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Mechanical Properties of a Primary Cilium As Measured by Resonant
Oscillation

Andrew Resnick

ABSTRACT Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regu-
latory pathways. The well-established ciliary hypothesis states that physical bending of the cilium (for example, due to fluid
flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confu-
sion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical
properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1) the
primary cilium is not a simple cantilevered beam; 2) the base of the cilium may be modeled as a nonlinear rotatory spring,
with the linear spring constant k of the cilium base calculated to be (4.6 5 0.62) � 10�12 N/rad and nonlinear spring
constant a to be ( 1 5 0.34) � 10�10 N/rad2; and 3) the ciliary base may be an essential regulator of mechanotransduction
signaling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile
cilia—anatomically similar structures with very different physiological functions.

INTRODUCTION

The primary cilium is a microtubule bundle that extends
from the mother centrosome into the extracellular space
and is hypothesized to be a mechanotransducing structure
(1 4). A decade of experimental results has demonstrated
that bending the primary cilium is correlated with initiation
of a variety of signaling cascades (1,2,5 26). Measurements
of the essential mechanical properties of this mechanical
sensor are surprisingly few, and have relied on static defor-
mations induced either by steady fluid flow (9,16,27), by
glass pipette (7), or by optical trapping of a bead attached
to the cilium tip (3). Experiments that infer the mechanical
properties through relaxation methods have been performed
on microtubules and cilia (3,28) as well. It must be empha-
sized that while models of the mechanical properties of
motile cilia and flagella are plentiful (for example, see the
literature (29 42)), they are not relevant here due to the sig-
nificant physiological and structural differences between
motile and nonmotile cilia. Nodal cilia (43) are structurally
identical to a primary cilium, but again, while the mechan-
ical properties of nodal cilia have been inferred from models
of induced flow (43 45), they have not yet been directly
measured.

In contrast to the previous methods, we have directly
excited a resonant oscillation of a primary cilium with a
single beam three-dimensional optical tweezer (46,47).
Measuring dynamic responses of the cilium provides infor-
mation that cannot be measured using static methods such
as, for example, recording mechanical properties of the

cilium base. In addition, use of dynamics rather than statics
potentially obviates the need for detailed shape fitting,
which requires either side-on views of the cilium (48) or
insertion of fluorescent transmembrane proteins (16). We
will demonstrate that a single dynamic measurement pro-
vides a wealth of reliable information about not only the
mechanical properties of the primary cilium, but of the
cilium-fluid interaction as well. The method described
here provides results equivalent to multiple independent ex-
periments, and our method could be applied to the study of
motile cilia (49), nodal cilia, and more complex structures
such as hair-cell stereocilia (50). Our experimental approach
compares favorably with similar experiments performed us-
ing magnetic tweezers on motile cilia (49). One advantage
of optical trapping over magnetic tweezers is the noncontact
generation of force; magnetic tweezers require a paramag-
netic bead to be affixed to the cilia, significantly altering
the fluid flow in the neighborhood of the cilium.

MATERIALS AND METHODS

Cell culture

Experiments were carried out with a mouse cell line derived (51) from the

cortical collecting duct (mCCD 1296 (d)) of a heterozygous offspring of the

Immortomouse (Charles River Laboratories, Wilmington, MA). The Im

mortomouse carries as transgene a temperature sensitive SV40 large T

antigen under the control of an interferon g response element. Cells were

maintained on collagen coated Millicell CM inserts (inner diameter

30 mm, permeable support area 7 cm2; Millipore, Billerica, MA) to pro

mote a polarized epithelial phenotype. Cells were grown to confluence at

33�C, 5% CO2 and then maintained at 39�C, 5% CO2 to enhance differen

tiation. The growth medium consisted of the following (final concentra

tions): Dulbecco’s Modified Eagle’s Medium w/o glucose and Ham’s F12



at a 1:1 ratio, 5 mM glucose, 5 mg/mL transferrin, 1 nM T3 (triiodothyro

nine), 5 mg/mL insulin, 10 ng/mL EGF (epithelial growth factor), 4 mg/mL

dexamethasone, 15 mM HEPES (4 (2 hydroxyethyl) 1 piperazineethane

sulfonic acid), 0.06% NaHCO3, 2 mM L glutamine, 10 ng/mL interferon g,

50 mM ascorbic acid 2 phosphate, 20 nM selenium, and 5% FBS (fetal

bovine serum). For differentiation, FBS, EGF, insulin, and interferon g

were omitted from the apical medium and insulin, EGF, and interferon g

from the basal medium.

