φ) for some (θ, φ) ∈ Reln+1((Li )∗). We show that this leads to a contradiction. For this, pick

an element w0 ∈ W of lowest degree, so that ∂(w0) = ∂ ′(w0) = 0, ∂(w′
0) = [v, w0], and ∂ ′(w′

0) = 0. The identity

Dθ = −ad(v) in Dern−1(LX ,LX ; 1) yields θ(w0) = w′
0 + α for some ∂-cycle α ∈ L(W, v). Then the identity

Li ◦θ + Dφ = 0 in Dern(LX ,LY ;Li ) implies that w′
0 +Li (α) is decomposable in L(W, W ′), which is a contradiction

since Li (α) ∈ L(W ) and hence independent of the indecomposable w′
0 ∈ W ′. Hence H(P)(Grel

n+1(LY ,LX ;Li )) does

not contain 〈v〉 in this case either. �

We conclude with an example of vanishing rational ω-homology. In the following result, we use the ideas discussed

before Theorem 4.5, concerning the notion of a coformal map.

Theorem 5.5. Let f : X → Y be a coformal map between CW complexes of finite type, with X finite. Then
Haω

n (Y, X; f ) ⊗ Q = 0, that is,

Grel
n+1(Y, X; f ) ⊗ Q

p⊗1 �� Gn(X) ⊗ Q
f#⊗1 �� Gn(Y, X; f ) ⊗ Q

is exact, for each n ≥ 3.

Proof. We will use Theorem 5.2 and show that ker{H(L f )} ⊆ im{H(P)}. From Definition 4.4, we assume that both

LX and LY admit upper (second) gradings with the properties described in Definition 4.3, and that L f preserves upper

degrees. Let α = 〈ξ〉 ∈ Gn+1(LX ) satisfy H(L f )(α) = 0. We assume ξ is of upper degree zero in the bigraded model



for LX . Furthermore, L f (ξ) = dY (y) for some y ∈ (LY )n+1 that we may assume is of upper degree 1. Since α is

Gottlieb, ad(ξ) = D(ψ) for some derivation ψ ∈ Dern+1(LX ,LX ; 1) and using the coformality of LX again, we

may assume ψ increases upper degree homogeneously by 1. The pair (ξ, −y) ∈ Reln+1(L f ) is a δ-cycle that satisfies

P(ξ, −y) = ξ . We now show that (ξ, −y) represents an element in Grel
n+2(LY ,LX ;L f ), that is, we show the pair

(ad(ξ),−adL f (y)) bounds in Reln+1((L f )∗). Set Θ = −(L f )∗(ψ) + adL f (y), a derivation in Dern+1(LX ,LY ;L f ).

It is direct to check that D(Θ) = dY ◦Θ − (−1)n+1Θ ◦ dX = 0. Moreover, Θ increases upper degree homogeneously

by 1. Now adapt the proof of Theorem 4.5 to the current situation, by replacing the derivation adL f (ξ) in that proof by

Θ . The inductive argument used there now results in a derivation θ ∈ Dern+2(LX ,LY ;L f ), constructed in the same

way only increasing upper degree by 2, that satisfies Θ = D(θ). Then the pair (−ψ,−θ) ∈ Reln+2((L f )∗) satisfies

δ(−ψ, −θ) = (ad(ξ), −adL f (y)). �

Appendix A. Some DG Lie algebra homotopy theory

The main results of this paper use a DG Lie algebra counterpart to a result of [8]; we now establish this result.

Here, the main new ingredient is to show that the relation of homotopy under a map is preserved through the passage

from Sullivan to Quillen models. Since this is a technical appendix, we assume a greater degree of familiarity with

techniques from rational homotopy theory than in the main body of the paper. We use the notation and vocabulary

from the appendix of [8] without comment.

Our main reference for this material is [1]; see also [13, Ch. II.5] and part IV of [3]. The algebraic notion of

homotopy that we use here is defined in terms of a cylinder object. (The notion is discussed as “left homotopy” of

DG Lie algebra maps in [13], although only in the absolute case.) In the category of DG Lie algebras, a cofibration
corresponds to a map of DG Lie algebras of the form L → (L � L(V ), d), where L is a sub-DG Lie algebra of

(L � L(V ), d). Some authors refer to this as a Koszul–Quillen extension, or a free extension. We use an arrow of the

form “ �� �� ” to indicate that the map is a cofibration. The results of [1], particularly in Sections II.1 and II.2 may be

specialized to the context of DG Lie algebras using the dictionary “cofibration” ≡ free extension, “weak equivalence”

≡ quasi-isomorphism, “fibrant” ≡ any DG Lie algebra, and “cofibrant” ≡ free DG Lie algebra.

Given a cofibration i : L �� �� M and a map g: L → N , we say a map G: M → N is a map under g if G ◦ i = g.

