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Laminar/turbulent oscillating 
f low in circular pipes 

Kyung H. Ahn* 
Institute for Computational Mechanics in Propulsion, NASA Lewis Research Center, Cleveland, 
OH, USA 

Mounir B. Ibrahim 
Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA 

A two-dimensional oscillating f low analysis was conducted simulating the gas f low inside 
Stirling engine heat exchangers. Both laminar and turbulent oscillating pipe f low were 
investigated numerically for Remax=l,920 ( V a = 8 0 ) ,  10,800 ( V a = 2 7 2 ) ,  19,300 
(Va = 272), and 60,800 (Va = 126). The results are here compared with experimental 
results of previous investigators. Predictions of the f low regime on present oscillating f low 
conditions are also checked by comparing velocity amplitudes and phase difference with 
those from laminar theory and quasi-steady profile. A high Reynolds number k-e 
turbulence model was used for turbulent oscillating pipe flow. Finally, the performance 
of the k-e model was evaluated to explore the applicability of quasi-steady turbulent 
models to unsteady oscillating f low analysis. 

Keywords: unsteady flows; oscillating flows; turbulent modeling; computational fluid 
dynamics; critical Reynolds number 

I n t r o d u c t i o n  

The problems of periodic turbulent internal flow have been 
studied by many research workers experimentally as well as 
computationally (Hershey and Im 1968; Hino et al. 1983; Hino 
et al. 1976; Mizushina et al. 1975; Ohmi et al. 1982a, 1982b; 
Ramaprian and Tu 1983; Sarpkaya 1966). The periodic flow 
can be divided into two classes: (1) unsteady flow with nonzero 
mean velocity and (2) unsteady flow with zero mean velocity. 
Previous researchers have called the first class of periodic flow 
pulsating flow, and the second class oscillating flow. 

The effect of imposed periodic pulsations on the time- 
averaged properties has been previously investigated. Ramaprian 
and Tu (1983) found that for sufficiently high frequencies, 
the time-averaged flow variables, e.g., velocity, wall shear 
stresses, and power loss due to friction, were affected by 
the imposed unsteadiness. They also concluded that, from 
their computations, a quasi-steady turbulence model cannot 
adequately describe unsteady flow conditions, at least for high 
frequencies. Ohmi et al. (1982a) performed extensive pulsating 
flow experiments to determine transition criteria via non- 
dimensional parameters on the basis of velocity measurements. 
The early investigations of Sarpkaya (1966), by detecting the 
growth rate of artificial disturbances, and of Hershey and Im 
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(1968), by friction factor measurements, show that critical 
Reynolds number Rem,~.c is much different from the steady-flow 
value of about 2,300. 

Hino et al. (1983, 1976) investigated oscillating turbulent 
flow in pipes and rectangular ducts experimentally for various 
Reynolds numbers and frequencies. Many useful turbulent-flow 
data have been generated through their work. They found that 
the turbulent energy production becomes exceedingly high in 
the decelerating phase, but the turbulence is reduced to a very 
low level at the end of the decelerating phase and in the 
accelerating stage of reversal flow. 

So far, no extensive numerical calculations have been given 
for oscillating flows covering wide ranges of Reynolds number 
and frequencies. K6hler (1990) has performed numerical 
simulations of turbulent oscillating flows and compared 
mean velocity profiles and fluctuations with experimental 
results that were obtained from the oscillating-flow test facility 
at the University of Minnesota (see Seume and Simon 1986). 

In this article, turbulent oscillating pipe flow has been 
analyzed by solving time-averaged continuity and momentum 
equations using the standard k-e turbulence model of Launder 
and Spalding (1974). A computer code, CAST, developed by 
Peri6 and Scheuerer (1989), has been modified to handle 
unsteady inlet conditions. Since most constants for this k-e 
model originated from steady turbulent flow measurements 
together with simplified assumptions, the validity of this 
quasi-steady turbulence model for unsteady flow conditions has 
been questioned. Performance evaluation of this k-e model 
for the present oscillating flow conditions will be discussed; one 
objective is to check the applicability of this quasi-steady 
turbulent model to oscillating flow analysis. 



Analysis 

Governing equations and numerical scheme 

The time-averaged equations of continuity and motion for an 
unsteady Newtonian fluid with constant fluid properties can 
be written as follows in vector form. 