Optical tweezers

The source for the single beam three dimensional trap was a Crystalaser

IRCL 0.5W 1064 (Reno, NV), a diode pumped Nd:YAG continuous

wave single mode laser providing 0.5 W optical power from a 10 W elec

trical power supply. The optical tweezer breadboard layout was constructed

using optomechanical mounts ( Qioptiq, Munich, Germany; Excelitas Tech

nologies, Fremont, CA). Achromatic doublets were used for the beam

expansion. The first lens has a 10 mm focal length, while the second has

a 200 mm focal length. Both lenses were anti reflection coated for

1064 nm. The focal lengths were chosen simply for convenience: the dis

tance between the entrance port of the microscope and the objective lens

is 140 mm, and the laser beam was expanded a factor of ~6� to fill the aper

ture. The objective lens used was a 63� NA 0.9 U V I HCX long working

distance Plan Apochromat dipping objective (Leica Microsystems, Buffalo

Grove, IL) with a 2.2 mm working distance. The tweezer couples into the

microscope through an existing lateral port. A side looking dichroic mirror

(Chroma Technology, Bellows Falls, VT) mounted within the fluorescence

turret provides the ability to perform normal microscope viewing while the

tweezers are operating. The fixed position optical trap has a beam waist of

0.3 mm and Rayleigh length of 0.4 mm.

Objects held within the trap diffract the trapping beam. The spatial dy

namics of the diffracted beam were recorded using a quadrant photodiode

(QPD) and the data analyzed as per Glaser et al. (52). Briefly, the QPD out

puts the centroid location of the diffracted trapping beam, digitally sampled

at 10 kS/s. The data was then analyzed to calculate the force applied by the

trap to the trapped object. The relationship between the centroid position

and the location of the trapped object is known, allowing calculation of

the cilium tip position.

Applying the trap to a primary cilium proceeded as follows. First, the trap

location was precisely determined by trapping a small piece of floating cell

debris. Turning the trapping laser off and using bright field illumination, a

cilium was moved to the center of the trap and focus adjusted to align the

trapping plane to the cilium tip. The cilium was then laterally displaced

slightly from the trap axis and recorded using the XY translation stage dig

ital readout. The optical trap was turned on and QPD data acquired for

several seconds. The trap was then turned off, another cilium moved into

position, and the procedure repeated.

Microscopy

Imaging and manipulations of terminally differentiated epithelial mono

layers were carried out using a DM 6000 upright microscope (Leica Micro

systems) equipped with a heated and CO2 controlled incubation chamber

(Solent Scientific, Segensworth, UK). The microscope stage (Cat. No.

H30XY2; Prior Scientific, Rockland, MA) was accurate to 50.04 mm.

Bright field image acquisition and optical trap monitoring were performed

by a Flea digital video rate camera (Point Grey, Richmond, British

Columbia, Canada).

Cilium length measurement

After the trapping experiments, cells were fixed and stained for high reso

lution imaging. Image stacks (0.1 mm z step size) were obtained via the

software MICRO MANAGER (https://www.micro manager.org/) (53)

using a 100� 1.46 NA immersion lens (Leica Microsystems) and cilium

lengths measured directly from the image stack. For the measurements re

ported here, the cilium length was measured to be L 2.15 0.05 mm. It is

important to note that we use the immunostained axoneme length as a proxy

for the cilium length; the actual cilium length could be slightly different.

