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designed to promote mixing, with one example being the
spiral mandrel die for annular products [28, 29].

Mixing characterization and quantification is not an easy
task and still poses many challenges. Among the measures
most frequently used to assess the degree of mixing in a system
are gross uniformity and intensity of segregation [30], scale of
segregation [31], and striation thickness [32]. Prediction of
minor component spatial distribution inside the extruder by
using a particle tracking technique in numerical simulations
allows mixing characterization through pairwise correlation
functions [33, 34]. More recently, Renyi entropies have been
employed as a rigorous measure of distributive mixing in
polymer processing equipment [35, 36].

Entropic measures are being applied in many fields of
science such as statistical mechanics [37, 38], biology and
medicine ]39–41], cognitive science [42, 43], economics [44,
45], and geology [46, 47], to list just a few examples. In pattern
recognition, Cheng et al. [48, 49] introduced the entropy-based
fuzzy homogeneity approach and the method of homograms
applied to image threshold and segmentation. Entropic image
analysis has also been used to assess the level of image com-
pression, as was shown by Tavakoli [50].

In this work we propose an entropic measure to assess
color homogeneity and deviations from an ideal color and
employ this measure as a tool to assess distributive mixing
efficiency in a single screw extruder. Entropy is the rigorous
measure of disorder or system homogeneity. Since we are
interested in measuring the degree of distributive mixing
achieved in the equipment, we propose to use entropy to
quantify color homogeneity as a measure of distributive
mixing and furthermore employ it as a tool for equipment
design optimization. The information (Shannon) entropy
defined in Eq. 1 below is the standard measure [51] of
homogeneity as it is uniquely determined by the following
common-sense (Khinchin) requirements [52]: (i) the lowest
entropy corresponds to one of the probabilities being unity
and the rest being zero (i.e., total information, perfect order,
highest inhomogeneity); (ii) the largest value for the entropy
is achieved when all probabilities are equal to each other
(i.e., the absence of any information, complete disorder,
perfect homogeneity); and (iii) the entropy is additive over
partitions of the outcomes. One important consequence of
introducing the entropic measure, which is the central con-
cept of information theory, into the field of color character-
ization is the linkage of this applied engineering field to
rigorous methods employed in the rest of the sciences and
engineering.

BACKGROUND

Entropy is the rigorous measure of mixing. The infor-
mation entropy for a particular experimental condition with
a set of M possible outcomes is:

S � ��
i�1

M

piln pi (1)

where pi is the probability of occurrence of outcome i [51].
When assessing the particle distribution of a minor com-

ponent throughout a polymer matrix by employing entropy,
we divide our domain of interest (which can be two- or
three-dimensional) into M equal size regions (bins) and then
calculate particle concentrations in each bin as estimators of
the probabilities. For a certain number of bins M, maximum
entropy is reached if particle concentrations are equal in all
bins (particles are evenly distributed throughout the sys-
tem—ideal distribution). This maximum has a value of ln
M. Thus an index of system homogeneity can be obtained
by dividing the information entropy by ln M. Shannon
called this index a relative entropy.

Srel �
S

ln�M�
(2)

In previous work [35, 36, 53] we have shown that the
number of bins chosen to describe the quality of distributive
mixing is an important parameter as it defines the scale of
observation (the “magnifying glass”) at which one looks at
the system. The smaller the number of bins, the larger the
scale of observation at which the observer evaluates the
quality of particle distribution. At a very small scale (M
� N) some bins will be depleted of particles and the particle
distribution will thus differ from the uniform distribution.
Furthermore, to estimate probabilities by using frequencies,
we need large numbers of particles. Thus the number of
particles in the system sets an upper limit for the number of
bins to be used for system characterization.

When more than one minor component species is present in
the system, for instance particles of different colors, the system
entropy can be calculated by using joint probabilities pc,j (prob-
ability for a particle to be of a color “c” and in bin “j”):

S � ��
c�1

C �
j�1

M

pc, jln pc, j (3)

with C being the total number of species present in the
system.

When using Bayes theorem, the joint probability for a
particle to be located in bin j and to be of a color c can be
calculated from: pc,j � pc/j pj, where pc/j is the probability of
finding a particle of a color “c” conditional on the bin “j”
and pj is the probability for bin “j”. With that we can write:

S � ��
c�1

C �
j�1

M

��pc/jpj�ln�pc/jpj��. (4)

It follows:

S � ��
j�1

M

pj �
c�1

C

�pc/jln pc/j� � �
c�1

C

pc/j �
j�1

M

�pjln pj� (5)



and finally because �
c�1

C pc/j � 1 for all values of j

S � �
j�1

M

� pjSj�species�� � S�locations� (6)

where

Sj�species� � ��
c�1

C

�pc/jln pc/j� (7)

S�locations� � ��
j�1

M

�pjln pj�. (8)

Sj(species) is the entropy of species intermixing at the
location of bin j, and S(locations) is the entropy associated
with the overall spatial distribution of particles irrespective
of colors.

