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TOPOLOGICAL COMPLEXITY OF H-SPACES

GREGORY LUPTON AND JÉRÔME SCHERER

Abstract. Let X be a (not-necessarily homotopy-associative) H-space. We
show that TCn+1(X) = cat(Xn), for n ≥ 1, where TCn+1(−) denotes the
so-called higher topological complexity introduced by Rudyak, and cat(−) de-
notes the Lusternik-Schnirelmann category. We also generalize this equality
to an inequality, which gives an upper bound for TCn+1(X), in the setting of
a space Y acting on X.

1. Introduction

The notion of topological complexity, introduced by Farber in [3], is motivated
by the study of motion planning algorithms in the field of topological robotics. See
also [4, 5] for good introductions to the topic and its context. In this paper we
prove results that allow for effective computation of topological complexity, and of
higher analogues of the same, in important cases.

We begin with some notation and basic definitions. We use cat(X) to denote
the Lusternik-Schnirelmann (L-S) category of X (normalised, so that cat(Sn) = 1).
That is, cat(X) is the smallest n for which there is an open covering {U0, . . . , Un}
by (n + 1) open sets, each of which is contractible in X . See [2] for a general
introduction to L-S category and related topics. The sectional category of a fibration
p : E → B, denoted by secat(p), is the smallest number n for which there is an
open covering {U0, . . . , Un} of B by (n + 1) open sets, for each of which there is
a local section si : Ui → E of p, so that p ◦ si = ji : Ui → B, where ji denotes
the inclusion. This notion generalizes that of L-S category: if E is contractible,
then we have secat(p) = cat(B); in general we have secat(p) ≤ cat(B) (see [2,
Prop.9.14]). Now let PX denote the space of (free) paths on a space X : thus we
have PX = Map(I,X). There is a fibration P2 : PX → X × X , which evaluates
a path at initial and final point: for α ∈ PX , we have P2(α) =

(
α(0), α(1)

)
. This

is a fibrational substitute for the diagonal map Δ: X → X × X . We define the
topological complexity TC(X) of X to be the sectional category secat

(
P2

)
of this

fibration. That is, TC(X) is the smallest number n for which there is an open cover
{U0, . . . , Un} of X×X by (n+1) open sets, for each of which there is a local section
si : Ui → PX of P2, i.e., for which P2 ◦ si = ji : Ui → X ×X , where ji denotes the
inclusion.



We indicate briefly the motivation for topological complexity mentioned above;
for a full discussion see [3, 4, 5]. A point in X×X is a pair (x, y) of points in X . We
imagine X as the space of all states of some system, and x and y as initial and final
states of the system. Then a section s : X×X → PX of P2 : PX → X×X may be
viewed as a continuous, deterministic association of a path in X , from initial state
x to final state y, to each pair of states (x, y): a continuous motion planner. As is
easily shown, however, a global section is possible exactly when X is contractible.
Since one is naturally interested in state spaces that have interesting topology, i.e.,
which are non-contractible, one is necessarily forced into considering discontinuous
motion planners, which correspond to a covering and local sections exactly as in
our definition for TC(X).

We also consider the “higher analogues” of topological complexity introduced by
Rudyak in [11] (see also [12] and [1]). For this notion, let n ≥ 2 and consider the
fibration

Pn : PX → X × · · · ×X = Xn,

defined by dividing the unit interval I = [0, 1] into (n − 1) subintervals of equal
length, with n subdivision points t0 = 0, t1 = 1/(n− 1), . . . , tn−1 = 1 (thus (n− 2)
subdivision points interior to the interval), and then evaluating at each of the n
subdivision points, thus:

Pn(α) =
(
α(0), α(t1), . . . , α(tn−2), α(1)

)
,

for α ∈ PX . This is a fibrational substitute for the n-fold diagonal Δn : X → Xn.
Then the higher topological complexity TCn(X) is defined as TCn(X) = secat(Pn).

The ordinary topological complexity, then, corresponds to the case in which
n = 2: TC2(X) = TC(X). Higher topological complexity may readily be motivated
in terms of motion planners. A point in Xn is an n-tuple (x, x2, . . . , xn−1, y). A
section (either local or global) of Pn corresponds to a deterministic association of a
path in the state space X , from initial state x to final state y, and passing through
the specified intermediate states x2, . . . , xn−1 in that order.

Our first main result is as follows (see Section 3):

Theorem 1. Let X be a connected, CW H-space. Then, for n ≥ 1, we have
TCn+1(X) = cat(Xn). In particular, we have TC(X) = cat(X).