Immunocytochemistry

Fixation and immunocytochemistry were performed using standard tech

niques. The cells were fixed in 4% paraformaldehyde for 10 min. After

rinsing, the monolayers were permeabilized for 10 min with a solution of

0.1% Triton X and 0.5% saponin in a blocking buffer containing 5%

donkey serum, 5% sheep serum, 1% BSA (bovine serum albumin), and

5% FBS (fetal bovine serum). The monolayers were then stained with a

monoclonal mouse antibody against acetylated a tubulin (Invitrogen,

Carlsbad, CA) and a polyclonal goat antibody against Polycystin 1

(Abcam, Cambridge, UK) followed by an anti mouse antibody labeled

with AlexaFluor 488 (Invitrogen) and an anti goat antibody labeled with

AlexaFluor 594 (Invitrogen). The stained filter was cut out of the culture

insert and transferred to a microscope slide, monolayer side up. The filter

was mounted in a VectaShield (Vector Labs, Burlingame, CA) with

DAPI. A No. 1.5 coverslip was placed on top of the monolayer, then sealed

with nail polish and stored at 4�C for later imaging.

Culture media viscosity and density
measurement

The dynamic viscosity of apical media was measured with a Cannon

Fenske Routine Viscometer (Induchem Lab Glass, Roselle, NJ) with the

apparatus and media equilibrated to 37�C. The density of the media was

measured with a pycnometer (Thermo Fisher Scientific, Waltham, MA).

RESULTS

An en face view of stained cells with primary cilia indicated
is shown in Fig. 1. Most of the cells are ciliated, and the
cilia are oriented vertically, appearing as a diffraction-
limited point. The length of cilia were measured to be
L ¼ 2.1 5 0.05 mm. The viscosity of fluid was measured
to be h ¼ 0.637 5 0.012 cP, the density measured to be
r ¼ 1.00 5 0.01 g/cm3. The density of the cilium is
estimated to be 1.11 g/cm3 (10) and the cilium diameter
a ¼ 0.2 mm.

The direct QPD output from a trapped cilium is shown in
Fig. 2, showing the time-varying position of the cilium tip.
This result was unexpected, because the cilium tip was not
held steady within the trap as for trapped microspheres.
The Fourier transform of the QPD output results in Fig. 3,
clearly showing a resonant oscillation frequency and multi-
ple harmonics.

We directly obtain the following: oscillation amplitude ¼
0.22 5 0.047 mm and resonant oscillation frequency f ¼
57 Hz ¼ u/2p. The Reynolds number (Re) associated with
this motion is Re ¼ ðrfluida2uviscous

c Þ=ð4hfluidÞ ¼ 5.6 �
10 6, indicating viscous effects dominate. We performed
this measurement on (N ¼ 6) cilia and obtained the oscilla-
tion amplitude and resonant frequency for each. Taken as a
whole, the average resonant frequency is f¼ 55.95 1.4 Hz.

https://www.micro-manager.org/


Analysis

Our analysis begins with the simple and most widely used
mechanical model for a primary cilium, a cantilevered
beam. After demonstrating that this model gives incorrect
predictions, we include both hydrodynamic effects (viscous
drag) and a driving force (optical trap). After demonstrating
that this extended model also does not accurately predict the
resonance frequency, we introduce a nonlinear rotatory

spring located at the cilium base to reconcile our model
with our measured results.

Classical cantilever beam

The most basic model for a primary cilium, the classical
cantilever, neglects hydrodynamic interactions and models
a cilium as a homogeneous flexible cylindrical beam that
is anchored at the basal end and is free to move at the distal
end. Because primary cilia, unlike motile cilia, do not
actively generate internal forces, we can model the primary
cilium in terms of a passive beam: there is no generation of
forces and/or moments within the cilium. Because the slen-
derness (length/diameter) of the cilium is large, we may
neglect both rotatory inertia and transverse shear and
approximately describe the cilium shape in terms of a
one-dimensional object, the so-called neutral axis (54).
Under the conditions described above, the time-dependent
shape Y(s,t) of the neutral axis of a cilium is given by the
linearized Euler-Bernoulli law for pure bending,

EI
v4Y

vs4
þ m

v2Y

vt2
¼ w; (1)

where w is the (externally applied) distributed force per
length, m is the mass/unit length of the cilium, E is the
Young’s modulus of the cilium, I is the area moment
of inertia (for a cylinder of radius a, I ¼ pa4/4), and EI
is referred to as the flexural rigidity, having units of
Force � area. Careful measurements by several groups
(6,16,17,27,55) have measured the flexural rigidity EI for
primary cilia and while there is incomplete agreement, re-
ported values typically vary within the range 1 � 10 23 <
EI < 2 � 10 23 Nm2. Thus, we set EI ¼ 1.5 � 10 23

Nm2 here. Note that a mechanical model of a cilium ac-
counting for microstructure simply replaces the single-
valued homogeneous EI with a spatially varying E
and modified I; the homogeneous EI used in this model

FIGURE 1 En face view of fixed and stained epithelial monolayer.