Equation of continuity: 
( V . V )  = 0 (1) 

Equation of motion: 

DV 
p - - =  - V p -  [ V ' ~  

Dt 

In handling turbulent flow conditions, the above dependent 
variables represent time-averaged values, and the turbulent 
shear stress term in Equation 2 is closed by the "high Reynolds 
number version" of the k - e  turbulence model, which requires 
solutions of the following transport equations: 

p ~ - = V .  # 'Vk + P - p E  (3) 
\ak  / 

P N  = V" ~Ve  + c , , P -  c,2ps ) (4) 

(2) 

The present k - e  model has the eddy viscosity given by 
k 2 

#, = c , p - -  (5) 

The production rate of turbulent kinetic energy is given by 

- -  ~U i P = - - p ( u ' i u ) ) - -  (6) 
t3x~ 

The empirical constants are the standard values: c, = 0.09, 
c~ = 1.44, c~2 = 1.92, o" k = 1.0,  0",--~-1.3.  The wall function 
method (Peri6 and Scheuerer 1989) is used to specify wall 
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Geometry of the pipe and inlet condition for oscillating 

boundary conditions. It should be observed that for the laminar 
flow regime, the flow undergoes flow reversal (near the wall), 
i.e., separation, during a small portion of the cycle. However, 
for the turbulent flow regimes, no such separation has been 
observed experimentally (Seume and Simon 1986 ). Accordingly, 
it appeared very plausible to use the classical wall functions for 
such an oscillating flow. 

A conservative finite-volume method with collocated variable 
arrangement by Peri6 et al. (1989) is used for discretization. 
The convection fluxes in the model transport equations are 
discretized with the first-order upwind differencing scheme. 
Central differences are used to approximate the diffusion fluxes. 

Boundary and in i t ia l  condit ions 
Particular attention was paid to a flow geometry used by 
previous workers to perform the experimental oscillating flows 
(see Ohmi et al. 1982a). The flow geometry is a circular pipe, 
as shown in Figure 1, with diameter of 50.4 mm and length of 
6,000 mm; this gives L/D ~- 60 at the middle section of the pipe. 
At this middle section, the flow can be considered fully 
developed. The inflow is taken to be uniform over the cross 
section and time dependent according to the relation 

Urn,in ~- lull sin ogt (7) 

Notation 

C# 
Cei 

D 
k 

l 
Im 
L 
P 
P 

r 
R 
Rem=x 
t 
U 

lul 
v 
Va 

X 

Coefficient used in eddy-viscosity equation 
Turbulence model constants for e equation 
( i  = 1, 2) 
Diameter of the pipe, m 
Turbulent kinetic energy, m2/s 2 
[ = 1/2(U '2 + V '2 + W'2)] 
Turbulence length scale, m 
Mixing length, m ( = xy) 
Length of the pipe, m 
Pressure, N / m  2 
Production rate of turbulent kinetic energy, 
kg/m s 3 
Radial coordinate, m 
Radius of the pipe, m 
Reynolds number ( = lUml" D/v)  
Time, s 
Axial velocity, m/s 
Amplitude of axial velocity, m/s 
Velocity vector, m/s 
Valensi number (dimensionless frequency) 
( = 09" R2/v )  
Axial coordinate, m 

Greek symbols 
Stokes-layer thickness, m/rad 1/2 [ = (2v/o9)~] 

e Dissipation rate of turbulent kinetic energy, 
m 2 / s  3 

2 Friction factor 
t/ Dimensionless radial coordinate ( r /R )  
# Viscosity, Ns/m 2 
vf  Kinematic viscosity, m2/s 
p Density, kg/m a 
trk Turbulent Prandtl number for k equation 
a, Turbulent Prandtl number for e equation 
z Shear stress, N /m 2 
~o Angular frequency, rad/s 

Superscripts 
- Time-averaged value 
' Fluctuating velocity component 

Subscripts 
c Critical value 
cl Values at a pipe centerline 
i,j Denotes spatial coordinates [ = (r, x)] 
m Cross-sectional mean value 
w Value at pipe wall 



Tab le  1 An outl ine of test cases 

Test case Rernax Va Remax / (Va) 1/2 Eq. 8 
Re . . . . .  / (Va )  1/2 

Eq. 17 Hino et al. (1976)  

