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The choice of prior distribution for a
covariance matrix in multivariate
meta-analysis: a simulation study

Sandra M. Hurtado Ria, Madhu Mazumdar and
Robert L. Strawderman

1. Introduction

Meta-analysis is used to systematically review and synthesize evidence for a possible association between
an exposure and an outcome in several studies where the overall picture remains unclear about the sig-
nificance of the effect size [1-3]. When jointly modeling p outcomes based on n studies, a multivariate
meta-analysis formulation based on a random effects model [4] given by (1) is recommended [5-10],

Y, =0+ pu,+¢; 1<i<n, M

where Y, = (Yn» Yin,oons Y,-,,)T is the vector of study effect sizes, 6 = (01,92, ,GP)T is the vector
of population effect sizes, and u; = (yil, Hizs - ,,ul-p)T and g; = (sil,eiz, ,eip) are the vectors of
between-study random effects and within-study sampling errors for the ith study, respectively. It is often
assumed that y; and ¢; are independent, with E[u;] = E[€;] = 0, Var (u,») =D and Var (51) =X, where
D and X; (assumed to be known) are the p X p between-study and within-study covariance matrices,
respectively.

Several frequentist methods exist for estimating the parameters @ and D in model (1). Maximum like-
lihood (ML) [11], restricted ML (REML) [12], the method of moments (MM) [13], the generalized
least squares method (GLS) [14], and the nonparametric U-statistics method (UM) [15] are among the



frequentist options. These differ primarily in the estimation of the between-study covariance matrix,
D; hence, inferences about the between-study variances and correlations can be expected to vary from
method to method.

A number of benefits and drawbacks to likelihood-based methods are discussed in the literature.
Mavridis et al. [16] mention several benefits, including the fact that REML estimates of effect sizes are
unbiased. Limitations of likelihood-based methods are discussed in References [16, 17]. For example,
departures from the normality assumption of Y may seriously bias estimates of variance components.
Reference [13] shows that MM performance is similar to ML and REML when p is small and there is
moderate to large heterogeneity. The estimates based on UM have been shown to be robust to highly
skewed data in a study that simulated non-normal random effects and sampling errors [15], while
References [9, 10] and [15] have noted an upward bias in between-study variance estimates when using
other frequentist methods. This bias is seen as a consequence of restricting D to be positive definite rather
than an estimation problem.

There has been significant growth in the use of Bayesian methods over the past 25 years. A distin-
guishing characteristic of the Bayesian approach is that parameters are estimated from the posterior
probability distribution, obtained via Bayes theorem upon specifying a likelihood and a prior distribution
for all unknown parameters (e.g., [18-20]). The development of computer-based Markov chain Monte
Carlo (MCMC) methods, combined with increases in computing power and the availability of free and
commercial software for Bayesian computation like WinBUGS [21], R [22], STATA [23], SAS [24] and
Mplus [25], are major contributors to the indicated growth.

Bayesian analysis brings a flexible framework to incorporate prior information when available. When
non-informative priors are considered, inferences based on Bayesian and classical methods also provide
results that are often very similar. Further advantages of Bayesian methods include the following: it
is easier to make inferences for functions of parameters like tail probabilities; the interpretation of the
inferences is straightforward, for example, a given parameter has a probability of 0.95 of falling in a 95%
credible interval; and it provides a convenient setting for hierarchical models and missing data problems.
Among the disadvantages are as follows: MCMC methods and computer power are often needed to
facilitate Bayesian inferences; from a practical point of view, the prior selection process can be arbitrary
and tedious; and when the likelihood is not that informative, posterior distributions can be highly sensitive
to the prior distributions, often as a result of sample size, model specification, or both. Establishment of
posterior robustness or sensitivity analysis to the choice of prior is highly recommended for any Bayesian
analysis [18].

Applied to the hierarchical meta-analysis model (1), the use of Bayesian methods to estimate 8 and D
is known as multivariate Bayesian meta-analysis (MBMA) and requires a prior specification for (6, D).
In general, a challenging problem is to define a prior distribution for a covariance matrix (e.g., D) such
that the posterior estimate of the covariance matrix remains symmetric and positive definite. In a nor-
mal hierarchical model like (1), the most frequently used matrix prior is the conjugate inverse Wishart
prior [20]. Subjective informative priors [26] can be potentially advantageous when prior information
is elicitable. For example, Reference [27] used empirical data to obtain predictive distributions for the
heterogeneity variances. However, in many applications, little or no prior information about the between-
study covariance matrix (especially correlations) is available. In those settings, non-informative, weakly
informative, least informative, objective, or reference priors are then preferred [28—-31]. We will use the
general term non-informative prior (NIP) to refer to any prior that does not incorporate subjective prob-
ability; objective and reference priors will be considered here because they have been rigorously studied
for the multivariate normal model [30,31]. A number of benefits and drawbacks in the use of NIPs are dis-
cussed in the literature. NIPs minimize subjectivity by constructing priors based only on the model and the
observed data. However, they are often improper [18], which can sometimes lead to improper posterior
distributions. Some NIPs are location-scale invariant distributions [18], but others are not invariant under
re-parametrization. For example, a uniform prior on the variances may not be uniform on their logarithm.
Finally, other types of priors, like hierarchical priors, have also been proposed for the estimation of (8, D)
with desirable properties (shrinkable, interpretable, and invariant under re-parameterizations) [32-34].

The growth in the use of Bayesian methods cited earlier extends to medical research, including meta-
analysis. We performed a literature review to assess the use of Bayesian meta-analysis in clinical papers
published between 1995 and 2014 the types of priors used, use of sensitivity analysis, existence of mul-
tiple outcomes, and uses of MBMA. We found 102 clinical papers utilizing Bayesian meta-analysis with
applications in a variety of medical fields. There were 7 papers published before 2000, 16 papers from
2000 to 2006, 36 papers from 2007 to 2010, and 43 papers published between 2011 and 2014. Of the



studies identified, 67 used non-informative priors and 19 did not report the prior choice. About half of
the studies did not report any sensitivity analysis for the choice of prior. Fifty-nine studies analyzed
multiple endpoints; however, 47 of those papers did not use a multivariate meta-analysis method. We
also found that the majority of the clinical papers applying meta-analysis models do not fully list the
data, making it difficult to reproduce the analysis. The clinical papers range from small size to large-
size meta-analysis, with a mean of 28 studies analyzed per paper (standard deviation = 40.13) and a
median of 16 (interquartile range = 20). Clinical papers using meta-analysis models with large number
of studies are common on the following fields: cardiovascular disease (number of papers found: n = 12,
median number of studies: m = 19; psychiatry; genetics (n = 7, m = 17); and vaccine therapy (n = 2,
m = 42). Small-sized meta-analysis studies were found in fields such as oncology (n = 7, m = 6) and
surgery (n = 2, m =1.5).

