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The evaluation subgroup of a fibre 
inclusion

Gregory Lupton, Samuel Bruce Smith

1. Introduction

The nth Gottlieb group Gn(X) of a space X is the subgroup of πn(X) consisting of homotopy classes of maps
g :Sn → X such that the map (g | 1X) :Sn ∨ X → X, defined on the wedge, extends to some map F :Sn × X → X

of the product. Alternately, Gn(X) is the image of the map induced on homotopy groups by the evaluation map
ω : aut1(X) → X, where aut1(X) is the space of continuous functions homotopic to the identity of X. The definition
may be generalized by replacing the identity by an arbitrary based map f :X → Y : the nth evaluation subgroup
Gn(Y,X;f ) of the map f is the subgroup of πn(Y ) represented by maps g :Sn → Y such that (g | f ) :Sn ∨ X → Y

extends to some map F :Sn × X → Y . The generalization provides some functorality in that the map on homotopy
groups induced by f restricts to a map f� :Gn(X) → Gn(Y,X;f ). On the other hand, it is well known that the
Gottlieb group fails to be a functor since, generally, a map f :X → Y does not yield a homomorphism f# :Gn(X) →
Gn(Y ).

The Gottlieb groups Gn(X) play a well-known role in the homotopy theory of fibrations with fibre a CW complex
X of finite type. Notably, the result of Gottlieb [7, Theorem 2] identifies G∗(X) as the image of the connecting
homomorphism in the long exact homotopy sequence of the universal fibration with fibre X (see diagram (3) below).
In this paper, we investigate the role of the more general evaluation subgroups for the homotopy theory of fibrations.



Let ξ :X
j−→ E

p−→ B be a fibration of simply connected CW complexes of finite type. We consider the homo-
morphism j� :Gn(X) → Gn(E,X; j) induced by the fibre inclusion of ξ . By the universal property of the Gottlieb
group mentioned above, restricting the homomorphisms in the long exact homotopy sequence of ξ yields a sequence
of groups and homomorphisms

· · · πn+1(B) ∂
Gn(X)

j�
Gn(E,X; j)

p�
πn(B) · · · . (1)

We call (1) the Gottlieb sequence of the fibration ξ . In general, it is not exact. Our overriding purpose in this paper is
to show that exactness properties of the Gottlieb sequence represent an interesting measure of the relative triviality of
the fibration.

Successive compositions of maps in the Gottlieb sequence are zero, since they are restrictions of those in the
long exact homotopy sequence of ξ . Thus we may consider homology groups at each type of term. We focus on the
generalized evaluation subgroup terms and define the nth Gottlieb homology group of ξ to be the subquotient

GHn(ξ) = ker{p� :Gn(E,X; j) → πn(B)}
im{j� :Gn(X) → Gn(E,X; j)}

of Gn(E,X; j) ⊆ πn(E). As we shall see, the Gottlieb homology detects the nontriviality of the fibration in the sense
of fibre-homotopy type. We say the fibration ξ is Gottlieb trivial in degree n if (1) breaks into a short exact sequence

0 Gn(X)
j�

Gn(E,X; j)
p�

πn(B) 0 (2)

in degree n, and Gottlieb trivial if this occurs in all degrees n � 2.
Recall that a fibration ξ as above is classified by a map h :B → Baut1(X), where Baut1(X) is the classifying

space of the monoid aut1(X) in the sense of Dold–Lashof [3] (see [1,19,2]). Our main results relate the notion of
Gottlieb triviality to the vanishing of the homomorphism induced on homotopy groups by the classifying map of
the fibration. In Section 2, we make some observations in ordinary homotopy theory that relate the behaviour of the
Gottlieb sequence with that of the classifying map. We then prove that a spherical fibration is Gottlieb trivial whenever
h� = 0 (Theorem 2.5).

In Section 4, we obtain a complete result in this vein within the framework of rational homotopy theory. We prove
that, after tensoring with the rationals, the Gottlieb sequence of a fibration with fibre an arbitrary finite complex splits
as in (2) if and only if the homomorphism induced on rational homotopy groups by the classifying map is trivial
(Theorem 4.2). This result depends upon a description of the map (h�)Q in terms of derivations of the Sullivan model
of the fibre. We give this description in Section 3. The key step here comes from a close study of the holonomy
action of a fibration. This description of (h�)Q (Theorem 3.2) fits the classifying map into the framework developed
in [15], whereby chain complexes of (generalized) derivations of Sullivan models are used to describe the rationalized
evaluation subgroups.

Remark 1.1. The Gottlieb sequence of a fibration ξ :F
j−→ E

p−→ B is a special case of the G-sequence of a map as
developed and studied by Lee andWoo (cf. [14]). We have elected to focus on the Gottlieb sequence of a fibration since
the construction is direct and avoids consideration of the relative term which occurs in the general G-sequence. How-
ever, the results of this paper may generally be rephrased in terms of the G-sequence and the ω-homology of a map. In
particular, our definition of the Gottlieb homology corresponds to that of the ω-homology group Hωb∗ (E,X; j) [14].