Since the value of cat(Xn) is known, or can be determined, in many cases in
which X is a Lie group or a more general H-space, this result provides many cases
in which the (higher) topological complexity may be determined exactly. This is
of great value, since TC(X), like cat(X), proves to be a very delicate invariant to
compute and its exact value is known in comparatively few cases.

In the case in which G is a topological group, the equality TC(G) = cat(G)
appears as [4, Lem.8.2] and its generalization TCn+1(G) = cat(Gn) appears as [1,
Th.3.5]. The proofs of both results make essential use of associativity. Theorem 1
extends these results to the more general case in which X is an H-space, with no
assumption on associativity.

Our second main result is the following (see Section 4):

Theorem 2. Let A : X × Y → X be an action of Y on X with strict unit. For
n ≥ 1 let shn+1 : X × Y n → Xn+1 denote the shear map defined by

shn+1 =
(
p1, A ◦ (p1, p2), . . . , A ◦ (p1, pn+1)

)
.



Here, pj denotes projection on the jth factor: p1 : X × Y n → X projects onto X,
but for j = 2, . . . , n+ 1, pj : X × Y n → Y projects onto Y . Then we have

TCn+1(X) ≤
(
secat(shn+1) + 1

)(
cat(Y n) + 1

)
− 1.

In particular, if n = 1, then we have TC(X) ≤ (secat(sh) + 1)(cat(Y ) + 1) − 1,
where sh: X × Y → X ×X is defined as sh = (p1, A).

This gives a general upper bound for the (higher) topological complexity that
may be applied in many situations of interest and that, in principle, may improve
on other general upper bounds in those situations to which it applies. Theorem 2
is a direct generalization of Theorem 1: if the action A : X × Y → X is given by
an H-space X acting on itself by the multiplication, then Theorem 2 reduces to
Theorem 1.

We finish this introduction with a brief outline of the paper. Section 2 is a short
section in which we review some standard facts concerning sectional category used
in the sequel. In Section 3 we give basic inequalities concerning TCn+1(X), and
the proof of Theorem 1. We give several examples to illustrate the applicability of
Theorem 1. In Section 4 we develop the notion of a shear map coming from an
action of one space on another, and give the proof of Theorem 2. The final section,
Section 5, is a short, informal section in which we give several interesting questions
that stem from our results and examples.

Acknowledgements. We thank John Oprea for many fruitful discussions on this
topic and, in particular, for first showing us the argument on which our results are
based.

2. Notational conventions and basic facts

Our conventions are that cat, respectively secat (hence TC), is one less than the
number of suitable open sets in a covering of X , respectively, of B. Thus, a space
X is contractible exactly when cat(X) = 0 and we have cat(Sn) = 1 for any n ≥ 1.
Furthermore, a fibration p : E → B admits a section exactly when secat(p) = 0 (and
if E is also contractible we then recover the case cat(B) = 0). These conventions
agree with those used in [1, 2, 6], for example. They entail that TC(Sn) = 1 for n
odd, and TC(Sn) = 2 for n even. However, some authors use the “un-normalized”
version of secat (hence TC), whether or not the “normalized” cat is used. Hence,
our TC(X) will be one less than that of some authors, such as Farber in [4].

There are two well-known and basic facts which we use throughout the article
to compare sectional categories of various maps. We state them here; each is easily
justified directly from the definitions. First, suppose given a fibration p : E → B
and any map f : B′ → B. Form the pullback

Q

q

��

�� E

p

��

B′

f

�� B.



Then we have secat(q) ≤ secat(p). Second, suppose given a fibration p′ : E′ → B′

and any maps θ : Q → E′ and q : Q → B′ for which the diagram

Q

q
��

��
��

��
��

θ
�� E′

p′

����
��

��
��

B′

is homotopy commutative. Then we have secat(p′) ≤ secat(q). In this latter situ-
ation, a local section s : B′ → Q of q : Q → B′ leads initially to a local homotopy
section θ ◦ s : B′ → E′ of p′ : E′ → B′, which may then be adjusted into a section
using the assumption that p′ : E′ → B′ is a fibration.