Advantages of frequentist-based multivariate meta-analysis approaches have been established over the
last decade [10]. Advantages of univariate Bayesian meta-analysis over frequentist methods have been
discussed in [35]. Additionally, Reference [36] showed through a comprehensive simulation study, in the
univariate meta-analysis case, that vague prior distributions are highly influential, particularly in small
studies. With the rapid pace of adoption of Bayesian meta-analysis in the published literature and the
frequent use of univariate meta-analysis in multivariate settings, guidelines for prior choice and imple-
mentation of multivariate meta-analysis in the Bayesian context would be valuable. In this paper, we
investigate the impact of the prior specification for D on the overall inferences for (0, D) in order to help
inform the guidelines about the use of priors and related sensitivity analyses. In Section 2, we review a
Bayesian model framework for multivariate meta-analysis and summarize several suitable prior choices
for the covariance matrix. A simulation study to examine the impact of the prior distribution in an MBMA
setting is performed in Section 3. Two examples involving a small (n = 5) and medium (n = 21) meta-
analysis from the periodontal and stroke fields are presented in Section 4. In Section 5, we discuss the
findings. Additional plots, convergence analysis, code, and all simulation results are available in the
Supporting Information.

2. Bayesian hierarchical models for multivariate meta-analysis

2.1. Notation and model formulation

Consider a systematic review of n studies where each one estimated the p X 1 vector of effect sizes, Y
along with their variance covariance matrices, X;, i = 1,...,n. We assume that each vector of effect
sizes, Y, (e.g., standardized mean differences, hazard ratios, or logarithm of the odds ratios) is normally
distributed. The random effect model given by (1) can be rewritten as a two-level hierarchical model of
the form: for1 <i<n,

Y, ~ N, (. Z) and 1;|0.D ~ N,(6.D) 2

The formulation of model (2) implies that multivariate meta-analysis models assume a known com-
mon set of endpoints across studies. When a set of endpoints is missing, other approaches like multiple
imputation or network meta-analysis can be used. It is important to emphasize here that the X; matrices
are mostly assumed to be known for multivariate meta-analysis models. In practice, many publications
report within-study variances, but within-study correlations are often only partially reported or missing.
We assumed throughout the paper that the X; matrices are known. In general, multiple imputation tech-
niques are often used when some data points are missing at random. Reference [37] introduces a series
of asymptotic estimators of within-study covariance for continuous and dichotomous outcomes.

Traditionally, the primary goal in a meta-analysis has been the estimation and inference of the mean
vector 0 and the study mean effects, u;; however, the study of the whole distribution of random effects may
also be considered as important [19]. In a multivariate meta-analysis, we need to estimate the between-
study covariance matrix, D. We assume that (0, D) are random with a prior distribution of the form
7(0,D) = 7n(0)x(D). Inference about (0, D) is based on the posterior distribution of (6, D), given the
observed data (y;, X;), which are proportional to

[exp {—% 2 10i = m) = 0= ) + Gy = 0YD™ ;- 0)] }] #(O)x(D) 3)
i=1



Prior distributions for @ under model (2) have been studied in the literature [30, 32]. These priors
include an improper prior of the form z(6) « 1, and a normal prior N,(0, Cy), where C, is a known
p X p matrix. Assuming, for example, a known variance covariance matrix D and € ~ N,(0, C,), the
conditional posterior densities of u; and @ on D; = {y;, X;, D} are:

H;16,D; ~ N, (Vi(zi_lyi +D7'0), Vi) and 0|p;, D; ~N, VGD_I Z Hi:Ve | “)

i=1

where V, = (X' + D) and Vo = D™ + C;)7.

The matrix D is the covariance matrix on the second level of the hierarchical meta-analysis model
given by (2) and is called the between-study covariance. It contributes to the marginal variability of Y,
because Var(Y;) = D + X,. The diagonal elements of D represent the level of heterogeneity between
studies for each outcome, and its off-diagonal elements are the outcomes between-study correlations.
Multiple endpoints are likely to be correlated within a study, but the role of the between-study correla-
tion is less obvious. The between-study correlations indicate how the population ‘true’ effect sizes are
correlated across studies, and these can be affected by differences across studies, that is, study-design
characteristics, study-level population characteristics, study-level variable definition, among others. One
of the advantages of using multivariate meta-analysis is the estimation of effect sizes with higher degree
of precision by borrowing of strength through the between-study and within-study correlations [5, 8, 15].

It is generally unreasonable to consider the between-study variance matrix, D, as known. Therefore,
a prior distribution for D needs to be selected. Modeling a covariance matrix is crucial in any multi-
variate setup and becomes more difficult as the dimension increases because of the quadratic growth in
the number of parameters and the need to force the matrix to remain non-negative definite. Prior distri-
butions for covariance matrices in hierarchical models are frequently chosen casually; for example, the
inverse Wishart distribution is a common choice in MBMA clinical applications because of its conjugacy,
although other prior distributions for matrices are available. Another modeling issue is the use of infor-
mative versus non-informative priors distributions for D. Non-informative priors distributions are often
improper. In the context of a hierarchical model such as (2), caution is advised because not all choices of
improper priors for D will lead to a proper posterior distribution. There are methods to obtain informative
distributions for covariance matrices [38—40]; however, obtaining informative priors for a second-level
covariance matrix in a hierarchical model is more challenging because, for example, historical data are
usually scarce. Reference [41] shows how expert knowledge and beliefs can formally be elicited. In par-
ticular, if a closed form prior distribution for D is chosen (i.e., inverse Wishart, IW,(v, R)), one could
elicit information about the hyperparameters v, R and obtain an informative prior on either the covari-
ance matrix D or the hyperparameters v and R. Some clinical applications have considered independent
priors on each one of the covariance components instead of formulating a prior distribution for the whole
matrix R. This is in part because of the fact that the elicitation of priors for variances and correlations is
easier than the specification of an informative prior for the covariance matrix. However, when consider-
ing independent priors, restrictions to ensure that D is positive definite need to be addressed before model
implementation.

We briefly discuss several families of potentially suitable prior choices for D under model (2).
Specifically, we consider the conjugate inverse Wishart prior parametrization under non-informative
and informative set-ups; objective and reference priors for D that lead to a proper posterior distribution
for the hierarchical model (2); independent priors on the covariance components; and, finally, the con-
strained and mixture Wishart prior distribution families. Where helpful or informative, we illustrate the
parametrization of these priors assuming that p = 2 and parameterize D and X, as follows:

2 2
7 T2 0,4 Oin2
D= 5 | X = 5 | 5
T 7, Oi12 O0p )

T2 = T1T2Pps Oj12 = 0i102Piw>

where 7, > 0,7, > 0,-1 < p, < 1,6, > 0,0, > 0,and — 1 < p;, < 1V,. Here, 77, 72, and p,, describe
the between-study variances and between-study correlation, whereas al.zl, ‘71'22’ and p;,, capture the within-
study variation and corresponding correlation. We also define X, as % Y, Z; and denote by 4, > 4, the
ordered eigenvalues of D.