Case 1 1,920 80 215 882 
Case 2 10,800 272 655 882 
Case 3 19,300 272 1,171 882 
Case 4 60,800 126 5,409 882 

620 770 
676 770 
676 770 
640 770 

F l o w  c o m p u t a t i o n s  and results 

Four cases have been studied for 2,000 ~< Rem= x ~< 60,000 with 
different oscillating frequencies (see Table 1). In the axial and 
radial directions, respectively, 62 x 22 grid nodes were used. 
A grid independence test has been carried out by doubling the 
grid nodes. For each case, 180 time steps were used in one cycle 
and the results were collected after four consecutive cycles. 
Convergence criteria have been set to 0.1 percent of the residual 
norms for every dependent variable at each time step, and about 
2,000 seconds of CPU time (Cray XMP) per cycle has been 
used to achieve the convergence. 

Ohmi and Iguchi (1982) derived the following critical 
Reynolds number for fully developed flow, up to which the 
theoretical correlation for laminar oscillating flow is valid: 

Re . . . . .  - -  882 (8) 

According to Equation 8, cases 1 and 2 are in the laminar 
regime and cases 3 and 4 fall into the turbulent regime (see 
Table 1). In the following sections, computational results for 
fully developed oscillating flow are analyzed for each test case 
by comparing with both experimental data (Ohmi et al. 1982a, 
1982b) and steady-state analyses. 

Calculation of oscil lat ing f low in the laminar regime 

Figures 2a and 2b show the instantaneous velocity versus cot 
at different radial locations for cases 1 and 2, respectively. The 
plots in those figures are made for the axial location at the 
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Figure 2 Laminar axial velocity distribution versus crank angle 
during a cycle: (a) Case 1; (b)  Case 2. (Data were obtained at 
r/R = 0, 0.25, 0.55, 0.75, 0.88, and 0.97 from top to bottom, 
respectively. ) 

middle of the pipe. The plots show the increase in the velocity 
amplitude as the distance from the wall increases; also shown 
on the plot are differences in phase angle between the fluid 
motion near the wall and that near the pipe centerline. Profiles 
of the velocity amplitude normalized by the centerline value 
versus the normalized radial distance for cases 1 and 2 are 
shown in Figures 3a and 3b. Also shown on the plots are the 
phase differences between the velocity at any radial position 
and that of the centerline. In those figures, Ohmi's (1982b) 
experimental data for both amplitude ratio and phase 
differences are shown; an excellent agreement was obtained, 
except that near the pipe wall large discrepancies in phase 
differences are noticed. It was found from laminar theory that 
phase difference increases rapidly approaching the pipe wall, 
and the present numerical results follow the trend of laminar 
theory (Figures 3a and 3b). The same deviation between 
experimental and laminar theory was found in earlier work 
(Ohmi et al. 1982b). Consequently, the above discrepancies near 
the wall for phase differences can be attributed to difficulties 
in near-wall measurement. In Figure 3b, the dashed line 
represents the steady turbulent velocity profile (1/7 power law). 
This shows that case 2, although on the borderline between the 
laminar/turbulent regime, is very close to a laminar flow 
condition and still away from turbulent motion (see Figure 7). 

Calculation of oscil lating f low in the turbulent regime 

Calculations were also made for oscillating flow in the turbulent 
regime. Inlet turbulent kinetic energy ki. was obtained assuming 
isotropic turbulence (K6hler 1990): 

U 2 kin = 2~(TI x m,i.) (9) 
where TI is turbulent intensity at the inlet, which is assumed 
to be 1 percent for cases 3 and 4. Also, the turbulence length 
scale at the inlet Ii, was approximated by the following equation 
(Peri6 and Scheuerer 1989): 

k3/2 
/in - -  ( 1 0 )  

Gin 

Equation 10 holds under local equilibrium conditions and for 
a logarithmic velocity law (Rodi 1980). In the equation, the 
turbulent dissipation rate ei. was estimated from Equation 5: 

e i .  = c ~ p  - -  (11) 
~t , in  

The following assumption for turbulent viscosity (K6hler 1990) 
was used: 

#,,i. = ~ c , #  (12) 
Then Equation 11, after substituting Equation 12, becomes 

1 k2, 
el. - - -  (13) 

v 
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Figure 3a Profile of the velocity amplitude and phase difference 
for case 1. (Velocity amplitude--solid line: present numerical data; 
dashed line: 1/7 power law profile; / ~AA :  experimental data, 
Phase difference--chain dot line: present numerical data; + + + : 
experimental data. ) 
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Profile of the velocity amplitude and phase difference 
for case 2. (Velocity amplitude--solid line: present numerical data; 
dashed line: 1/7 power law profile; / ~AA :  experimental data. 
Phase difference--chain dot line: present numerical data; + + + : 
experimental data. ) 

With the above relationships, the turbulence length scale was 
estimated to be about 20 percent of the pipe diameter. 