2. First results in ordinary homotopy theory

Here and throughout, all spaces will be assumed to be based CW complexes of finite type. A fibration ξ :X
j−→

E
p−→ B will be a Hurewicz fibration [18, p. 66]. The map j will usually denote the inclusion of the fibre X =

p−1(b0). However, by [8, Proposition 1.4], the evaluation subgroups are homotopy invariants of a map and so we
may, when necessary, assume j is only a fixed equivalence from X to the actual fibre over the basepoint. We will
write ∂ :ΩB → X for the connecting map in the Puppe sequence for ξ [22, Theorem III.6.22]. After the identification
πn(ΩB) ∼= πn+1(B), ∂ induces the connecting homomorphism ∂� :πn+1(B) → πn(X) in the long exact homotopy
sequence for ξ . We let ∂∞ :ΩBaut1(X) → X and ∂U :ΩBaut1(X) → aut1(X) denote the connecting maps in the



universal X-fibration X → UX → Baut1(X) and the universal principal aut1(X)-fibration aut1(X) → U aut1(X) →
Baut1(X), respectively. By results of Gottlieb [8, §4] and Dror–Zabrodsky [4, Proposition 4.1], we then have the
following homotopy commutative diagram

ΩB

∂

Ωh
ΩBaut1(X)

∂∞

�
∂U aut1(X)

ω

X

(3)

The Gottlieb sequence is an invariant of the fibre-homotopy type of ξ . Precisely, say two group homomorphisms
φ :G1 → G2 and ψ :H1 → H2 are equivalent if there are isomorphisms θi :Gi → Hi such that ψ ◦ θ1 = θ2 ◦ φ.
This notion of equivalence extends in an obvious way to any sequence or commutative diagram of groups and ho-

momorphisms. Suppose ξ1 :X1
j1−→ E1

p1−→ B is fibre-homotopy equivalent to ξ2 :X2
j2−→ E2

p2−→ B [18, p. 100].
Using [8, Proposition 1.4] again, we obtain that the equivalence between long exact homotopy sequences induced by
the fibre-homotopy equivalence preserves the evaluation subgroups and thus restricts to an equivalence of Gottlieb
sequences.

We next observe that Gottlieb triviality fits properly between two familiar notions of the relative triviality of

a fibration. Say ξ :X
j−→ E

p−→ B is fibre-homotopically trivial if ξ is fibre-homotopy equivalent to the product

π :X
i2−→ B × X

p1−→ B . Say ξ is weak-homotopically trivial if ∂# = 0 :πn+1(B) → πn(X) for all n.

Theorem 2.1. For any fibration we have the following implications:

fibre-homotopically trivial 
⇒ Gottlieb trivial 
⇒ weak-homotopically trivial.

Furthermore, each of the reverse implications fails.

Proof. An easy direct argument shows that a trivial fibration is Gottlieb trivial (cf. [23, Corollary 13]). The first
implication follows from this and the fibre-homotopy invariance mentioned above. For the second implication, note
that p� surjective implies ∂# = 0. A separating example for the first implication is given by Example 2.2. Separating
examples for the second are given by Examples 2.6 and 4.4. �
Example 2.2. Let ξ :G

j−→ E
p−→ B be a principal bundle with structure group G. It is well known that the

Gottlieb groups of G coincide with the homotopy groups of G. This identity extends to the evaluation subgroups
Gn(E,G; j): For let α :Sn → E represent an arbitrary homotopy class. Following Steenrod [21, §8.7], consider the
principal map P :G × E → E induced by the action of G on the fibres of p :E → B . Define F :Sn × G → E by
F(s, g) = P(g,α(s)). It is easy to check F extends (α | j) :Sn ∨ G → E to the product and the claim follows. Thus
for principal bundles the Gottlieb sequence coincides with the long exact homotopy sequence and we have Gottlieb
trivial is equivalent to weak-homotopically trivial. The above analysis holds as well for principal H -fibrations as
in [3]. We thus obtain Gottlieb trivial fibrations which are not fibre-homotopy trivial by considering, for example, the
(nontrivial) stages in the Postnikov decomposition of a space.

Given a fibration ξ :X
j−→ E

p−→ B with classifying map h :B → Baut1(X) recall that ξ is fibre-homotopically
trivial if and only if h is null-homotopic. The weaker condition h� = 0 is thus an approximation to ξ being fibre-
homotopically trivial. In what follows we compare this condition to Gottlieb triviality. We begin with the following
general fact.

Theorem 2.3. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected, finite type CW complexes with classifying
map h :B → Baut1(X). Then we have

p�

(
Gn(E,X; j)

) ⊇ ker
{
h� :πn(B) → πn

(
Baut1(X)

)}
.



Proof. Let α :Sn → B represent a homotopy class in πn(B) with h�(α) = 0. Let X
j∗

−→ E∗ p∗
−→ Sn denote the

pullback of X
j−→ E

p−→ B by α :Sn → B and α∗ :E∗ → E the fibre map covering α. By hypothesis, the composition

h ◦ α :Sn → Baut1(X) is homotopically trivial. This means X
j∗

−→ E∗ p∗
−→ Sn is fibre-homotopically trivial. We thus

have a fibre-homotopy equivalence H :Sn × X → E∗ giving a commutative diagram

X
i2

j∗ j

Sn × X
H

π1

E∗ α∗

p∗
E

p

Sni1 α

α̃

B

Define a lifting α̃ :Sn → E by α̃ = α∗ ◦ H ◦ i1. To see α̃ represents a class in Gn(E,X; j) define G :Sn × X → E by
G = α∗ ◦ H and observe that G extends (α̃ | j) :Sn ∨ X → E to the product. �

As a consequence, we obtain:

Theorem 2.4. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected, finite type CW complexes with classi-
fying map h :B → Baut1(X). Suppose h� = 0 :πn(B) → πn(Baut1(X)) for some n � 2. Then j# :Gn−1(X) →
Gn−1(E,X; j) is injective and p# :Gn(E,X; j) → πn(B) is surjective.

Proof. Our hypothesis and the factorization ∂ = ∂∞ ◦ Ωh given by (3) imply j� :πn−1(X) → πn−1(E) is injective
and so the restriction of j� to Gn(X) is also. Surjectivity is direct from Theorem 2.3. �

Focusing on the case of a spherical fibration, we obtain the following result:

Theorem 2.5. Let ξ :Sk j−→ E
p−→ B be a fibration with classifying map h :B → Baut1(Sk). Suppose h� =

0 :πi(B) → πi(Baut1(Sk)) for i = n,n + 1 and n + k. Then the fibration ξ is Gottlieb trivial in degree n, that is,
we have a short exact sequence

0 Gn

(
Sk

) j�
Gn

(
E,Sk; j) p�

πn(B) 0.