2.2. Conjugate prior

A p X p matrix X has a Wishart distribution, W (v, R), if its associated probability density function is
proportional to | X|“7~Y/2 exp {tr(~XR™")/2},X > 0, where v > 0 is the degrees of freedom and R is a
p X p symmetric scale matrix.

An inverse Wishart prior distribution [18] for D is equivalent to assuming that D' has a Wishart
distribution. Specifically, assuming that D! ~ Wp(v,R_l), the prior mean of the matrix D~ is vR™,
which corresponds to a prior mean of D equal to R/(v — p — 1). The condition v > p + 1 implies a finite
prior mean for D, but the Wishart prior for D™! is proper for any v > p — 1.

An inverse Wishart prior of the form IW,(p,1,) is commonly used as a non-informative proper prior
(see Section 1 of the Supporting Information for figures and discussion), and its implementation is
straightforward (see the WinBUGS code provided in Section 4 of the Supporting Information). More
generally, the selection of v and R is not straightforward. The matrix R is often set as the ML estimator of
D for non-hierarchical normal models. An empirical Bayes approach to estimate v has been used by [42]
in a non-hierarchical normal model. In general, the specification of R and v can be influential. A simula-
tion study evaluated several priors and showed that inverse Wishart prior distributions (hierarchical prior
and fixed v) for estimating the covariance matrix have suboptimal performance in terms of having high
Bayes risk under the loss function L(D,D) = tr(DD") — log |DD'| — p-

2.3. Objective and reference priors

In general, NIPs may be useful and easier to specify when there is no expert-based or historical prior
information. Among the NIPs, objective and reference priors have been rigorously studied in the context
of multivariate normal models [30,31]. The two most popular objective prior distributions are the Laplace
prior and Jeffreys’s invariant prior. Under the parameterization given by (5), the Laplace prior is a constant
prior that weighs all possibilities equally (i.e., 7 (1) « 1,V;; € {1,2}); however, it is not invariant under
reparameterization. The non-hierarchical Jeffreys’s invariant prior 7,(D) = |D|~?~/2 yields an improper
posterior in hierarchical settings. The hierarchical Jeffreys’s invariant prior, z,,(D) = |Z, + D|~?~D/2,
leads to a proper posterior, but it has been shown to behave poorly for p > 1 [33].

Under the parameterization (5), the non-hierarchical Jeffreys’s invariant prior reduces to !

T (1_p2)1/2 °
Reference [31] proposed other objective priors for non-hierarchical bivariate normal modells.2 Ambong
the recommended priors for D parameterized as in (5) are z5(D) TRy, D)

1 2
and 75, (D) ox —L—2

T According to [30], priors 7y, 7, , and 7, could lead to an improper posterior

distribution in the context of the hierarchical MBMA model (2).
Reference [30] proposed two reference priors appropriate for model (2). Recalling that A; denotes

-1

the ith eigenvalue of D, these priors are zygp,(D) = [lDl‘(Z”‘”/Z” T4 - /lj)] and 7ypp,(D) =
-1

[lZO +D| ], (4 — Aj)] . Section 1 in the Supporting Information provides a graphical comparison of

1
Tlfz(l—ﬂ,z,)3/2 ’ rlrz(l—p:;)

the mypp,(D) and wypp, (D) distributions for p = 2. Reference priors mypp, (D) and 7yp, (D) lead to a
proper posterior distribution in multilevel hierarchical normal models and are easy to implement using a
Gibbs sampler with Metropolis—Hastings steps; Section 4 in the Supporting Information contains a sam-
ple of the code implemented in R. In general, reference priors have been shown to outperform Jeffreys’
priors in multivariate problems (i.e., when using both entropy and quadratic loss functions) [29,30,43].
Additionally, Jeffreys’ prior fails to shrink the eigenvalues appropriately in multivariate situations [29].

2.4. Independent priors for the covariance components

There are several specifications of independent priors for the components of the covariance matrix D. We
considered a prior formulation assuming that all the elements of the covariance matrix are independent
a priori. We discuss a prior formulation for p = 2 under (5), but the methods are easily extended to
higher dimensions.
. . iid . . .

It is typical to assume that 1/ sz ~ Gamma(e,€),j = 1,2 for some ¢ > 0. Other candidate pri-
ors for 1-12 and 122 include the log-uniform and the uniform distributions. Priors on transformation of rjz,
e.g., log (rjz), can also be considered. For modeling p,, a uniform prior on 1’;’; was suggested in [10],

“Pp

a published discussion from a multivariate meta-analysis event held at the Royal Statistical Society;



however, this transformation is only defined for p, > 0 and overwhelmingly favors boundary values.

Reference [33] instead proposed a normal prior, N(0, aib), for Fisher-Z (p,,) = % log(i+—’;”). The normal
—Pb

prior on the Fisher-Z transformation has a shrinking effect toward zero (when 65;7 is small, this prior
favors values of p, close to 0). The normal distribution for the Fisher-Z transformation proposed earlier
should be truncated over the relevant values of the correlations in order to guarantee a positive defi-
nite matrix D; see the Supporting Information, namely Section 1 for plots and Section 4 for references
about code implementation. Reference [44] considered a hyper-prior on cib, where n(aﬁb) x (c+ 6/%1,)_2

! , the variance of the

and c is a constant that represents a variance. For example, ¢ can be set to be =
—

Fisher-Z transformation.

2.5. A prior formulation based on the constrained Wishart distribution

Reference [45] proposed a constrained Wishart prior in the context of the two-level hierarchical normal
model described by (2). A p X p matrix X has a constrained Wishart distribution denoted by CW,(v, R; Q)
if the density is proportional to |X|?-D/2exp {rr(~XR™")/2},X > 0,0 — X > 0, where v > 0 is the
degrees of freedom, R is a p X p symmetric scale matrix, and @ is a diagonal constraint matrix.

A constrained Wishart prior on the transformation B, = E(I)/ 2(20 +D)‘12(1)/ 2 of the form C W,(v.R; 1)),
where R > 0 and v > 1—n, is the conjugate prior for the transformation B in model (2) when X, = X V,.
In the unequal covariance case, a constrained Wishart distribution of the form C Wp(v*,R*;I ) envelops
the posterior distribution of B,|Y for any R*, provided v* < n— 1+ v, where v is the degrees of freedom
of the constrained Wishart prior for B,. The fact that the CW distribution envelops the actual posterior
makes it easy to implement the model using rejection sampling or importance sampling algorithms; see
Section 4 of the Supporting Information for references about implementation using R. References [45]
and [46] show that models using constrained Wishart priors do not require MCMC for implementation;
hence, there are no MCMC convergence issues to worry about. Reference [45] also shows that their model
has good frequentist performance (including coverage) when the prior on their transformation matrix is
uniformly distributed.