(Green) Acetylated a tubulin, identifying the primary cilia. (Red) Polycys

tin 1. (Blue) DAPI (nuclear DNA). (Arrows) Several of the primary cilia.

(Inset) An x z slice showing the orientation of the primary cilium with

respect to the cell layer. Scale bars 2 mm. To see this figure in color,

go online.

FIGURE 2 QPD output data. A subset of the full dataset is shown here,

scaled in time (10 kS/s) and centroid displacement (volts/meter). Each in

dividual datapoint corresponds to the centroid location of the diffracted

trapping beam and is, after scaling, a trace of the actual position of the trap

ped object (the cilium tip) within the trapping plane in time.

FIGURE 3 Discrete Fourier transform of the (full) dataset shown in

Fig. 2. The spectrum (log plot) shows the resonant frequency as well as

the first, second, and third harmonics. (Inset, linear plot) Detailed graph

of the fundamental and first harmonic.



(and others) can therefore be considered an effective flexural
rigidity. EI functions as a spring constant when describing
the deformation of the cilium.

The natural (w ¼ 0) resonant frequencies of a cantilever
of length L can be determined analytically by first separating
Y(s,t) ¼ S(s)T(t), resulting in the solutions

TðtÞ ¼ A1 cosðutÞ þ A2 sinðutÞ; (2)

SðsÞ ¼ C1 cosðasÞ þ C2 sinðasÞ þ C3 coshðasÞ
þ C4coshðasÞ; (3)

where the oscillation frequency u is related to a by
u2 ¼ ðEI=mÞa4. Solving for eigenvalues (u) and mode
shapes (C1, C2, etc.) requires application of boundary condi-
tions to S(s). Determining the coefficients A1 and A2 requires
specification of initial conditions (say at t ¼ 0), but because
the detailed solution of T(t) is not needed here, we do not
determine them.

The boundary conditions for a cantilevered beam are as
follows:

1) the fixed end cannot move, Sð0Þ ¼ 0;
2) the fixed end cannot deflect, dSð0Þ=ds ¼ 0;
3) at the free end (s ¼ L), the bending moment vanishes,

d2SðLÞ=ds2 ¼ 0; and
4) at the free end, the shear force vanishes, d3SðLÞ=ds3 ¼ 0.

The eigenvalues are most easily found by solving
the eigenvalue equation AC ¼ 0, where the vector
C ¼ ½C1;C2;C3;C4� and the matrix A is provided from
the four boundary conditions, giving the well-known result
uvac
c ¼ 3:51=L2ðEI=mÞ1=2. For the cilia studied here, this

model returns a resonant frequency of 83.6 kHz, clearly at
variance with our measurement (57 Hz).

Viscous effects (hydrodynamic interaction)

There are at least two approaches to incorporate hydrody-
namics into the Euler-Bernoulli law. One treats the viscous
force as a distributed load wdrag, while a second approach
(56) treats the interaction as a virtual mass due to the dis-
placed fluid. Treating the hydrodynamic interaction as a
distributed load appears straightforward; we could poten-
tially use the result obtained by Resnick and Hopfer (10)
for the viscous force exerted onto a moving cylinder (motion
perpendicular to the cylinder axis),

wdrag ¼ 4phU

0:5� g� ln

�
arU

8h

�; (4)

where U is the (local) relative velocity between cilium
and fluid, and g is Euler’s constant (0.577.). Treating
the cilium tip as a half-sphere, boundary condition 4 be-
comes, at the free end, the shear force from viscosity:
ðd3SðLÞ=ds3Þ ¼ �ð3ph=EIÞvYðs ¼ LÞ=vt.