Proof. By Theorem 2.4, it suffices to show GHn(ξ) = 0. Let β :Sn → E represent a homotopy class in
ker{p� :Gn(E,Sk; j) → πn(B)}. Because β represents an element of Gn(E,Sk; j), we have a map G :Sn × Sk → E

that extends (β | j) :Sn ∨ Sk → E. Since p ◦ β ∼ ∗ :Sn → B , and since ξ is a fibration, we may choose a class
α :Sn → Sk such that j ◦ α ∼ β . We need to show that α ∈ Gn(S

k), that is, we must produce a map F :Sn × Sk → Sk

that extends (α | 1) :Sn ∨ Sk → Sk . Let η :Sn+k−1 → Sn ∨ Sk denote the Whitehead product map η = [ιn, ιk], which

gives the cofibre sequence Sn+k−1 η−→ Sn ∨ Sk → Sn × Sk . We have a commutative diagram

Sn+k−1

η

Sn ∨ Sk
(α|1)

J

Sk

j

Sn × Sk
G

F

E

in which j ◦ (α | 1) ◦ η ∼ G ◦ J ◦ η ∼ ∗. As observed in the proof of Theorem 2.4, we have j# :πn+k−1(S
k) →

πn+k−1(E) injective. It follows that (α | 1) ◦ η ∼ ∗ :Sn+k−1 → Sk and hence that there exists an extension of (α | 1)
to a map F :Sn × Sk → Sk as desired. �



The following example is primarily intended to separate Gottlieb trivial from weak-homotopically trivial. It also
illustrates that, at least under rather restricted circumstances, converses of Theorems 2.3, 2.4 and 2.5 may hold.

Example 2.6. We claim that there is a fibration ξ :S3 j−→ E
p−→ S3 that is weak-homotopically trivial but not Gottlieb

trivial. Specifically, p# :G3(E,S3; j) → π3(S
3) will not be surjective in our example. First observe, that any fibration

ξ :Sn j−→ E
p−→ Sn must be weak-homotopically trivial (at least). Indeed, it must have a section σ :Sn → E. This

follows, since the connecting homomorphism ∂# :πn(S
n) → πn−1(S

n) = 0 is necessarily trivial, and so p# :πn(E) →
πn(S

n) is surjective. Choose σ to be any element of πn(E) for which p#(σ ) = 1 ∈ πn(S
n).

Next, any fibration ξ :Sn j−→ E
p−→ Sn satisfies

p�

(
Gn

(
E,Sn; j)) ⊆ ker

{
h� :πn

(
Sn

) → πn

(
Baut1

(
Sn

))}
.

Together with Theorem 2.3, this shows that p�(Gn(E,Sn; j)) = ker{h�} in this case. For suppose that we
have α = p#(β) for α ∈ πn(S

n) and β ∈ Gn(E,Sn; j). Then there exists some G :Sn × Sn → Sn that ex-
tends (β | j) :Sn ∨ Sn → Sn. We now argue that, without loss of generality, we may assume that p ◦ G =
α ◦ p1 :Sn × Sn → Sn, where p1 :Sn × Sn → Sn denotes projection onto the first factor. The cofibration sequence
S2n−1 → Sn ∨ Sn → Sn × Sn gives rise to a diagram of Puppe sequences

[S2n,E]
p∗

[Sn × Sn,E]
p∗

[Sn ∨ Sn,E]
p∗

[S2n, Sn]
σ∗

[Sn × Sn,Sn] [Sn ∨ Sn,Sn]
in which the left-hand terms act on the middle terms in the usual way. Since p ◦ G and α ◦ p1 both map to the same
element in the lower right set, we have α ◦ p1 = (p ◦ G)γ for some γ ∈ π2n(S

n). Since we have the section σ , we
may write γ = p∗σ∗(γ ) and so we have α ◦ p1 = (p ◦ G)p∗σ∗(γ ) = p∗(Gσ∗(γ )). That is, we may replace G by Gσ∗(γ )

to obtain a map that extends (β | j) :Sn ∨ Sn → Sn and also projects under p to α ◦ p1. Finally, consider the pullback

of the fibration ξ over α. This gives a fibration ξ∗ :Sn j∗
−→ E∗ p∗

−→ Sn with classifying map h ◦ α :Sn → Baut1(Sn).
The maps G :Sn × Sn → E and p1 :Sn × Sn → Sn that satisfy p ◦ G = α ◦ p1 define a map f :Sn × Sn → E∗ into
the pullback. This map gives a commutative diagram

Sn

i2

1
Sn

j∗

Sn × Sn

p1

f
E∗

p∗

Sn 1
Sn

Since this displays the induced fibration ξ∗ as fibre-homotopically trivial, it follows that its classifying map h ◦ α is
null-homotopic.

To complete our example, it remains to identify a specific instance in which h# :πn(S
n) → πn(Baut1(Sn)) may

be chosen nonzero. For this, take n = 3. We have π3(Baut1(S3)) ∼= π2(ΩBaut1(S3)) ∼= π2(map(S3, S3;1)). Since
S3 is an H -space, the evaluation fibration map∗(S3, S3;1) → map(S3, S3;1) → S3 admits a section and it fol-
lows that π2(map(S3, S3;1)) ∼= π2(map∗(S3, S3;1)). Using again that S3 is an H -space, we have a well-known
homotopy equivalence of components map∗(S3, S3;1) � map∗(S3, S3;0) and it now follows by standard meth-
ods that π2(map∗(S3, S3;0)) ∼= π5(S

3) ∼= Z2. In summary, we have computed that π3(Baut1(S3)) ∼= Z2. Choose
h :S3 → Baut1(S3) to represent the nontrivial element. This is the classifying map of a weak-homotopically trivial
fibration S3 → E → S3 that is not Gottlieb trivial, as claimed.