This class of priors contains several interesting special cases. Setting the smallest eigenvalue of Q to
oo gives the Wishart prior for By; R = 0 and v = —(p+ 1) is equivalent to a uniform prioron D and R = 0
and v = 0 is a Jeffrey’s prior on By; R = 0 and v = p + 1 corresponds to the uniform shrinkage prior
on B,. Section 1 in the Supporting Information contains a graphical comparison of constrained Wishart
distributions of the form CW,(v,I,;1,) using marginal histograms and scatter plots for several values
of v.

2.6. A prior formulation based on a mixture Wishart distribution

Reference [47] proposed a mixture Wishart distribution in the context of a random effect regres-
sion model. One of the advantages of this family is its conditional conjugancy, yet it is possi-
ble to select hyperparameters such that the distributions on the variances and correlations are not
noninformative priors.

A p X p positive definite matrix X has a mixture Wishart distribution denoted by MW, (v,A,, ..., A))

if Xlay, ... sa, ~ IW,(v+p— 1,2v diag(1/ay, ..., l/ap)), and a, n Inv — Gamma(1/2, l/Ai);k =
1,...,p, where diag(1/ay, ..., 1/a,) denotes the diagonal matrix with diagonal elements 1/a,, ..., 1/a,,

n stands for independently distributed, v and A, ... ,Ap are positive scalars. The closed form density of
X is proportional to |X|~+2P/2 TTP_ {v(X~Y), + 1/A7}~*P/2 where (C)y, denotes the k, k element of
C, but the scale mixture representation leads to a simpler implementation.

The assumption that D ~ MW, (v,A,, ..., A,) implies that a priori 7, ~ Half — t(v,A,); hence, large
values of A, lead to weakly informative priors for 7;. It can also be shown that the distribution of p,
is proportional to (1 — pi)v/ 2-1 50 that v = 2 induces a uniform prior on p,. Assuming a mixture
Wishart prior MWp(v,Al, ,Ap) for D and a normal Np(O, o’ p) prior for 8 in model (2) leads to con-
jugate conditional distributions for all the parameters including a;;k = 1, ...,p and D. Section 1 in the
Supporting Information contains plots and further discussion about the MW, (v,A,, ..., A,); Section 4
contains code.



3. Simulation study

3.1. Data generation and prior specifications

Each simulated meta-analysis is a set of hypothetical clinical trials comparing a treatment arm with a
control. Data sets representing small (n = 10), medium (n = 30) and large meta-analyses (n = 50) were
generated following [15]. Equation 2 is used to generate each meta-analysis data set, assuming that Y
follows a bivariate normal distribution with given marginal mean 6" and given variance D* + X.. The
variance matrices D* and X, are assumed to satisfy (5) such that (a) p;,, = p,, for each i and (b) p,, = p,,.
The parameters (6%, D*) and variance matrices X, ..., X, used to generate each simulated dataset are
further determined according to the following specifications:

Specification 1. The vector 0" = (97, 6;)" is fixed at (10,10)".

Specification 2. The within-study variance matrices, X;, are obtained by fixing the within-study corre-
lation p,, and then independently generating variance parameters 61'21 and al.zz from an
exponential distribution. Without loss of generality, the rate of the exponential distri-
bution is fixed to 0.50 and all within-study variances were truncated to the range of
[0.50, 10], resulting in al.z with a mean of 2.50, median of 1.80, and first and third
quartiles of 1.10 and 3.20, respectively. A new set of n matrices is generated for each
simulated meta-analysis data set.

Specification 3. The between-study variances 1'].*2 (i.e., the diagonal elements of D*) are generated using

the formulas

P (n-1Y" o
2 = < / >s2, where sf = lim U ;J=12,  (6)

J 1_12 J n—00 2
; n -2\ _§ym” —4
, (ZLi05%) - 2o

where I? captures the percentage of variability in the treatment estimates that can
be attri{)uted to heterogeneity between studies rather than to sampling error [6].

Three values of Ij2 are considered, respectively reflecting low (IJ2 = 0.25), moder-

ate (IJ2 = 0.50), and high (IJ2 =0.85 > between-study heterogeneity among estimates

for each outcome. In combination with Specification 2, we obtain 2 = 0.49 when
I,.2 =0.25, T/.*z = 1.48 when I/.2 =0.50, and ri*z = 8.40 when IJ.2 =0.85.

With the aforementioned specifications for generating data, ten simulation scenarios are then consid-
ered for each of the three sample sizes. These ten simulation scenarios correspond to ten different choices
of D* (see (5)). Specifically we consider mild (p, = p,, = 0.3) and strong (p, = p,, = 0.8) correlations
in combination with the following choices of (If, I;): (0.25,0.25); (0.50,0.50); (0.85,0.85); (0.25,0.50);
(0.50, 0.85). For each of the ten scenarios for each sample size, 1000 data sets are generated; the MBMA
model as described by (2) is then fit using each of the following prior specifications:

Prior (1) Six specifications of Wishart conjugate priors (Section 2.2) of the form W,(v,R) using v =
2,3,4,and R = I, for ¢ € {0.1, 1}, where I, denotes the 2 X 2 identity matrix.
Prior (2) Two reference priors (Section 2.3) of the form:

2.1 Tyyp D) = [IDI™/4(A, = 2)] ', and
-1
2.2 mygpD) = (12 +DI(4; — )] .

Prior (3) Twelve different specifications of independent priors (Section 2.4), where € € {0.10, 1},

3.1 l/ri ~ Gamma(e, €), 1/T§ ~ Gammal(e, €); and p;, ~ Uniform[-1, 1],
3.2 1/7; ~ Gamma(e, €), 1 /75 ~ Gammal(e, €); and p,, is fixed at O (independent case),

3

33 1/11& ~ Gamma(e, €), 1/1-2 ~ Gammal(e, €); and p,, is fixed at its true value,
3.4 1/7} ~ Gamma(e, ), 1/7; ~ Gamma(e, €); and Fisher-Z(p,) = %log(ﬂ) ~ N, 7™,

o,
for r = 0.20, 0.40, 0.80. "

Prior (4) Twelve specifications of constrained Wishart prior distributions for B, using CW,(v, 0;1,)
(Section 2.5) withv =1 —-n,4-n,-3,0,2,3,6,9,12,15, 18,21, where n is the sample size.



Theoretically, any value of v > 1 — n leads to a proper posterior distribution for B,; some
exploratory analysis shows substantial variability in the distribution of matrix components
corresponding to distributions with those degrees of freedom.

Prior (5) Six different specifications of the mixture of Wishart priors (Section 2.6) of the form
MW, (v,A,,...,A) withp=2,v=2,3,4and A; =A, = c where c € {10%,10°}.