Because the velocity U is time-dependent and a function
of position along the neutral axis, this approach is not suited
for dynamics. However, if the relative velocity is time-inde-
pendent (steady fluid flow past a cilium, discussed below)
and the cilium deflection is not too large, the equilibrium
deflection SðsÞ can be easily computed, and we do so below.

Consequently, for dynamics we used the alternate model
that treats the cantilever-fluid interaction in terms of a vir-
tual mass due to the displaced fluid (56). This model pro-
vides an implicit function for the resonant frequency of a
cantilever within a viscous fluid,

uviscous
c ¼ uvac

c

�
1þ rfluid

rcilium
G
�
uviscous

c

���1=2

; (5)

where G(u) is the hydrodynamic function for a cylinder:

GðuÞ ¼ �4i K1

��i i Re
p �

i i Re
p

K0

��i i Re
p �z �4i

Re Ln
��i i Re

p �: (6)

The functions K1 and K0 are modified Bessel functions of
the third kind, and the approximation valid in the limit
Re/0. Numerical solution of Eq. 5 predicts a resonant fre-
quency of 269 Hz for the cilia used in this study. While this
is an improvement in accuracy, there is still considerable
disagreement with measurement.

Optical trap: end-loaded cantilever

Optical traps apply a force proportional to the gradient of
the intensity. A detailed model of the force applied by an op-
tical trap to a cilium is beyond the scope of this report and is
being prepared separately. Our QPD data analysis returns
the time-averaged value of the applied force, which must
then scaled depending on the space- and time-dependence
of the applied force to calculate, for example, the maximum
applied force W. Because the cilium tip oscillates through
the fixed trap location, the applied force can be separated
into FðrÞsinðutÞ, simplifying the analysis. Compared to
the cilium length, the Rayleigh length of the trap allows
us to treat the applied force as localized to the cilium tip:
Fðr; tÞ � FðrÞdðz� LÞsinðutÞ. FðrÞ is a function of distance
between trapped object and trap center dr and scales as
FðrÞ ¼ W expð�ðdr=u0Þ2Þ, where u0 is the beam waist.

Boundary condition 4 is now:

4) at the free end, the shear force from the trap,
d3SðLÞ=ds3 ¼ �Fðr; tÞ.

Although inclusion of this end load complicates boundary
condition 4, our analysis may be simplified by first consid-
ering the static limit, corresponding to the maximum cilium
deflection, maximum applied force W, and no viscous
drag because the cilium is momentarily stationary. The
maximum displacement Smax of a cantilevered beam is
Smax ¼ L3ð3Lwþ 8WÞ=24EI, where w is the cantilever’s
weight per unit length (w ¼ mg). For our system, this model



predicts Smax ¼ 0:43mm, again in disagreement with our
measurements.

To summarize the above findings, we provide Table 1.

Improved model for cilium base

We have now demonstrated that none of our results can be
explained by modeling the cilium as a cantilevered beam.
Given this persistent discrepancy between the above predic-
tions and our measured data, following the example of
Young et al. (16), we now incorporate an improved mechan-
ical model for the cilium base: a nonlinear rotational spring.

We model the cilium base as a nonlinear rotational spring
with linear spring constant kðunits Force=angleÞ and
nonlinear coefficient aðunits Force=ðangleÞ2Þ, while leav-
ing the cilium itself as a uniform homogeneous beam as
before. We do not treat the individual base components
(basal body, transition fibers, ciliary necklace, cilium mem-
brane, etc.) as separate lumped parameters because those
additional degrees of freedom (masses, spring constants,
etc.) have not yet been constrained by experiment and
thus could result in an ill-posed model. Boundary conditions
2 and 4 are now given by:

2. The fixed end has a bending moment due to the
spring, ðd2Sð0Þ=ds2Þ � ðL=EIÞðkðdSð0Þ=dsÞ þ aðdSð0Þ=
dsÞ2Þ ¼ 0; and
4. The free end is subject to a shear load,

d3SðLÞ=ds3 ¼ �Fðr; tÞ=EI.
Boundary condition 2 is nonlinear and boundary condi-

tion 4 is inhomogeneous, while the static shape can be
computed through direct integration:

The eigenvalue method fails due to the inhomogeneous
boundary condition. Consequently, the spring constants
were numerically computed using the Rayleigh method
(57). The time-averaged potential energy P and kinetic en-
ergy T of the beam are set equal to each other:

P ¼ EI

2

ZL

0

�
d2SðsÞ
ds2

�2

ds ¼ 1

2
mu2

ZL

0

SðsÞ2ds ¼ T: (8)

Solving this results in two resonance frequencies uvac (and
two additional unphysical negative frequencies):

A ¼ �
728L2w2 þ 3717LwW þ 4752W2

�
; (9b)

B ¼ 504 EIL3að13Lwþ 33WÞ
�

	
Hk þ k2 þ 2LaðLwþ 2WÞ

p 

:

(9c)

As before, uvac is scaled to uvisc using Eq. 5. We now have
analytic expressions for SðsÞ and uvisc that depend on the
two (unknown) spring constants k and a to compare with
measurements u and Smax. Constraining the spring constants
k and a to be real and requiring k > 0 selects the unique
physically relevant solution. Specifically, we find that k ¼
4.6 � 10 12 5 0.62 10 12 N/rad and a ¼ �1 � 10 10 5
0.34 � 10 10 N/rad2 produces agreement with our measure-
ments. If we model the base of the cilium as a nonlinear
spring, then under conditions of periodic forcing the pri-
mary cilium is a Duffing oscillator (58), and because
a < 0, the primary cilium is a softening spring. Our results
have significant biological relevance (discussed below).

Model results

Equilibrium profiles of deformed cilia of various lengths are
shown in Figs. 4 and 5, using fluid flow conditions typical in
a mouse tubule (Poiseuille flow, tubule radius 10 mm, vol-
ume flow rate 5 nL/min, and Re ¼ 0:016). The deformed
profile was calculated by solving the time-independent

uvac ¼ 12L 21 EIð3L2w2 þ 15LwW þ 20W2
p

w
2

A 5 BH30; 240 EI2 Hk2HLaðLwþ 2WÞ þ k k2 þ 2LaðLwþ 2WÞp
;
�r (9a)

SðsÞ ¼ s
�
Lsð6LðLwþ 2WÞ � 4sðLwþWÞ þ ws2Þa5 12 EI

�
Hk þ k2 þ 2LðLwþ 2WÞap ��

24 EI a
: (7)

TABLE 1 Summary of experimental measurements and initial

model predictions

Measured resonant frequency 55.9 5 1.4 Hz

Predicted resonance, classical cantilever 83.6 kHz

Predicted resonance, cantilever in a viscous medium 269 Hz

Measured oscillation amplitude 0.22 5 0.047 mm

Predicted amplitude 0.43 mm



form of Eq. 1, using the viscous drag loading in Eq. 4. Fig. 4
shows equilibrium profiles for cilia modeled as simple can-
tilevers and for comparison, equilibrium profiles of cilia us-
ing our proposed model. Both the cilium profile and slope
are different between the two models.

Fig. 5 presents more detailed plots comparing the equilib-
rium deformation of a primary cilium. We show only the
basal region of the cilium, emphasizing the significant effect
caused by the rotatory spring. For cilia that are <7 mm long,
the modified model predicts a somewhat larger cilium defor-
mation as compared to the classical cantilever. However, for
cilia longer than 7 mm, our proposed model shows a dra-
matic difference as compared to the classical cantilever:
the slope of the cilium at the base changes sign. We
conclude that our proposed model lends support to the
idea that physical structures located at the base of the cilium

(basal body, transition fibers, ciliary necklace, etc.) may
have essential roles in regulating the mechanosensation
mechanism.