The pushout

L �� i ��
��

i
��

M

i2

��
M

i1

�� M �L M

(6)

defines a folding map ∇: M �L M → M . (See [1, I.9.12] for pushouts in the DG Lie algebra category.) Given maps

G, G ′: M → N under g, we also obtain a map (G | G ′): M �L M → N . A fact that we use frequently here is that

any map of DG Lie algebras may be factored as a cofibration followed by a quasi-isomorphism (adapt [1, I.7.21], see

also [3, (22.10)]). Given such a factorization of ∇ as

M �L M �� c �� IL M � �� M,

we say that c is a cylinder object for i . Then maps G and G ′ are homotopic under g if there is a homotopy under g,

that is, a map H : IL M → N , such that H ◦ c = (G | G ′). Since every DG Lie algebra is “fibrant”, [1, II.2.2] implies

that any convenient cylinder object may be used.

We describe the cylinder that we use in the proof of Theorem 3.1. Suppose X has Quillen minimal model L(W ; dX ).

Then L(W, v, W ′; ∂), with generators and differential as specified in Corollary 2.2, is a model for Sn × X . Evidently,

the inclusion i : Sn ∨ X → Sn × X has Quillen minimal model Li : L(W, v) → L(W, v, W ′; ∂) given by the obvious

inclusion.

Example A.1. We follow [1, I.9.18] for the description of a cylinder for the cofibration Li : L(W, v) →
L(W, v, W ′; ∂). Form the pushout as in (6) to obtain

L(W, v, W ′) �L(W,v) L(W, v, W ′) = L(W, v, W ′
1, W ′

2; ∂).



Here, W ′
1 and W ′

2 denote copies of W ′ and the differential ∂ extends that of L(W, v, W ′; ∂) in the obvious way. Then

the folding map ∇ factors as follows:

L(W, v, W ′
1, W ′

2; ∂)
��

c
�����������������

∇ �� L(W, v, W ′; ∂)

L(W, v, W ′, sW ′, Ŵ ′; ∂I )

q

�

�����������������

Here, sW ′ is the suspension of W ′ and Ŵ ′ denotes a copy of W ′. The differential ∂I extends that of L(W, v, W ′; ∂),

we make the obvious modification of notation from Corollary 2.2 and write here ∂I (w
′) = (−1)n−1[v, w] +

(−1)n SI (∂I (w)). On the other generators we have ∂I (Ŵ ′) = 0 and ∂I (sw′) = ŵ′ for each w′ ∈ W ′. Furthermore, we

have c(w) = w, c(v) = v, and c(w′
1) = w′. To identify c(w′

2), we introduce the following notation. Let

σ : L(W, v, W ′, sW ′, Ŵ ′) → L(W, v, W ′, sW ′, Ŵ ′)

denote the derivation of degree +1 defined on generators by σ(w′) = sw′ for each w′ ∈ W ′ and σ = 0 on all

other generators. Then [∂I , σ ] = ∂I ◦ σ + σ ◦ ∂I is a derivation of degree 0 on L(W, v, W ′, sW ′, Ŵ ′) that may be

exponentiated (it is “locally nilpotent”) to obtain an automorphism e[∂I ,σ ] of L(W, v, W ′, sW ′, Ŵ ′). To complete our

description of the cylinder, we set c(w′
2) = e[∂I ,σ ](w′) for each w′

2 ∈ W ′
2. The quasi-isomorphism q is the obvious

projection with q(sW ′) = 0, q(Ŵ ′) = 0. Then c is our cylinder for the inclusion Li .

We may be more explicit about the cylinder described above. From the definition of the derivation [∂I , σ ], we find

that [∂I , σ ] = 0 on all generators other than those of W ′, where we have [∂I , σ ](w′) = ŵ′ + σ(∂I (w
′)). Furthermore,

we have σ ◦ σ = 0 – to confirm this identity, use σ ◦ σ = 1
2 [σ, σ ], so that σ ◦ σ acts as a derivation – and

[∂I , σ ](ŵ′) = 0. It follows that the expression for e[∂I ,σ ](w′) reduces somewhat, to yield

c(w′
2) = w′ + ŵ′ +

∑
r≥1

1

r
(σ ◦ ∂I )

r (w′). (7)

This latter formula is actually valid in any cylinder (cf. the expression used in [13, II.5.1]). For our particular situation,

there is a further simplification:

Lemma A.2. In the cylinder described above, for a Quillen minimal model Li of the inclusion i : Sn ∨ X → Sn × X,
we have (σ ◦ ∂I )

r = 0 for r ≥ 2 and hence

c(w′
2) = w′ + ŵ′ + σ(∂I (w

′)).

Proof. Because σ is zero on L(W, v), we have σ(∂I (w
′)) = σ((−1)n−1[v, w]+(−1)n SI ∂I (w)) = ±σ ◦SI (∂I (w)) ∈

L(W, Ŵ ′). Since ∂I (Ŵ ′) = 0 and L(W ) is a sub-DG Lie algebra, L(W, Ŵ ′) is stable under ∂I . Furthermore,

σ(W ) = 0 and σ(Ŵ ′) = 0. Hence (σ ◦ ∂I )
2 = 0. �

For the proof of Theorem 3.1, we apply the following result to the inclusion i : Sn ∨ X → Sn × X and

g = (∗ | f ): Sn ∨ X → Y .