By [13, Corollary 2.2], Gn(S
2) ∼= πn(S

3) for all n. We complement this result with the following:

Example 2.7. Let η2 :S3 → S2 denote the Hopf map. We claim Gn(S
2, S3;η2) = πn(S

2) for all n. Write k :S2 →
BS1 = K(Z,2) for the classifying map for η2 viewed as a principal S1-fibration. Converting k to a fibration, we obtain



an S3-fibration ξ :S3 η2−→ S2 k−→ K(Z,2). By Theorem 2.5, ξ is Gottlieb trivial in degrees n > 2. We check directly
that ξ is Gottlieb trivial in degree 2 as well. For note that G2(S

3) = 0, while the Whitehead identity [ι2, η2] = 0
implies G2(S

2, S3;η2) = π2(S
2) and so k� :G2(S

2, S3; j) → π2(K(Z,2)) is an isomorphism.

3. Derivations of Sullivan models, the holonomy action and the classifying map

In this section, we describe the map induced on rational homotopy groups by a classifying map for a fibration, in
terms of certain chain complexes of derivations of Sullivan models. We first introduce some notation for working in
Sullivan’s differential graded (DG) algebra framework for rational homotopy theory, for which our general reference
is [6].

By a DG algebra we mean a pair A,d where A is a connected, commutative graded algebra over Q. The differential
d increases degree by one. We write ε :A → Q for the augmentation and A+ for the augmentation ideal. When
appropriate, we will view Q as the DG algebra concentrated in degree 0 with trivial differential and ε as a DG
algebra map. A nilpotent, finite type CW complex X admits a Sullivan minimal model MX,dX which is a minimal
DG algebra. Writing MX = ΛV for some graded vector space V , we recall that if X is a simple space (that is,
the fundamental group of X is abelian and acts trivially on the homotopy groups of X) then the rational homotopy
groups of X are recovered by V . Specifically, given graded spaces V and W , let Homn(V,W) denote the space
of linear maps between the graded spaces V and W reducing degrees by n. We then have Sullivan’s isomorphism
πn(X) ⊗ Q ∼= Homn(V,Q) [6, Theorem 15.11]. A map of spaces f :X → Y has a minimal model which is a map of
DG algebras Mf :MY →MX .

Let A,dA and B,dB be DG algebras and φ :A → B a DG algebra map. We say θ ∈ Homn(A,B) is a φ-derivation
of degree n if θ(xy) = θ(x)φ(y) − (−1)n|x|φ(x)θ(y). Let Dern(A,B;φ) denote the vector space of φ-derivations of
degree n, for n � 0. Define a linear map Dφ :Dern(A,B;φ) → Dern−1(A,B;φ) by Dφ(θ) = dB ◦ θ − (−1)|θ |θ ◦ dA.
Then Der∗(A,B;φ),Dφ is a chain complex. We write Hn(Der(A,B;φ)) for the homology in degree n.

Given a map f :X → Y , let map(X,Y ;f ) denote the path component of f in the space of (unbased) continuous
functions from X to Y . When X and Y are simply connected with X a finite complex, we have πn(map(X,Y ;f )) ⊗
Q ∼= Hn(Der(MY ,MX;Mf )) for all n � 2 [15, Theorem 2.1]. We recall this identification and describe a minor
extension here.

Given F :B → map(X,Y ;f ) with B a simple CW complex of finite type, we describe the map induced by F on
rational homotopy groups. Let F :B ×X → Y denote the adjoint map so that F ◦ i2 ∼ f where i2 :X → B ×X is the
inclusion. Write MB = ΛW and MX = ΛV . Then MF :MY → MB×X = Λ(W ⊕ V ). Fix a homogeneous basis
W = Q(w1,w2, . . .). Given χ ∈ MY , we may then write MF (χ) = Mf (χ) + ∑

j wjψj (χ) + AF (χ) where ψj ∈
Hom|wj |(MY ,MX) and AF (χ) is in the ideal of Λ(W ⊕ V ) generated by the decomposables of ΛW . A standard
check shows that each ψj is an Mf -derivation and a cycle. We define

ΨF :Hom∗(W,Q) → H∗
(
Der(MY ,MX;Mf )

)
by setting ΨF (w∗

j ) = 〈ψj 〉 and extending by linearity. Here w∗
j ∈ Hom|wj |(W,Q) denotes the dual of the basis ele-

ment wj .

Theorem 3.1. Let f :X → Y be a map between simply connected CW complexes of finite type with X finite. Let
F :B → map(X,Y ;f ) be a given map with B a connected simple CW complex of finite type. Then, with notation as
above, we have commutative diagrams

πn(B) ⊗ Q
(F#)Q

∼= ΦB

πn(map(X,Y ;f )) ⊗ Q

∼=Φf

Homn(W,Q)
ΨF Hn(Der(MY ,MX;Mf ))

for all n � 2. In the case X = Y and f = 1 the result holds for n = 1 as well.

Proof. The map Φf is defined in the proof of [15, Theorem 2.1] by following the procedure above with B = Sn but
replacing the minimal model of Sn with its rational cohomology. The map ΦB corresponds to the case B = Sn,X = ∗



and Y = B is readily seen to be Sullivan’s isomorphism, as recalled above. Compatibility with ΨF is thus direct
from definitions. For n � 2 the fact that Φf is an isomorphism is [15, Theorem 2.1]. When n = 1, the map Φf

extends to a well-defined set map and is a surjection [16, Theorem 2.1c], but will not generally be a homomorphism in
degree 1. When Y = X and f = 1, however, the multiplication in π1(map(X,X;1)) is induced by the multiplication
in map(X,X;1), which is an H -space under composition of maps. Thus, the adjoint of the product of two classes
α,β :S1 → map(X,X;1) is given by