If the species are distinguished by color, Eq. 6 can also
be written as:

S � Slocations�colors� � S�locations� (9)

where

Slocations�colors� � �
j�1

M

� pjSj�colors��. (10)

Slocations(colors) is a spatial average of the entropies
associated with color intermixing, conditional on location. It
is maximized for the particular homogeneous state charac-
terized by pc/j � 1/C in each bin “j” ranging from 1 to M.
The maximum value of Slocations(colors) is lnC; thus to
obtain an index of color homogeneity with values between
0 (no color intermixing) and 1 (ideal intermixing), we
normalize this spatial average entropy by lnC.

In the following we will illustrate the use of this index of
color homogeneity to analyze extrudate samples obtained
by mixing yellow and blue polymeric concentrates in a
single screw extruder.

PROCEDURE

Mixing experiments using pellets of an acrylonitrile
butadiene styrene (ABS) resin of two colors (yellow and
blue) were performed at Dow Chemical Co. Details of the
experimental procedure are described in Ref. 53. Figure 1
shows the extrudate from the “screw crash” experiment and
images of 7 cuts obtained in the metering section of the
single screw extruder (each corresponding to one turn of the
screw). We will analyze the color homogeneity of the 7

FIG. 1. (a) Extrusion sample. (b) Cuts analyzed. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]



consecutive cuts of the extrudate sample in terms of an
index of color homogeneity:

Indexcolor �
Slocations�colors�

ln C
. (11)

To simplify the analysis, colored pictures can be con-
verted into grayscale images, which in turn can be examined
for their homogeneity. In this case the intensity of gray color
in each pixel/bin can be considered as a combination of a
certain number of white and black particles, the relative
concentration of which can be used as estimators of the
probabilities [53].

Alternatively, one can analyze the colored pictures by em-
ploying the standard red-green-blue (RGB) primary colors at
each pixel of the image. Thus by using a digital camera and
standard image processing software (e.g., Adobe� Photo-
shop�), a matrix of primary color intensities at each pixel of
the image can be generated. At a 24-bit image color depth, the
intensity for each primary color/channel ranges from 0 to 255.
The channels can be analyzed separately (monochromatic im-
ages), with the color intensities interpreted as mixtures of
“white” and “black” particles summing up to 255 at each pixel.
Thus the intensity of 0 corresponds to 0 “white” and 255
“black” particles, while the intensity of 255 corresponds to 255
“white” and 0 “black” particles. The relative concentrations of
“white” and “black” particles serve to calculate the respective
probabilities.

The overall color homogeneity will depend on how
evenly “black” and “white” particles are distributed
throughout the whole image. An equal number of “black”
and “white” particles per each pixel means uniform inten-
sity (level of gray) throughout the whole image, which
brings the index of color homogeneity to 1. The maximum
number of bins for the calculation will correspond to the
number of pixels on the image. Thus at higher image
resolutions we can estimate the index of color homogeneity
at smaller scales of observation.

Furthermore, we can analyze the images by comparison
with an “ideal” color. In the case of gray-scale images this
entails choosing a particular combination of black and white
particles to obtain the “ideal gray,” which is not necessarily
obtained at equal concentrations of black and white particles.
In the case of color images, we need to choose an “ideal” color
translated into different “ideal” intensities for the three RGB
channels. In turn, each of these “ideal” intensities is viewed as
a combination of “black” and “white” particles summing up to
255. To account for the different black/white ratios in the
“ideal” case scenario, we take the pc/j in Eq. 7 (with c standing
for black or white) to be:

p*black/j �
nblack/j/nideal black

nblack/j/nideal black � nwhite/j/nideal white

(12)and

p*white/j �
nwhite/j/nideal white

nblack/j/nideal black � nwhite/j/nideal white

where nblack/j and nwhite/j are the numbers of “black” and
“white” particles in bin j and nideal black and nideal white are the
numbers of “black” and “white” particles corresponding to
the ideal combination. One can think of nideal black groups of
black particles and of nideal white groups of white particles,
and then Eq. 12 provides the probabilities that such a group
in bin #j is black or white, respectively. Note that the index
color is one—that is, maximum—when in each bin the ratio
of “black” to “white” particles is the same and is equal to
the preferred gray shade:

nblack/j

nwhite/j
�

nideal black

nideal white
. (13)

Thus the color index defined in Eq. 11 constitutes a simul-
taneous measure of color homogeneity and of closeness to
the “ideal” gray shade.

The cuts shown in Fig. 1b include dark regions because
of contamination or the presence of voids. In analyzing the
images for color homogeneity and deviation from an “ideal”
color, one can filter out those defects and the image corners
by attributing such regions to “exclusion” intensity.