3.2. Model implementation

Models implemented with Priors (1) and (3) were fit using a Gibbs sampling algorithm (WinBUGS [21]).
Models using Prior (2) were implemented by a Gibbs sampler with metropolis Hastings steps (R [22]),
models using Prior (5) were implemented using Gibbs sampling (R [22]), and finally, models that con-
sidered Prior (4) were fit using a rejection sampling algorithm in R [22]. We used 5000 burn-in iterations
and 10 000 additional sampling iterations when fitting models by any MCMC algorithm.

When implementing Bayesian models, it is important to consider identifiability and its impact on
MCMC convergence. We discuss identifiability issues for model (2) from two perspectives: Bayesian
identifiability (proper posterior distributions) and classical identifiability (estimable models from the per-
spective of the likelihood). Bayesian identifiability refers to the property of the posterior distribution; in
this sense, a model is identifiable (from the Bayesian perspective) if its posterior distribution is proper.
In general, a model with proper priors always has a proper posterior distribution; however, improper pri-
ors may lead to improper posteriors. All the models proposed here have proper posterior distributions.
We implement model (2) using non-informative and weakly informative proper prior distributions with
exception of the family of reference priors. Reference [30] shows that the reference priors 7,p, (D) and
yrpy(D) lead to proper posterior distributions in multilevel hierarchical normal models.

Classically, models with non-identifiable parameters are those in which all possible sets of observa-
tions have identical probabilities for two different sets of parameters [48]. In this sense, identifiability is a
property of the likelihood (model specification) and is closely related to overparameterization. Bayesian
inference is possible for non-identifiable models (from the perspective of the likelihood) when informa-
tive priors are used. However, non-identifiable models typically yield highly correlated parameters in the
posterior density, creating problems with autocorrelated parameters and slow convergence in MCMC; in
practice, it is also possible for identifiable models to exhibit these problems.

The impact of lack of identifiability on MCMC convergence for Bayesian hierarchical models incor-
porating random effects has been studied in the literature [49, 50]. The main issues in this regard are the
convergence of the MCMC method (simulated values are in fact draws from the posterior distribution)
and autocorrelation in the sequence of Markov chain iterations. According to Reference [49], estimable
functions of mean parameters of multilevel normal models should exhibit lagged autocorrelations tend-
ing to zero even when non-informative priors are used. These authors also show that iterative sampling
results in convergence of estimable parameters even when priors have large variances.

We monitor convergence by measuring the mixing of independent chains on a fraction of the simu-
lated data sets by checking that each chain seems to have reached a stationary distribution. In principle,
convergence diagnostics should be assessed for each model that is fit; however, it is impossible to assess
convergence for all of the 1.14x 10° (38 x 10x 3 x 1000) models in our simulation. Therefore, we checked
for convergence in a random subgroup of simulated data sets and the examples presented in Section 4.
According to Reference [48], more than one criterion should be considered when monitoring conver-
gence. In particular, we used trace plots, autocorrelation plots, Gelman and Rubin diagnostics [51], and
the Geweke test [52] to monitor convergence. Figures 7 to 13 in Section 2 in the Supporting Information
show an example of the plots and statistics we used to analyze convergence for a random subgroup of
simulated data sets and for the examples.

Overall, we did not detect strong evidence of lack of convergence. In general, the trace plots show
good mixing, the sample autocorrelation function plots indicate a low degree of correlation between the
draws (i.e., acceptable mixing), and plots of the kernel density estimates of posterior density functions
show unimodal distributions. The Geweke tests or Gelman and Rubin diagnostics were above the desired
cutoff for a few parameters (18 cases out of 2 X 60 X 5 combinations of sample sizes/models/parameters
we considered), but in no case did we see Geweke tests and Gelman and Rubin diagnostics to be unsat-
isfactory for the same parameter. A few Gelman and Rubin diagnostics (G.R) were above 1 for some of
the zs. Models with conjugate family of priors were the only ones reporting Geweke test statistics (G)
for some 0s above the cutoff of 3, but this never occurred for all three chains.



3.3. Simulation results

The simulation results are summarized using frequentist criteria with the rationale that (i) Bayesian anal-
ysis under non-informative or weakly informative priors often leads to estimates that are similar to those
derived from frequentist methods and (ii) the data are generated using specific choices of several key
parameters. The relative bias of the averaged posterior parameters are reported over the 1000 data set
replicates, where R-Bias(z) = (2—2)x 100/z with z € {67, 63, rfz, 1;2, Py}, 2; is the corresponding poste-
rior mean estimate of z obtained at the j*# simulation run and = —— 2. Z;- The mean-squared error MSE

1000
(2) is also estimated using 2;2(1)0(21» — 2)?/1000. Frequentist coverage, computed for the marginal 95%

credible intervals (Cr. I), is also reported because Bayesian intervals constructed using certain classes of
prior tend to exhibit comparable frequentist behavior. From this point forward, we do not make a dis-
tinction between the random variables @ and D and the fixed values of these parameters that were used
to generate the data, it being implicitly understood that the posterior distributions corresponding to the
former should increasingly concentrate around the latter as n becomes larger.

This section discusses Figures 1-5; Section 3 in the Supporting Information (Tables S1-18) presents
and discusses simulation results concerning all prior specifications and all sample sizes. Figures 1-5
summarize simulation results of 9 of the 38 prior specifications reported on this simulation for a sample
size of n = 10 and concentrates on posterior means for 6, 112, and p,, but conclusions can be extended
to estimates for 6, and 122. Relative to what is reported here, the trends across priors are generally similar
for n = 30 and 50, but as expected, the performance under all priors also improves and becomes more
similar across priors. Figures 1 to 5 compare the best priors for each of the five families of distributions
described earlier in terms of the trend of the relative bias of 91 , the mean squared error of 91 , the coverage
probability of 6, and the relative biases of ?12 and j,. In general, point estimates of effect sizes (6,, 6,)
were not observed to be particularly sensitive to the choice of prior for D, whereas those for covariance
estimates (112, 122, p;,) were observed to be much more sensitive to prior choice.

The relative bias of 91 was less than 0.88% (in absolute value) for all priors with the exception of the
reference prior 7, (Figure 1). Prior 7,p, displays higher absolute relative bias of 8, for all scenarios
with a maximum relative bias of 2.50% when 112 = I; = 0.85, p = 0.80. In general, the absolute relative
bias of 91 tends to increase slightly as 112 increases; this bias does not seem to depend on I% or py.

The MSE of 91 behaves similarly among all priors: it is observed to increase moderately as the asso-
ciated heterogeneity index (112) moves from 0.25 to 0.5, then rises more substantially when 112 = 0.85
(Figure 2). The MSE of §, seems to behave similarly for scenarios with /> # I? and scenarios with I? = I
for the vast majority of priors. As seen in Figure 2, the mixture of Wishart priors MW(4, 10°) displays a
higher MSE of 8 | for almost all scenarios. Generally speaking, the MSE of 91 is not observed to depend
on p,. In view of the fact that the biases of the posterior mean estimators tend to be low, this suggests
that the variability of the posterior mean estimate primarily depends on the underlying heterogeneity for
that component.