S1 × X
�×1

S1 × S1 × X
Γ

X

where Γ (z1, z2, x) = (α(z1) ◦ β(z2))(x). Since 1 :X → X is a two-sided identity in map(X,X;1), we have Γ ◦
(i1,1) = A and Γ ◦ (i2,1) = B , where A and B denote the adjoints to α and β , respectively, and i1, i2 :S1 → S1 × S1

are the inclusions. It follows easily from this that Φf is a homomorphism in degree 1. Injectivity then follows by the
argument in [15, Theorem 2.1] which only requires Φf a homomorphism to extend to n = 1. �

Now fix a fibration ξ :X
j−→ E

p−→ B of simply connected finite type CW complexes with X a finite complex and
with classifying map h :B → Baut1(X). We are interested in describing h at the level of rational homotopy groups and
so we may consider Ωh :ΩB → ΩBaut1(X). Using the equivalence ∂U :ΩBaut1(X) → aut1(X) = map(X,X;1) we
obtain a map

H = ∂U ◦ Ωh :ΩB → map(X,X;1) (4)

which fits the setting of Theorem 3.1. Recall that the Koszul–Sullivan model of the fibration ξ :X
j−→ E

p−→ B is
a short exact sequence

ΛW,dB
P

Λ(W ⊕ V ), dE
J

ΛV,dX (5)

of DG algebras. The differential dE satisfies dE(w) = dB(w) for w ∈ W and dE(v)−dX(v) ∈ (ΛW)+ ·Λ(W ⊕V ) [6,
Proposition 15.5]. The map P is the inclusion and the map J satisfies J (w) = ε(w) and J (v) = v. The DG algebras
ΛW,dB and ΛV,dX are Sullivan minimal models for B and X, respectively. The DG algebra Λ(W ⊕ V ), dE is a
Sullivan model for the total space E but is not, in general, a minimal DG algebra. Given χ ∈ ΛV we may then write
dE(χ) = dX(χ) + ∑

j wj θj (χ) + BE(χ) where BE(χ) is in the ideal of Λ(W ⊕ V ) generated by the decomposables
in ΛW . Again we check directly that θj ∈ Der|wj |−1(ΛV,ΛV ;1) and is a cycle. Define

Θξ :Homn(W,Q) → Hn−1
(
Der(ΛV,ΛV ;1))

by setting Θξ(w
∗
j ) = 〈θj 〉 and extending by linearity.

Theorem 3.2. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected CW complexes of finite type with X finite and
classifying map h :B → Baut1(X). Then, with notation as above, we have a commutative diagram

πn(B) ⊗ Q
(h#)Q

ΦB∼=

πn(Baut1(X)) ⊗ Q

Φ ′
1X

∼=

Homn(W,Q)
Θξ

Hn−1(Der(ΛV,ΛV ;1))
for n � 2.

Proof. The map Φ ′
1X

is obtained by precomposing Φ1X
from Theorem 3.1 with the identification πn(Baut1(X)) ⊗

Q ∼= πn−1(map(X,X;1)) ⊗ Q. Let W denote the desuspension of W so that π∗(ΩB) ⊗ Q ∼= Hom∗(W,Q). Define
Θξ :Hom∗(W,Q) → H∗(Der(ΛV,ΛV ;1)) by Θξ(w

∗
j ) = Θξ(w

∗
j ). We show ΨH = Θξ ; the result follows.



We first argue that the adjoint H :ΩB × X → X of the map H in (4) is homotopic to the holonomy action Hξ =
s0 ◦ i0 of ξ as defined by the following diagram:

ΩB × X

i0
i

i0

Hξ PB ×B E

s0

i′
MB ×B E

π2

π1

q1

MB

q0

X

j0

j
E

p
B

Here, with notation as in [6, §2], MB is the space of Moore paths on B with q0, q1 evaluation at 0 and the length of
the path, respectively, PB the subspace of paths which end at the basepoint of B and the other maps are the obvious
inclusions and projections. The inclusion j0 is a homotopy equivalence [6, Proposition 2.5(ii)] and we have denoted
a homotopy inverse by s0. Let H∞ :ΩBaut1(X) × X → X denote the holonomy action of the universal X-fibration.
ThenHξ ∼H∞◦(Ωh×1X) by the naturality of the holonomy action with respect to pull-backs [10, Proposition 11.4].
Taking adjoints, we obtain Hξ ∼ H∞ ◦ Ωh. Finally, H∞ ∼ ∂U :ΩBaut1(X) → aut1(X) by Stasheff’s formulation of
the classification theorem in terms of parallel transports [20]: the maps ∂U and H∞ are transports giving the same
principal aut1(X)-fibration (namely, the universal one) and hence are homotopic.

On [6, p. 419], the authors obtain a Sullivan model for the diagram ΩB × X
i0−→ PB ×B E

j0←− X occurring in
the definition of the holonomy action Hξ . In our notation, this is a diagram of DG algebras

Λ(W ⊕ V ), dX Λ(W ⊕ W ⊕ V ), dE
I J

ΛV,dX.

The differential dX is given by dX(v) = dX(v) while dX(W) = 0. The differential dE satisfies dE(x) = dE(x) for
x ∈ W ⊕V . The differential dE on w ∈ W is determined by the (push-out) construction involved. Tracing this through,
we see dE(w) − w ∈ J where J is the ideal of Λ(W ⊕ W ⊕ V ) generated by decomposables in Λ(W ⊕ W). The
maps I and J are projections. A DG algebra map S :ΛV,dX → Λ(W ⊕ W ⊕ V ), dE with S ◦ J = 1ΛV exists by the
standard lifting lemma for minimal models (cf. [6, Lemma 12.4]). The map S is a Sullivan model for the equivalence
s0 and I ◦ S is one for H. Given χ ∈ ΛV write S(χ) = χ + ∑

j wj θj (χ) + ∑
j wjϕj (χ) + CS(χ) for CS(χ) ∈ J .