RESULTS AND DISCUSSION

Figure 2 shows four sets of pictures representing the
converted grayscale and the three split RGB channels (RGB
monochromatic intensity maps) of the original color im-
ages. To calculate an index of color homogeneity, one can
define an “ideal” color or one can choose as the “ideal” the
average value for the region of interest. Moreover, the
definition of “ideal” can be with respect to the grayscale
image or with respect to the color image. In the last case, the
definition of “ideal” entails identifying the relative intensi-
ties of the split channels that make up for the “ideal” color.

In our analysis we have chosen nideal white/nideal black

combinations to be 70/185 for the converted grayscale im-
age. In the RGB analysis we choose the relative intensities
translated as nideal white/nideal black to be 15/240 for the red
split channel, 95/160 for the green split channel, and 25/230
for the blue split channel. It is important to mention that
because these combinations were not chosen on the basis of
the average values for the entire region of study, the index
of color homogeneity does not necessarily reach 1.0 at the
largest scale of observation (M � 1).

Figure 3a shows the results obtained by using the gray-
scale image. The index of color homogeneity shows a
general trend of improvement from the first to the last cut,
reflecting the color intermixing progression along the ex-
truder line. At small scales of observation (10,000 to 54,000
bins), we observe relative declines in the index of color
homogeneity at the 5th and 7th cuts. Examination of the
grayscale image (Fig. 2a) reveals a slightly brighter large
region on the right hand side of cut #5 as well as visible
non-uniformities for cut #7. These features of the images do
not play a significant role when the analysis is carried out at



FIG. 2. (a)–(d): Grayscale and RGB monochromatic intensity maps of analyzed cuts. a, Gray; b, red channel;
c, green channel; d, blue channel.



larger scales of observation (10 to 1000 bins). At the large
scales, the overall distribution of bright/dark regions ap-
pears to be quite uniform for cuts #4 through #7. Another
interesting observation is the slight decline of the index at
the 2nd cut depicted at large scales of observation. This in
fact reflects that the large bright portions are more evenly
distributed throughout the first image than they are for the
second one.

In general, although the evolution of the index of color
homogeneity along the extruder line reflects the correct
trend of color upgrading, the analysis shows an overall low
sensitivity in depicting slight changes in the quality of the
images, because the overall deviations of intensity at the
grayscale level are not so pronounced.

The color homogeneity measurements based on the in-
tensities of the split RGB channels provide more opportu-

nity in the selection of a higher sensitivity analysis. In the
example taken here, with a color scheme based on mostly
yellow and green, the red channel provides better sensitivity
(higher contrast). The intensity deviations of the red channel
are more pronounced when moving between yellow (high
intensity of red) and green (low intensity of red) colors.
Indeed, the intensity maps for the red channel depicted in
Fig. 2b support this notion.

Because the contrast between bright and dark regions is
more pronounced on the red channel, the sensitivity of the
color homogeneity index increases, as shown in Fig. 3b. The
overall evolution of the index along the extruder length
shows similar trends with the analysis based on the gray-
scale images.

To complete the analysis, we computed the indices of
color homogeneity for the green and blue channels, and the

FIG. 3. (a)–(d): Evolution of color homogeneity index based on the grayscale and RGB entropic analysis. a,
Based on grayscale; b, based on red channel; c, based on green channel; d, based on blue channel.



results are shown in Fig. 3c and d. In the experiment
presented here, the green channel map is apparently not
much different from the grayscale representation of the
pictures. Overall, the green channel is slightly brighter than
the grayscale one and shows some less-marked intensity
deviations, which translates into slightly less sensitivity for
the index of color homogeneity with an analogous evolution
trend.

In contrast with all the previous observations, the evo-
lution for the blue channel–based index appears to be quite
flat from the 1st to the last cut. The blue channel does not
contribute significantly to the color images in the green/
yellow palette. In fact, all 7 cuts show quite low, evenly
distributed intensity of blue (Fig. 2d). The plunge of the
index at the 5th cut can be explained by a slightly higher
overall intensity of this cut as compared with the other ones.
This may very well be an artifact in the analysis. At this
point it is important to stress that to minimize artifact, one
should consider using a photo cell with standardized light
conditions and a polarizing filter when taking the pictures
for analysis. It is also possible to exclude the undesirable
dependence on external light conditions in the analysis by
using HIS (hue-intensity-saturation) maps rather than RGB
maps.

CONCLUSIONS

In this work we propose a method of quantitative anal-
ysis for distributive mixing in polymer extrusion based on
an entropic measure of color homogeneity for the extrudate.
We illustrate the method by assessing the dynamics of
distributive mixing in an industrial single screw extruder
used to mix yellow and blue concentrates of ABS resin. The
entropy measures rigorously the absolute quality of mixing
achieved at a given scale of observation.

While the technique requires further tuning (such as
better ways to chose the ideal combinations of intensities in
the grayscale or split RGB channels analysis, as well as a
standard shooting procedure for taking the color images),
the method offers a quantitative, inexpensive way for in-
dustrial mixing quality control and optimization.
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