Biological relevance of a cilium modeled as a
Duffing oscillator

It is worthwhile to briefly review the rationale behind this
measurement and analysis. First, the cilium length of most
mammalian cells is autoregulated (MDCK cells, as a con-
trary example, are not), and while the mechanism has
been clearly identified (regulation of intraflagellar transport
rates shown in, for example, Pedersen et al. (59)), the origin
of the set point is not known. Second, recent results (60)
demonstrated that chemically stimulating cilia-localized
dopamine receptors under no-flow conditions caused an in-
crease in cilioplasmic calcium that was not accompanied by
an increase in cytosolic calcium. That is, calcium did not
diffuse from the cilioplasm into the cytoplasm when the
cilium was stimulated chemically. Both of these phenomena
(length setpoint, diffusion barrier) could be explained by our
finding that the base of the cilium acts as a softening spring.

Duffing oscillators exhibit a physical property that may
have relevance here: hysteresis. As a cilium grows, the reso-
nant frequency scales as L 2 while the driving frequency
(the pulse) remains essentially constant. For a softening
spring (a < 0) like the primary cilium, when the resonant
frequency decreases beyond a threshold, the oscillation
amplitude discontinuously jumps, shown schematically in
Fig. 6. In Fig. 6, the reference length for a cilium (L0 ¼
6.7 mm) was determined by setting the driving frequency
to the mouse heartrate (10 Hz) and solving Eq. 8.

As the cilium is lengthening, the cilium oscillates with
amplitude sufficient such that the bending energy at the
base is large enough to allow calcium to diffuse into the
cytoplasm: the mechanotransduction pathway is constitu-
tively activated. When the cilium reaches a certain threshold

FIGURE 4 Graph of the neutral axis of cilia ranging in length from 6 to

8 mm exposed to physiologically relevant steady tubule flow (R 10 mm,

Q 5 nL/min). (Left) Cilia modeled as a cantilever; (right) results of our

proposed model incorporating a nonlinear rotatory spring at the base. The

most striking result is that as the cilium length increases past a certain

threshold (~7 mm here), the rotatory spring at the cilium base causes a

change in sign in the slope of the cilium at the base.

FIGURE 5 Plots of the basal region of the pri

mary cilium without (solid line) and with (dashed

line) a rotatory spring, detailing the effect of the

rotatory spring. Cilium length indicated for each

plot; fluid flow velocity is the same as in Fig. 4.



length, the oscillation amplitude spontaneously decreases to
a very low value, decreasing the available energy below the
threshold needed to allow calcium to diffuse, switching off
the mechanotransduction pathway. This sudden loss of
signal would then be used by the cell to stop growing the
cilium.

Extensions of model to nodal and motile cilia

It is instructive to compare our model calculations with
measurements of the ciliary beat frequency (CBF). An
example measurement of motile cilia (49) reports L ¼
7 mm, EI ¼ 6 � 10 22 Nm2, and CBF ¼ 10 Hz. Using these
reported values for L and EI in our model results in a reso-
nant frequency of 12 Hz, perhaps indicating that the CBF is
near the resonant frequency. Similarly, using reported values
for nodal cilia (43) (a ¼ 0.3 mm, L ¼ 5 mm, EI ¼ 1.5 �
10 23 Nm2), our model predicts a resonant oscillation at
5.7 Hz, rather than the reported 10 Hz, potentially indicating
the role of motor proteins in the basal body as force
generators.

CONCLUSION

Our primary finding of interest is definitive evidence
showing the primary cilium cannot be plausibly modeled
as a simple cantilever, and we provide measurements of
the mechanical properties of the cilium base. Bending the
primary cilium is associated with a variety of downstream
biological responses, including opening transmembrane
ion channels, regulation of transepithelial salt and water
transport, and regulation of pro-growth, pro-inflammatory
gene transcription programs. However, the essential biolog-
ical relevance of ciliary flow sensing remains uncertain due
in part to a lack of causal mechanisms linking ciliary
bending to initiation of signaling cascades. Our measure-
ments demonstrate that the ciliary base could be the link.

We have, for the first time to our knowledge, character-
ized the mechanical properties of a primary cilium through
resonant excitation excited by an optical trap. A single dy-
namic measurement is sufficient to constrain multiple model
properties and provides fresh insight into the mechanosensa-
tion mechanism. Our findings highlight a possible role of the
basal body (or more generally, the base of the cilium) as a
site of mechanotransduction regulation. We believe our
method could be successfully applied to other ciliated cell
types, for example MDCK cells, endothelial cells, and
hair cells.
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