Using the fact that S is a map of algebras, we obtain that θj ∈ Der|wj |−1(ΛV,ΛV ;1) and ϕj ∈ Der|wj |(ΛV,ΛV ;1).
Using the fact that S is a chain map and dE(J ) ⊆ J , we obtain D1X

(θj ) = 0 while D1X
(ϕj ) = θj − θj . Thus

ΨH (w∗
j ) = 〈θj 〉 = 〈θj 〉 = Θξ(w

∗
j ). �

Remark 3.3. The holonomy representation of ξ is the action of the homotopy Lie algebra π∗(ΩB) ⊗ Q on
H∗(X;Q) induced by the holonomy action Hξ :ΩB × X → X (cf. [6, p. 415]). Define the “induced derivation”
map I :H∗(Der(ΛV,ΛV ;1)) → Der∗(H ∗(X;Q),H ∗(X;Q);1) by setting I (〈θ〉)(〈χ〉) = 〈θ(χ)〉 for θ a derivation
cycle and χ a cycle of ΛV,dX . It is easy to check I is well-defined. By Theorem 3.2 and [6, Theorem 31.3], we see
I ◦ Θξ :Hom∗(W,Q) → Der∗(H ∗(X;Q),H ∗(X;Q);1) is dual to the holonomy representation (up to sign).

4. The rationalized Gottlieb sequence

The Gottlieb sequence is a P -local invariant of the fibre-homotopy type of fibrations of simply connected finite type
CW complexes, provided the fibre is a finite complex. This fact follows directly from isomorphisms Gn(X) ⊗ ZP

∼=
Gn(XP ) [12] and Gn(E,X; j)⊗ZP

∼= Gn(EP ,XP ; jP ) [17]. We define the P -local Gottlieb homology GHn(ξ ;ZP )

of a fibration ξ by setting GHn(ξ ;ZP ) = GHn(ξP ). We will focus exclusively on the rational case here. We say
a fibration ξ is rationally Gottlieb trivial if the sequence (1) splits into short exact sequences in each degree after
tensoring with Q.

Consider, again, a fibration ξ :X
j−→ E

p−→ B with X a finite complex and classifying map h :B → Baut1(X).
We wish to compare the condition that ξ is rationally Gottlieb trivial, with that of the vanishing of (h�)Q. Since
both of these conditions imply ξ is rationally weak-homotopically trivial, that is, that the rationalized connecting



homomorphism (∂�)Q = 0, we may assume this condition holds for ξ . In this case, the rationalization of the Gottlieb
sequence for ξ breaks up into three-term sequences at each degree n � 2 of the form

0 Gn(X) ⊗ Q
(j�)Q

Gn(E,X; j) ⊗ Q
(p�)Q

πn(B) ⊗ Q 0 (6)

Moreover, the model of the total space of the fibration given in (5) for ξ is a minimal DG algebra: ME,dE =
Λ(W ⊕ V ), dE [9, Proposition 4.12]. As above, we have dE(w) = dB(w) while, for χ ∈ ΛV , dE(χ) = dX(χ) +∑

j wj θj (χ) + BE(χ) where BE(χ) is in the ideal I of Λ(W ⊕ V ) generated by decomposables in ΛW . The maps
J :Λ(W ⊕ V ), dE → ΛV,dX and P :ΛW,dB → Λ(W ⊕ V ), dE are Sullivan models for j and p, respectively. They
induce linearization maps Q(J) :W ⊕ V → V and Q(P ) :W → W ⊕ V (see [6, p. 171]) which in turn induce maps
Q(J)∗ :Homn(V,Q) → Homn(W ⊕ V,Q) and Q(P )∗ :Homn(W ⊕ V,Q) → Homn(W,Q) by taking duals. These
maps correspond, under the identifications ΦX,ΦE,ΦB of Theorem 3.1, to the maps induced on rational homotopy
groups by j and p.

Composition with ε :ΛV → Q induces a chain map ε∗ :Dern(Λ(W ⊕V ),ΛV ;J ) → Dern(Λ(W ⊕V ),Q; ε). The
minimality of ME,dE implies Hn(Der(Λ(W ⊕ V ),Q; ε)) ∼= Homn(W ⊕ V,Q) and so we obtain a map

H(ε∗) :Hn

(
Der

(
Λ(W ⊕ V ),ΛV ;J )) → Homn

(
Λ(W ⊕ V ),Q

)
.

Define the nth rationalized evaluation subgroup of J by

Gn

(
Λ(W ⊕ V ),ΛV ;J ) = im

(
H(ε∗)

)
for n � 2. Thus w∗ ∈ Homn(W,Q) is in the subspace Gn(Λ(W ⊕ V ),ΛV ;J ) if and only if w∗ extends to a
J -derivation θ of degree n with DJ (θ) = 0. We write Gn(ΛV ) = Gn(ΛV,ΛV ;1) and call this the nth rational-
ized Gottlieb group of ΛV,dX . We then obtain a sequence

0 Gn(ΛV )
Q(J )∗

Gn

(
Λ(W ⊕ V ),ΛV ;J ) Q(P)∗

Homn(W,Q) 0 (7)

for each n � 2. The following is a direct consequence of [15, Corollary 2.2].

Theorem 4.1. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected, finite type CW complexes with X finite and
(∂�)Q = 0. Then, for each n � 2, the sequence (6) is equivalent to the sequence (7).

Using these identifications, we extend the result above for spherical fibrations (Theorem 2.5) to the following:

Theorem 4.2. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected, finite type CW complexes with X finite and
classifying map h :B → Baut1(X). The following are equivalent:

(1) (h�)Q = 0 :πn(B) ⊗ Q → πn(Baut1(X)) ⊗ Q for each n � 2,
(2) ξ is rationally Gottlieb trivial. That is, we have short exact sequences

0 Gn(X) ⊗ Q
(j�)Q

Gn(E,X; j) ⊗ Q
(p�)Q

πn(B) ⊗ Q 0

for each n � 2,
(3) (p�)Q :Gn(E,X; j) ⊗ Q → πn(B) ⊗ Q is surjective for all n � 2.