Figure 3 displays the coverage probability of él. The reference prior z;p, consistently overcovered 6,
(maximum coverage probability of 0.99), the coverage level depending little on the heterogeneity level
or correlation. The mixture of Wishart priors was observed to have coverage reasonably close to nomi-
nal, typically overcovering when correlation was high. The remaining priors had close to or somewhat
higher than nominal coverage when the heterogeneity levels (112 = Ig = 0.25) were low and exhibited
a tendency to undercover 6, in the presence of higher heterogeneity, with CW(15,0;1,) exhibiting the
worst performance and greatest sensitivity to the heterogeneity level. Within each prior, the coverage
probability of él varies with 12, but there is no uniformly worst or best prior among all the scenarios.

In summary, for a sample size of n = 10, all estimators of @ have reasonable relative bias, although the
prior with the worse relative bias performance for all scenarios is the reference prior zzp,. According to
the MSE criteria, the worst performing prior for all scenarios is the MW (4, 10°). The picture is not as clear
when evaluating coverage probabilities: the same prior can have close-to-nominal probabilities for some
scenarios and be farther from nominal coverage for others. In general, the Wishart priors on D~' (W(4,1 2)
and W(2,0.11,) ), the reference prior zygp;,, and CW(15, 0; I,) have the least desirable performance when
estimating ;. The most reasonable trade-off between small relative bias, low MSEs and close-to-nominal

coverage probabilities for él seems to be obtained using the following priors: 1/ sz X Gamma(e, €),j =
1,2 and Fisher-Z (p;,) ~ N(0,r), for e = 1 and r € {0.20,0.40} and CW,(3,0;1,) and CW,(6,0;1,).
In general, the absolute relative bias of ?12 is observed to be highly sensitive to the choice of prior, espe-

cially for scenarios where / 12 = 0.25. Over all priors, the absolute relative bias of TAIZ typically decreased as
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Figure 1. Summary of R-bias (§1) results for selected priors when sample size n=10.

its associated heterogeneity index If increased. Except for the Wishart priors, the level of bias observed
did not depend strongly on whether the heterogeneity indices are equal; there is clear evidence of a nega-
tive impact for the Wishart priors when heterogeneity levels are unequal. The most consistent estimators
of rlz among all scenarios are given by models using the MW (4, 10°) prior distribution. The CW,(3,0; 1)
and CW,(6, 0; I,) priors had the highest relative biases when the heterogeneity level was 0.25, the former
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Figure 2. Summary of mean-squared error (é,) results for selected priors when sample size n=10.

also being a bit worse than the latter; the level of bias decreased dramatically with increased heterogene-
ity levels. Interestingly, the CW,(15,0;1,) prior tended to exhibit complementary behavior, providing
among the best performance when heterogeneity is low and exhibiting larger biases when heterogeneity
is high. A small absolute relative bias of ?12 (< 5%) was usually associated with coverage probabilities
closer to the nominal 95%, but it did not influence the trend of the MSE of 8,. The estimate of p, was
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Figure 3. Summary of coverage (é,) results for selected priors when sample size n=10.

observed to be unusually sensitive to the choice of prior (Figure 5). The absolute value of the relative bias
of p,, is usually higher than 20% for all priors, with the exception of the constrained Wishart priors and the
reference priors. The Wishart and independence priors always underestimated p,,; the mixture of Wishart
priors always overestimated p,, the bias being observed to be relatively insensitive to the D matrix.
The constrained Wishart priors and the reference priors resulted in the smallest relative biases for g,
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Figure 4. Summary of R-bias (7)) results for selected priors when sample size n =10.

in Scenarios 1-6 (same heterogeneity index for both outcomes), underestimating p,; these priors
overestimated p, when heterogeneity indexes were not equal, but the bias tended to remain among
the smallest.

Overall, for estimating the covariance matrix, the mixture of Wishart priors tended to exhibit the most
stable, if not always the best, performance, being relatively insensitive to the choice of D. The reference
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Figure 5. Summary of R-bias(p,) results for selected priors when sample size n =10.

prior and the constrained Wishart priors appear to be better choices (i.e., with respect to the criteria used
here), provided that the heterogeneity level for each outcome is not too low; here, the CW,(15,0;1,)
prior exhibited the most stable performance among the set of choices considered for the constrained
Wishart prior.



3.4. Computational efficiency

A model with a constrained Wishart prior had the highest computational efficiency. Models using con-
strained Wishart priors are fit based on a rejection sampling algorithm [45], being more efficient than
MCMC sampling methods. For a simulated data set of size 10 (under the assumptions of scenario 1), it
took a model with a constrained Wishart prior (see Supporting Information for code) on average 0.97 s to
produce the results. In contrast, a model with a reference prior was the slowest to run (average of 86.76s).
A model with a mixture of Wishart distributions took 68.50 s to produce a result. The other two MCMC-
based algorithms (models with Wishart and independent priors) were written in Winbugs; it took 18.72
and 25.19 s on average to finish the computations.

4. Examples

We apply the proposed method to two published meta-analyses. The first one is a meta-analysis of 21
placebo-controlled trials of vasoactive drugs for acute stroke and the second one is a small-sized meta-
analysis of five randomized controlled trials that compared a surgical versus a non-surgical procedure for
treating periodontal disease.

4.1. A meta-analysis of 21 trials comparing vasoactive drugs for acute stroke

We consider a meta-analysis of placebo-controlled trials of vasoactive drugs for acute stroke [53] with
two endpoints: systolic blood pressure (SBP, in mHg) and diastolic blood pressure (DBP, in mHg). The
data are available in the published literature [37, 53] and summarized in terms of mean differences of
each endpoint between the treatment and the control group, (Yl-,, Yl-c); the corresponding within-study
variances, (o-l.zt, o-l.zc); and the within-study correlations (p;,). We follow techniques and assumptions in
Reference [37] to approximate the within-study covariances. A positive Y; indicates that the treatment
group has lower outcome (SBP or DBP) than the control group.

The vasoactive drugs for acute stroke data were analyzed using the model given by (2). This model
was fit using MBMA techniques with each of the nine prior choices for D deemed to be the best, based
on the simulation results. The heterogeneity indices are 45%(I?) and 70% (17 ), meaning that 45%(1?)
of the total variation in SBP was from the between-study variation and 70% of the total variation in DBP
was from the between-study variation.

As shown in Table I, all priors produced similar point estimates for §. The negative estimate implies
that SBP and DBP were lower in the treatment group than in the control group; however, the difference is
not more than 2.70 mHg for both outcomes. The 95% marginal credible intervals for 8, and 6, are quite
different among the fit models. For example, models with W(4,1,) and 7z, priors produce 95% credible
intervals that contain zero for both 8, and 6,, while all the other credible intervals suggest a significantly
different from zero effect for both outcomes (with the exception of the model with a W(2, 0.11,) prior).