Computational results are shown in Figures 4 and 5 in the 
same order as in the laminar cases. Figures 4a and 4b show 
the time-averaged velocity versus oJt at different radial locations 
for cases 3 and 4, respectively. The plots show, in contrast with 
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Figure 4 Turbulent axial velocity distribution versus crank angle 
during a cycle: (a) Case 3; (b) Case 4. (Data were obtained at 
r /R = 0, 0.25, 0.55, 0.75, 0.88, and 0.97 frog top to bottom, 
respectively. ) 

the laminar cases, much less variation in velocity phase with 
radial position. Specially, in Figure 4b, no phase differences are 
shown across the pipe cross section. Profiles of the normalized 
velocity amplitude versus normalized radial distance for cases 
3 and 4 are shown in Figures 5a and 5b. Also shown on the 
plots are the phase differences between the velocity amplitudes. 
It should be noted that in case 4 the normalized velocity was 
obtained using the amplitude of the "cross-sectional mean" 
velocity (rather than that of the centerline, used in cases 1, 2, 
and 3). Also, the phase differences in case 4 were obtained from 
the difference between the velocity at any radial position and 
the "cross-sectional. mean" velocity (rather than that of the 
centedine, used in cases 1, 2, and 3). 

Experimental results for case 3 indicate that there are 
turbulent bursts in decelerating phase near the wall (Ohmi 
et al. 1982b). As seen in Figure 5a, numerical results for both 
velocity amplitude ratio and velocity phase differences are 
appreciably different from the experimental data, with maximum 
error of 14 percent and 40 percent, respectively. Also, in 
Figure 5a, two reference plots are shown for the normalized 
velocity, one for the laminar flow (dashed line) and the other 
for the 1/7 power law profile (dotted line). It can be seen that the 
velocity amplitude ratio obtained numerically (solid line) nearly 
matches the 1/7 power law profile. Experimental data show 
intermediate values between the laminar and turbulent 
calculations in Figure 5a. This indicates that the flow regime 
for case 3 is in between laminar and turbulent (i.e., transient 
regime); therefore, the present high Reynolds number k-e 
turbulence model does not adequately predict the oscillating 
fluid motion in this regime. 

In case 4, experimental results show turbulent bursts on the 
velocity distributions during most of the cycle and agree well 
with steady turbulent correlation (Ohmi et al. 1982a). In 
Figure 5b, numerical results also show good agreement with 
experimental data ( < 7  percent). Specially, in Figures 4b 
and 5b, both computation and data agree that the velocity 
phase remains nearly constant. Also, unsteady wall shear stress 
has been calculated and plotted in Figures 6a and 6b for 
cases 3 and 4, respectively. In each figure, the solid line represents 
present numerical results and the dashed line represents the 
results obtained from steady turbulent correlation. The wall 
shear stress has been normalized by a maximum steady-state 
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Figure 5a Profile of the velocity amplitude and phase difference 
for case 3. (Velocity amplitude--solid line: present numerical data; 
dashed line: laminar profile; dotted line: 1 / 7  power law profile; 
/ ~ A A :  experimental data. Phase difference--chain dot line: present 
numerical data; + + + :  experimental data.) 
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Profile of the velocity amplitude and phase difference 
for case 4. (Velocity ampl i tude--sol id line: present numerical data; 
dashed line: 1 /7  power law profile; /~ /~A:  experimental data. 
Phase difference--chain dot line: present numerical data; + + + : 
experimental data. ) 

Critical Reynolds number 

Hino et al. (1976) summarized the critical Reynolds number 
from several experimental and theoretical results. From their 
work, two critical Reynolds numbers were found for the 
oscillating pipe flow. Experimental critical Reynolds numbers 
are found for Re~ based on the Stokes-layer thickness 
6 = (2v/co)~and the cross-sectional mean velocity amplitude 
l um[, which can be expressed in terms of Rema x and Va as in 
Equation 8: 