Proof. We begin with the implication (1) ⇒ (2). By virtue of Theorem 2.4, we need only show exactness at the
middle term, that is, that GH∗(ξ ;Q) = 0. For this, suppose that ψ ∈ Dern(Λ(W ⊕ V ),ΛV ;J ) is a DJ -cycle for
which there exists v ∈ V with ψ(v) = 1. (This corresponds to an element x ∈ Gn(E,X; j) ⊗ Q with (p�)Q(x) = 0.)
We may also assume that ψ(wj ) = 0 for |wj | � n. Write D for the differential in Der∗(ΛV,ΛV ;1). We wish to
find a D-cycle θ ∈ Dern(ΛV,ΛV ;1) that satisfies θ(v) = 1. (This corresponds to the element x ∈ Gn(E,X; j) ⊗ Q

being in the image of Gn(X) ⊗ Q under (j�)Q.) As a first approximation to such a θ , consider the derivation ψX ∈
Dern(ΛV,ΛV ;1) obtained by simply restricting ψ to ΛV . Since DJ (ψ) = 0, for χ ∈ ΛV we have



0 = DJ (ψ)(χ)

= dXψ(χ) − (−1)nψdE(χ)

= dXψ(χ) − (−1)nψdX(χ) − (−1)nψ

(∑
j

wj θj (χ) + BE(χ)

)
.

Since ψ is a J -derivation, and J (W) = 0, we have ψ(wjθj (χ)) = ψ(wj )θj (χ) and ψ(BE(χ)) = 0. This yields the
identity

0 = D(ψX)(χ) − (−1)n
∑
j

ψ(wj )θj (χ). (8)

The sum on the right-hand side is thus an obstruction to ψX being a D-cycle, as we would wish. With our hypothesis
on the classifying map, we may overcome this obstruction as follows. Since (h�)Q = 0, Theorem 3.2 implies that each
θj ∈ Der|wj |−1(ΛV,ΛV ;1) is a D-boundary: θj = D(ϕj ) for some ϕj ∈ Der|wj |(ΛV,ΛV ;1). For each j , define
derivations θ̂j ∈ Dern−1(ΛV,ΛV ;1) and ϕ̂j ∈ Dern(ΛV,ΛV ;1) by setting

θ̂j (χ) = ψ(wj )θj (χ) and ϕ̂j (χ) = ψ(wj )ϕj (χ)

for χ ∈ ΛV . Since ψ is a J -derivation and a DJ -cycle, and since J (W) = 0, we see easily that dX(ψ(wj )) = 0. Using
this, a straightforward computation leads to the identity

D(ϕ̂j ) = (−1)|wj |−nθ̂j . (9)

Now set θ = ψX −∑
j (−1)|wj |ϕ̂j ∈ Dern(ΛV,ΛV ;1). Since ψ(wj ) is never scalar, we have θ(v) = 1. The identities

(8) and (9) now give D(θ) = 0, as required.
The implication (2) ⇒ (3) is immediate. We prove (3) ⇒ (1). By Theorem 3.2, it suffices to show that each of

the derivations θj ∈ Der|wj |(ΛV,ΛV ;1) are D-boundaries. Let {wj }j∈J be a well-ordered homogeneous basis of W .
Because (p�)Q is surjective, each w∗

j ∈ Hom|wj |(W,Q) extends to a J -derivation ηj ∈ Der|wj |(Λ(W ⊕ V ),ΛV ;J )

with DJ (ηj ) = 0 and ηj (wj ) = 1. Without loss of generality, we may suppose that ηj (wi) = 0 for i < j and that
ηj (wi) is of positive degree (or zero) for i > j .

For each j , let ηj,X ∈ Der|wj |(ΛV,ΛV ;1) denote the derivation obtained by restricting ηj to ΛV . Then we have,
for each j ,

D
(
(−1)|wj |ηj,X

) = θj + ηj (wj+1)θj+1 + ηj (wj+2)θj+2 + · · · . (10)

This is simply a re-written version of (8), above. Now choose a particular θr . We will show that we may add a suitable
D-boundary to (10), so as to remove the terms from the right-hand side other than θr . For this, we suppose inductively
that, for each k � 1, we have a derivation ϕ̂k−1 ∈ Der|wr |(ΛV,ΛV ;1) such that

D

(
(−1)|wr |ηr,X −

k−1∑
t=1

ϕ̂t

)
= θr + cr+kθr+k + cr+k+1θr+k+1 + · · · , (11)

with each cr+s ∈ ΛV , of degree |cr+s | = |wr+s | − |wr |, a sum of terms in Λ+V each of the form

ηr(wp1)ηp1(wp2) · · ·ηpl
(wr+s),

for r < p1 < p2 < · · · < pl < r + s.
For the inductive step, define ϕ̂k = (−1)|wr |cr+kηr+k,X . Since each ηj is a J -derivation and a DJ -cycle, and since

J (W) = 0, we have that dX(ηj (wi)) = 0 for i > j . It follows that dX(cr+s) = 0 for each s. Then

D(ϕ̂k) = (−1)|wr+k |cr+kD(ηr+k,X)

= cr+k

(
θr+k + ηr+k(wr+k+1)θr+k+1 + ηr+k(wr+k+2)θr+k+2 + · · ·),

from (10) with j = r + k, and hence we have

D

(
(−1)|wr |ηr,X −

k∑
t=1

ϕ̂t

)
= θr + (

cr+k+1 − cr+kηr+k(wr+k+1)
)
θr+k+1

+ (
cr+k+2 − cr+kηr+k(wr+k+2)

)
θr+k+2 + · · · .



The coefficients cr+k+s − cr+kηr+k(wr+k+s) of each θr+k+s in this expression are of the required form, and the
inductive step is proven. Induction starts with k = 1, where we have (10) for j = r (take ϕ̂0 = 0).

By induction, we may write

D

(
(−1)|wr |ηr,X −

∑
t�1

ϕ̂t

)
= θr .