Proposition A.3. Choose and fix a minimal model Lg:LU → LY for a map g: U → Y . Let i : U → Z be a cofibration
that induces an injection in rational homology groups. Then each map F : Z → Y under g has a minimal model
LF : L(W, v, W ′; ∂) → LY that is a map under Lg. If F and F ′ are homotopic under g, then LF and LF ′ are
homotopic under Lg.

In the appendix to [8], we used the Sullivan functor, denoted A∗(-), to pass from spaces to DG algebras. Here, we

use the Quillen functor to pass from DG algebras to DG Lie algebras (see [3, Sec. 22(e)] or [13, I.1.(7)] for details).

In fact, we only use general properties of this functor: it is contravariant; it preserves quasi-isomorphisms; it takes a

surjective DG algebra map to a cofibration. In the following, we use L to denote the composite of the Sullivan and

the Quillen functors. That is, we write L(X) to denote the DG Lie algebra obtained by applying the Quillen functor

to A∗(X). Note that this departs from the convention of [3], for instance, in which L is used to denote the Quillen

functor itself.



Lemma A.4. Suppose given a cofibration i : X → Z, a map f : X → Y , and maps F, G: Z → Y homotopic under f .
Then L(F), L(G): L(Z) → L(Y ) are DG Lie homotopic as maps under L( f ): L(X) → L(Y ).

Proof. Adjust the argument of [8, Lem. A.3], allowing for the fact that L is covariant whereas A∗(-) is

contravariant. �

It remains to show that the relation of homotopy under is preserved through the passage to minimal models in the

DG Lie algebra setting. We begin by recalling the construction of the Quillen minimal model L f :LX → LY of a

map f : X → Y . Let ζX :LX → L(X) and ζY :LY → L(Y ) be Quillen minimal models of the spaces. Factor ζY as a

quasi-isomorphism followed by a surjection, to obtain

LY αY

� �� LY � E(L(Y ))

βY

�� γY �� �� L(Y ). (8)

The notation E(L) for a DG Lie algebra L denotes the acyclic DG Lie algebra L(W, DW ) with W isomorphic to

the underlying module of L . The quasi-isomorphism αY is simply the inclusion of LY as a DG Lie subalgebra, and

the surjection γY is the unique map that restricts to ζY on LY and the identity on the generators of E(L(Y )). In fact,

any map of DG Lie algebras may be factored in such a way. This construction is the DG Lie algebra analogue of

the factorization described in [3, Sec. 12(b)] for DG algebras. It is described in [1, I.7.13] in the setting of DG chain
algebras. Since ζY itself is a quasi-isomorphism, so too is γY . Furthermore βY , the obvious retraction of αY indicated,

is also a surjective quasi-isomorphism. Since γY is thus a surjective quasi-isomorphism, we may lift L( f )◦ζX through

it to obtain a map φ f :LX → LY � E(L(Y )) that satisfies γY ◦ φ f = L( f ) ◦ ζX . We set L f = βY ◦ φ f .

Proof of Proposition A.3. Consider the diagrams

LX
ζX

� ��
��

Li

��

L(X)
��

L (i)
��

LZ
ζZ

� �� L(Z)

and LX
ζX

� ��
��

φ

��

L(X)
��

L (i)
��

LX � L(V ) � �� L(Z).

(9)

We begin by choosing a model for the cofibration i : X → Z such that the left-hand diagram commutes. The map

L(i): L(X) → L(Z) is a map of free Lie models and as such encodes the induced homomorphism H∗(i; Q) as the

(suspension of the) homomorphism induced on homology of the DG modules of indecomposables (cf. [3, (24.3)]).

Then we factor L(i) ◦ ζX :LX → L(Z) as a cofibration followed by a quasi-isomorphism to obtain the right-hand

commutative diagram. If this construction is carried out in a “minimal” way, as described in [3, Sec. 22(f)], for

instance, then the condition of injectivity on H∗(i; Q) results in the free extension LX � L(V ) being minimal as a DG

Lie algebra, that is, the differential is decomposable. So we may take this as the minimal model of Z .

Next we observe that a map F : Z → Y under f : X → Y has a Quillen minimal model LF that is a map under a

given choice of L f . For suppose φ f :LX → LY � E(L(Y )) is a given lift of L( f )◦ ζX through γY that defines a fixed

choice of Quillen model of f as L f = βY ◦ φ f , as above. Since the left-hand diagram of (9) commutes, we have the

following commutative diagram of solid arrows

LX
φ f ��

��
Li

��

LY � E(L(Y ))

� γY
����

LZ

φF

��

L (F)◦ζZ

�� L(Y ).

A lift ΦF as indicated exists, that is also a map under φ f , by [3, Prop.2.11]. Such a lift is unique, up to DG Lie

homotopy under φ f , by [1, II.1.11(c)]. Then we have LF ◦ Li = βY ◦ φF ◦ Li = βY ◦ φ f = L f , as claimed.

The remainder of the proof follows the same steps as the last part of the proof of [8, Lem. A.2], hence we omit

it. �
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