Re . . . . .  - /~lUml6= /~Re~.¢ v -  v -  (14) 

Using visualization and power measurement techniques, 
Sergeev (1966) has determined the critical Reynolds number to 
be Re~.c = 500; using hot-wire measurement, Hino et al. (1976) 
obtained Re~.c = 550. These result in values for Re . . . . .  /~V-a 
equal to 710 and 770, respectively. As mentioned earlier, Ohmi 
and Iguchi (1982) predicted a value of 882 (Equation 8). They 
also derived another expression for the critical Reynolds number 
using, instead of laminar oscillating flow theory, the following 
steady turbulent correlation together with the turbulence 
generation region assumption mentioned previously: 

"c,, = MlUml2 /8 
2 = 0.3164/Re~/~xJ (15) 

They obtained the following expression for the critical Reynolds 
number: 

Re . . . . .  = (211 ~-~)a/7 (16) 

o r  

Re . . . . .  - (211)s/Tw/-~l/7 (17) 

in terms of the expression of Equation 14. The above critical 
Reynolds numbers are tabulated for each case in Table 1. 
Table 1 shows the flow conditions for each case examined in 
this article as well as the estimated values of Re . . . . .  / ~  by 
different investigators. 

Plotted in Figure 7 is ~ versus Re==~ showing the four 
cases examined in this study, as well as Equations 8 and 17. 
From Figure 7, it is shown that case 1 is laminar and case 4 is 
turbulent according to available correlations (Equations 8 
and 17). This finding is in agreement with the present numerical 
calculations. Case 2 is in the laminar flow regime according 
to Equation 8 and lies at the critical line (Equation 17); the 
present analysis shows that case 2 is laminar. Case 3 is in the 
turbulent flow regime according to Equations 8 and 17; 
however, the current analysis shows that it lies between laminar 
and turbulent. More extensive computations will be conducted 
to complete the map shown in Figure 7 from the computational 
point of view as well as from that of experimental data available 
today. 

Summary and conclusions 

value during a cycle and plotted versus oJt for a cycle. Like the 
earlier velocity results for cases 3 and 4, the wall shear stress 
for case 3 deviates from a steady correlation, and for case 4 an 
excellent match has been obtained. Consequently, it is 
concluded that the flow regime for case 4 reaches the fully 
turbulent regime or turbulent quasi-steady state, as mentioned 
by earlier researchers. 

Numerical calculations have been performed for oscillating 
flows in laminar, transition, and turbulent regimes, and 
comparisons with experimental data have been made. For 
turbulent computations, the Launder-Spalding k-e turbulence 
model has been employed with standard values of the model 
constants. The calculation method for the inlet values of 
turbulent kinetic energy k and turbulent length scale I has been 
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Figure 6a Normalized turbulent wall shear stress versus crank angle 
during a cycle for case 3. (Solid line: present numerical data; dashed 
line: turbulent steady correlation.) 
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Figure 6b N ormalized turbulent wall shear stress versus crank angle 
during a cycle for case 4. (Solid line: present numerical data; dashed 
line: turbulent steady correlation.) 
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discussed. Finally, several criteria for defining the critical 
Reynolds number for oscillating pipe flow have been reviewed 
and compared according to the present numerical results. The 
conclusions for the results of the present investigation are given 
below. 

(1) Oscillating flow in a laminar flow regime can be simulated 
numerically with relatively high accuracy. 

(2) The standard version of the k -e  turbulence model cannot 
adequately model oscillating flow in a transition flow 
regime. 

(3) For  a fully turbulent regime or a quasi-steady turbulent 
regime, the standard version of k - s  turbulence model can 
predict the oscillating flow within an allowable error. 

(4) The critical Reynolds number defined by Ohmi et al. (1982a) 
from their experimental results seems to be reliable from 
numerical calculations. However, since the definition of a 
transition region is not clear and since the present numerical 
test data are scarce, extensive computations are needed 
to establish more reliable criteria for Stirling engine 
applications. 

(5) For  more rigorous numerical calculation for the oscillating 
flow in a transition regime, which is the case for most 
Stirling cycles, further improvement in turbulence modeling 
is also necessary. 
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