The model with the W(4,1,) prior has the lowest point estimate for 7, and 7,, while the model with
Tygp, has the highest point estimate for 7, and 7,. The constrained Wishart priors give much tighter
credible intervals for 7, and 7, than the other methods.

The models considered here do not agree about point estimates and credible intervals for p,. Among all
the 95% credible intervals for p,, the ones that did not include zero are those obtained using W(2, 0.11,),
Tygp,» constrained Wishart, and mixture of Wishart prior distributions. It is also interesting to note that
the frequentist point estimates reported by Reference [53] for all parameters are more consistent with
those obtained by the model with constrained Wishart and mixture of Wishart prior distributions.

4.2. A meta-analysis of five trials comparing a surgical versus non-surgical procedure for treating
periodontal disease

Riley et al. [8] illustrated the use of frequentist multivariate meta-analysis methods with a study of five
randomized controlled trials that compared a surgical versus a non-surgical procedure for treating peri-
odontal disease with two endpoints: probing depth (mm) and attachment level (mm) 1 year after treatment.
The data are available in the published literature [15, 54] and summarized in terms of mean differences
of each endpoint between the two treatments (surgical minus non-surgical), (Y,-l, Y,-z); the corresponding
within-study variances, (‘71'21’ o-l.zz); and the within-study correlations (p;,,). A positive Y; indicates that the
surgical procedure produces a better patient outcome than the non-surgical one.
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The periodontal disease data were analyzed using the model given by (2). This model was fit using
MBMA techniques with each of the nine prior choices for D deemed to be the best, based on the
simulation results. The heterogeneity indices are 69%(17) and 96% (1% ), meaning that 69%(I?) of the
total variation in probing depth was from the between-study variation and 96% of the total variation in
attachment level was from the between-study variation.

As shown in Table II, all priors produced significant estimates for 6, indicating that the probing depth
improved for the surgical group and that the attachment level improved for the non-surgical procedure.
However, the 95% marginal credible intervals for 6, and 6, are quite different. For example, a model
with a W(4,1,) prior produces 95% credible intervals that contain zero for both 8, and 8,, while all
the other credible intervals suggest a significantly different from zero effect for both outcomes. Point
estimates and credible intervals for 7, and 7, are also different among the fit models. The model with the
W(4,I,) prior produces higher point estimates and wider credible intervals than the other models. The
models considered here do not agree about point estimates and credible intervals for p,. Among all the
95% credible intervals for p,, the only ones that did not include zero are those obtained using constrained
Wishart prior distributions. It is also interesting to note that the frequentist point estimates for p, reported
in [15] are pretty similar to those obtained by the model with constrained Wishart prior distributions.

5. Discussion

We have carried out an extensive simulation study designed to illustrate the impact of the choice of prior
distribution for the covariance matrix (D) on estimating in a MBMA model with normal random effects
(see (2)). The data were generated as a set of hypothetical clinical trials comparing a treatment arm with
a control.

Five families of priors for D, for a total of 38 different prior distributions, were studied under ten dif-
ferent simulation scenarios for three samples sizes representing small (n = 10), medium (n = 30), and
large meta-analyses (n = 50). The simulation results are summarized using the frequentist criteria of rel-
ative bias, MSE, and coverage probability with the rationale that Bayesian analysis with non-informative
or weakly informative priors can lead to the same estimates derived from the frequentist methods.

The simulation study shows that point estimates of effect sizes (6, 6,) are not particularly sensitive
to the choice of prior for D; in contrast, and not unexpected, the results for the covariance parameters
(112, 122, p;) varied more widely under different prior specifications, especially so when the number of
studies was small. Large biases in the posterior mean estimators of covariance matrix parameters were
observed to be associated with poor frequentist performance of Bayesian credible intervals for the effect
sizes, suggesting that the use of different priors for the covariance matrix D can lead to different inferences
for (6,,0,).

The results we obtained do not point to a uniformly best choice of prior family, but do provide insights
on the differences in inferences produced by different priors. The conjugate Wishart prior and the inde-
pendent prior family of distributions did not perform well in terms of the MSE and coverage probability
criteria for 8,, 8,, nor in terms of relative bias for 7,, 7,, p,,. In general, the reference prior family provided
good summary measures, except for large relative biases of p. At least one of the constrained Wishart
priors and the mixture of Wishart prior typically had equal or better performance for all the parameters,
but there was no consistent winner. In the case where heterogeneity was higher, however, the uniform
shrinkage prior CW(3, 0;1,) arguably provided the best overall balance in frequentist performance. For
these reasons, we recommend the use of either the class of constrained Wishart or mixture of Wishart
prior distributions, especially when the number of studies is less than 30.

Models using constrained Wishart priors do not require MCMC for implementation. Reference [45]
also shows that their model has good frequentist performance (including coverage) when the prior on
their transformation matrix is uniformly distributed; however, they do not provide theoretical results
or discussion that helps to explain why the constrained Wishart priors perform well. Reference [47]
shows through a simulation that the mixture of Wishart distributions family has better performance over
the classical Wishart prior. In our study, the performance of the constrained Wishart priors for a given
heterogeneity level was observed to depend on the specified degree of freedom parameter (v). As shown
in (6), the heterogeneity index Ij2 is a statistic that solely depends on the value of 1-].*2 and sj?, not on the

value of p,. Considering a fixed value of sjz, it is easy to see that Tj*2 increases as I? increases. Hence,

with higher heterogeneity levels, the matrix D* used to generate each meta-analysis data set had larger
values on the diagonal compared with that when heterogeneity was smaller. A closer look at B matrices



generated from constrained Wishart distributions, B ~ CW(v, R; I,,), shows that the diagonal elements of
B tend to increase with v for a fixed precision matrix R. The opposite happens to the transformed matrix
D = 2(1)/2(351 - I)Eé/z, B, ~ CW,(v,I,;1,): as v increases, the diagonal elements of D tend to get
smaller on average. Additionally, the distribution of the values of p, becomes increasingly concentrated
about 1 when the correlation value corresponding to X, is large (p, = 0.8), but it does not change much
in qualitative terms as v increases. These observations help to explain the performance of the constrained
Wishart distributions in our simulation: the CW(v, R; I,) prior distribution with small degrees of freedom
(v = 3) leads to random D matrices that tend to have larger diagonal elements when compared with that of
a constrained Wishart distribution with v > 3, thus being more consistent with how the data were actually
generated. One useful take-away message here is that a constrained Wishart prior distribution with fewer
degrees of freedom may be preferred for MBMA when greater levels of heterogeneity are anticipated.