Notice that each ϕ̂t is a derivation, and that, for any given χ ∈ ΛV , we have ϕ̂t (χ) = 0 for all but a finite number
of t . Indeed, since ηr+k,X , used in the definition of ϕ̂k , decreases degree by |wr+k|, we will have ϕ̂t (χ) = 0 for all t

with |wr+t | � |χ |. The infinite sum is “locally finite”, therefore, and defines a derivation. This proves that each θr is
a D-boundary in Der|wr |(ΛV,ΛV ;1), as required. �

Theorem 4.2 provides a link between the rationalized Gottlieb sequence and well-known results on rational L-S
category. Let cat0(X) denote the rational L-S category of the space X, that is, cat0(X) = cat(XQ) where XQ is the
rationalization of X and cat(X) denotes the ordinary L-S category of X.

Corollary 4.3. Let ξ :X
j−→ E

p−→ B be a fibration of simply connected, finite type CW complexes with X finite. If ξ

satisfies one of the three equivalent conditions of Theorem 4.2, then

(1) dim(Godd(E,X; j) ⊗ Q) � cat0(X) + dim(πodd(B) ⊗ Q),

(2) Geven(E,X; j) ⊗ Q ∼= πeven(B) ⊗ Q.

If, further, B has finite-dimensional rational homotopy then

(3) cat0(E) � cat0(X) + cat0(B).

Proof. The first two results are direct consequence of [5, Theorem III] and condition (2) of Theorem 4.2. For the third
result, observe that if (h�)Q = 0, then by Remark 3.3 the holonomy representation of ξ is rationally trivial. The result
in this case follows from [11, Theorem 2]. �

With rational techniques now at our disposal, we may rapidly add to the store of illustrative examples begun in the
integral setting above. The following provides a further example of a weak-homotopically trivial fibration that is not
Gottlieb trivial.

Example 4.4. Consider a fibration of the form ξ :CP 2 j−→ E
p−→ S4. Any such fibration admits a section and, in par-

ticular, is weak-homotopically trivial. This follows by reasoning as in Example 2.6, using the fact that π3(CP 2) = 0.
Now consider classifying maps for such a ξ . These are elements of π4(Baut1(CP 2)) ∼= π3(map(CP 2,CP 2;1)).
Let ΛV,dX = Λ(v2, v5), with dX(v2) = 0 and dX(v5) = v3

2 , denote the minimal model of CP 2. Then the deriva-
tion θ ∈ Der3(ΛV,ΛV ;1), defined by θ(v2) = 0 and θ(v5) = v2, gives a nonzero class in H3(Der(ΛV,ΛV ;1)).
Hence, π3(map(CP 2,CP 2;1)) ⊗ Q is nonzero and so π4(Baut1(CP 2)) contains elements of infinite order. Choose
h :S4 → Baut1(CP 2) to be any map that represents a class of infinite order. Since (h#)Q �= 0, by Theorem 4.2 we
have (p#)Q :G∗(E,CP 2; j) ⊗ Q → π∗(S4) ⊗ Q is not surjective. We conclude that p# :G∗(E,CP 2; j) → π∗(S4)

cannot be surjective.
It is perhaps interesting to note that the minimal model of ξ is determined by the requirement that its classifying

map be nontrivial rationally. Write MS4 = Λ(w4,w7) with dB(w4) = 0 and dB(w7) = w2
4. Then any fibration with

base S4 and fibre CP 2 has minimal model of the form Λ(w4,w7), dB → Λ(w4,w7, v2, v5), dE → Λ(v2, v5), dX . The
only possible “twisting” of the differential dE , for degree reasons, is of the form dE(v5) = v3

2 + cw4v2, for c ∈ Q.
If c = 0, then the fibration is rationally trivial; we have (p#)Q :G∗(E,CP 2; j) ⊗ Q → π∗(S4) ⊗ Q surjective, as is
easily checked by the methods of this section; and hence by Theorem 4.2 its classifying map is rationally trivial. If
we assume this is not the case, then the minimal model of the fibration is determined, up to isomorphism, by the
differential dE(v5) = v3

2 + w4v2.



Our final example illustrates that the dimension of the Gottlieb homology and thus that of the rationalized evalua-
tion subgroup of a fibre inclusion can be arbitrarily large even when the dimension of G∗(X) ⊗ Q and π∗(B) ⊗ Q are
small.

Example 4.5. Let n, k > 0 be any odd integers. We construct a rational fibration ξQ :XQ
j−→ EQ

p−→ (Skn)Q where
X has the rational homotopy type of a finite complex with dim(G∗(X) ⊗ Q) = 1 such that dim(GHk(ξQ)) = n. Let
V = Q(v1, . . . , vn+1, u) where each vj is of degree k and |u| = k(n+ 1)− 1. Define dX on ΛV by setting dX(vi) = 0
and dX(u) = v1v2 · · ·vn+1. Note that ΛV,dX is an elliptic model and so may be realized as a finite complex X. Define
a K.S. model

Λ(wkn),0
P

Λ
(
Q(wkn) ⊕ V

)
, dE

J
ΛV,dX

by setting dE(u) = v1v2 · · ·vn+1 + wknvn+1 with dE(wkn) = dE(vi) = 0 for i = 1, . . . , n. We show each v∗
i ∈

Homk(V ,Q) extends to a J -derivation cycle for i = 1, . . . , n. Define ψi ∈ Der(Λ(Q(wkn) ⊕ V ),ΛV ;J ) by set-
ting ψi(vi) = 1,ψi(vj ) = ψi(u) = 0 for j �= i and ψi(wkn) = −v1v2 · · · v̂i · · ·vn. It is easy to check DJ (ψi) = 0 as
needed. Visibly Gj(X) ⊗ Q = 0 for j �= k(n + 1) − 1 while Gk(n+1)−1(X) ⊗ Q ∼= Q. Thus dim(GHk(ξQ)) = n.
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