The constrained Wishart prior does not exhibit strong dependence between variance and correlation,
probably because of the constraints it implicitly places on the eigenvalues. However, the support of the
distribution of the correlation parameter changes with the degrees of freedom v. Samples of the 50%
equiprobability ellipse (the contour plot in which 50% of the bivariate normal density lies) for ;|0 = 0,D
where D ~ CW,(v,0;1,) look more like spheres for values of v = 3,6, 15, which is expected because
the squared relative lengths of the principal axes are given by the corresponding eigenvalues (I, is the
constraint matrix ). Another comparatively strong performer for estimating the covariance matrix in the
class of priors considered was the mixture of Wishart prior distributions. Like the constrained Wishart
priors, these priors do not exhibit strong dependence between variance and correlation. Hierarchical nor-
mal models using a mixture of Wishart distributions have conditional conjugacy; compared with other
priors requiring MCMC, this class of priors has the computational advantage of allowing for exact Gibbs
sampling from the posterior distributions. Samples of the 50% equiprobability ellipses (the contour plot
in which 50% of the bivariate normal density lies) for ;|0 = 0,D where D ~ MW,(v,A;) show a
set of ellipses with several orientations and axes lengths that do not strongly depend on the values of
the hyperparameters.

As expected, independent prior distributions also do not exhibit much dependence between variance
and correlation. However, samples of the 50% equiprobability ellipse (the contour plot in which 50% of
the bivariate normal density lies) for ;|0 = 0, D, where D is generated by one of the independent prior
distributions, are significantly different from the ones obtained using any other of the prior distributions.
The orientation of the points along both axes is quite different: horizontal or vertical ellipses only. The
directions of the principal axes of the ellipsoids are given by the eigenvectors of the covariance matrix D,
which implies that the eigenvectors of D are constrained when using independent priors. These restrictive
orientation patterns in the equiprobability ellipses suggest that sampling takes place in a limited sample
space, potentially impacting performance.

-1
The reference prior distribution ( zyzp,(D) = [lEO +D|[[,;(4 - /11-)] is skewed to the left for p,,

when X, has a high positive correlation (p, > 0.70) and skewed to the right for p, when X, has a high
negative correlation (p, < —0.70). There is no strong dependence between variance and correlation when
the correlation values are sampled in the neighborhood of p,; however, variances are highly correlated
(concentrated around the same value) when correlation values are sampled far away from p,,. This in turn
suggests that MCMC may converge fairly quickly in some cases or need extra runs in others. Samples of
the 50% equiprobability ellipses (the contour plot in which 50% of the bivariate normal density lies) for
H;10 = 0,D, where D is generated by one of the reference prior distributions, show a set of ellipses with
several orientations and axes lengths.

The usual conjugate choice, the inverse Wishart prior distribution, has problems that appear to stem
from the strong dependence between variance and correlation: high variance implies high correlation
(in absolute value), and low variance implies low-to-moderate correlation (in absolute value). This is a
problem for inference, because it means that correlation will tend to be exaggerated with higher variances.
This may help to explain the subpar performance of the inverse Wishart priors for estimating variance in
the case of unequal heterogeneity levels.

The simulation results have a number of implications on the use of MBMA in medical clinical research.
Even least informative prior distributions have an impact on the overall inferences for both the effect
sizes and the covariance parameters. Therefore, sensitivity analysis to prior family, as well as to choice
of prior within family, is important; not surprisingly, this is especially true when the sample size is small.
Of the priors considered, the constrained Wishart and mixture of Wishart priors have clear computa-
tional advantages, and these families were typically observed to behave (comparatively) well across the



frequentist performance measures used here. An advantage of the mixture of Wishart distributions is
that its performance was only observed to depend weakly on the specification of its hyperparameters.
We could not identify a single best choice for the optimal degrees of freedom for CW,(v, 0;1,); how-
ever, as demonstrated earlier and discussed previously, improved performance results when the degrees
of freedom vary inversely with the heterogeneity index. The availability of historical information on
heterogeneity indices could be used to help inform the selection of an appropriate choice of v; alterna-
tively, an empirical Bayes approach to prior specification can be taken, where the heterogeneity indices
are computed from the observed data (e.g., [6]; see also the Supporting Information for code). Because
the relationship between the degrees of freedom and the heterogeneity index cannot be determined
mathematically, sensitivity analysis should still be used.

All models fit in this paper utilized R or a combination of R and WinBUGS; the code is available in
the Supporting Information, and these platforms were selected because of the relatively high penetration
of these softwares in applied research. Software implementation of MCMC algorithms, including model
and prior parameterizations, may have an impact on the results. The available code fits the same model
using the five families of priors for D considered in this paper, and the results are displayed in a similar
format to those in Table I, allowing an immediate comparison of results among families. Intra-prior family
sensitivity analysis can also be performed using the code available and varying the input parametric values
that characterize the distribution. As noted earlier, the code also computes the heterogeneity index for
each effect size, as proposed in [6], and additionally produces convergence diagnostic plots and tables
for each model.

Although the simulation presented here can be extended in many ways, the implementation of a
simulation study such as this one requires large computational and time resources. The normality assump-
tion in (2) is considered reasonably precise for large studies and is an attractive choice more generally
because of its relative computational simplicity and the ease of interpretation of its model parameters.
Extensions to non-normal models, such as the Dirichlet process model [55] and the Polya tree mix-
ture model [56], may also be worthwhile. For future research, the impact of different fixed effect sizes
(specification 1), additional heterogeneity indices (specification 3), and different within-correlation and
between-correlation coefficients should be considered, as should missing data and robustness to model
assumptions. The assumption of independent diagonal elements for each within-study variance matrix
(i.e., for each i, o-l.zj, j = 1,2 are independently distributed as exponential with a rate of 0.50, with all
within-study variances truncated to the range of [0.50, 10]) is designed to create some heterogeneity in
the within-study-level variances (i.e., heterogeneity in the diagonal elements of the Z.s). We do not expect
that the manner in which we have created this heterogeneity to have a material impact on our results.
To provide some rationale for this argument, note that we may write al.z. = v;;/n; for each i,j. Because
the matrices X, are fixed throughout the analysis, we are in effect conditioning on the set of observed
variances, hence study sample sizes n, ... n,. As a result, it should not matter much whether unequal
diagonals in the X;s arise from a setting in which we have equal variances and unequal study sample
sizes; unequal variances and equal study sample sizes; or unequal variances and unequal study sample
sizes. To test this intuition, and specifically whether variation in the study sample sizes might influence
our results, we ran an additional mini-simulation with 1000 replicates using the constrained Wishart pri-
ors with 10 studies under the specification of independent error variances (i.e., (vy;, v,;) are independent
exponentials with rate equal to 0.05) and random study sample sizes generated from a Poisson distri-
bution with rate 10. Here, the study sample sizes vary, with o-iz1 and 61.22 being dependent for each i but
independent across i. We did not find substantial differences between the results for the dependent and
independent within-study-level variances (results available upon request).
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