A standard application of the pull-back square situation is as follows. Suppose
that X is a based space with basepoint x0. Write PX for the based path space of
maps α : I → X with α(0) = x0, and let P1 : PX → X denote the evaluation map
P1(α) = α(1). The pull-back square

PX

P1

��

�� PX

P2

��

X
i2

�� X ×X

yields the inequality cat(X) ≤ TC(X), since cat(X) = secat(P1) (PX is con-
tractible). This can easily be generalized to an inequality concerning the higher
topological complexity. Write I2 : X

n → Xn+1 for the inclusion I2(x1, . . . , xn) =
(x0, x1, . . . , xn), with x0 ∈ X the basepoint, and Pn : PX → Xn for the map with
coordinates given by evaluation at 1/n, 2/n, . . . , 1. Although (for n ≥ 2) this is
not the usual based path fibration, nonetheless the space PX is still contractible
so that secat(Pn) = cat(Xn).

Lemma 2.1. Let X be any connected pointed space. Then cat(Xn) ≤ TCn+1(X)
for any n ≥ 1.

Proof. Note that we have a pullback square

PX

Pn

��

�� PX

Pn+1

��

Xn

I2

�� Xn+1,

which gives cat(Xn) ≤ secat(Pn+1) from the pullback property of secat recalled
above. This latter is TCn+1(X) by definition, and the inequality follows. �

Finally, we will sometimes refer to the sectional category of an arbitrary map
f : X → Y (not necessarily a fibration). What we mean by that is that we first
replace f by a fibration. The sectional category does not depend on the choice
of such a fibrational substitute. This allows us to deal with homotopy pull-back
squares instead of pulling back a fibration. In particular we may write equalities
such as cat(X) = secat(∗ → X).



3. (Higher) Topological Complexity and H-Spaces

First we observe that, for n ≥ 1, we have the following basic inequalities, which
extend in a natural way those for TC(X) recalled in Section 1.

Proposition 3.1. Suppose X is a connected, non-contractible CW complex. For
n ≥ 1, we have

n ≤ cat(Xn) ≤ TCn+1(X) ≤ cat(Xn+1) ≤ (n+ 1)cat(X).

Proof. The first and last of these are standard inequalities concerning cat(X) (see [2,
Th.1.36, Th.1.46]; the last, which derives from the product inequality, needs some
separation hypothesis on X , which we have covered here by assuming X is CW).
The second inequality is Lemma 2.1, and the third follows from the definition of
TCn+1(X) together with the general inequality secat(p) ≤ cat(B) for any fibration
p : E → B. �

Remark 3.2. In [11], the inequality cat(Xn) ≤ TCn+1(X) appears to have been
overlooked. It is taken up in [1, Prop.3.1], although by an apparently more involved
argument than that used here.

We now prove our first main result enunciated in Section 1.

Proof of Theorem 1. Let m : X ×X → X denote the multiplication. Without loss
of generality we may assume the unit is strict, i.e., m(x, x0) = x and m(x0, x) = x
for x ∈ X , where x0 ∈ X denotes the basepoint. As is well-known by work of
James [10], for any CW complex A, the set of pointed homotopy classes [A,X ] is
an algebraic loop. In particular, the equation a·z = b, for a, b ∈ [A,X ], has a unique
solution z ∈ [A,X ]. Here and in the remainder of this proof, we use “·” to denote
the product in [A,X ] induced by the multiplication. Write π1, π2 : X × X → X
for the projections. In [X × X,X ], we take a = [π1] and b = [π2], and we set
D : X ×X → X to be the unique solution to the equation [π1] · [D] = [π2]. That
is, we have π1 · D ∼ π2. (If X were homotopy-associative with inverse, then here
we could take D(x, y) = x−1y.)

Now use the map D : X × X → X to define a map fn : X
n+1 → Xn as

fn(x, x1, . . . , xn) =
(
D(x, x1), . . . , D(x, xn)

)
. Form the pullback

(1) Q

q

��

�� PX

Pn

��

Xn+1
fn

�� Xn,

so that we have

Q = {(x, x1, . . . , xn, α) ∈ Xn+1 × PX | α(0) = x0, α(ti) = D(x, xi), i = 1, . . . , n},

and q : Q → Xn+1 is just projection on the first (n+1) coordinates. Finally, define
a map θ : Q → PX , by setting θ

(
(x, x1, . . . , xn, α)

)
= m(x, α), which gives a path

in X evaluated as m(x, α)(t) = m
(
x, α(t)

)
for each t ∈ I. By definition, we have

Pn+1 ◦ θ
(
(x, x1, . . . , xn, α)

)
=

(
m(x, x0),m(x,D(x, x1)), . . . ,m(x,D(x, xn))

)
.

The first coordinate on the right-hand side here is x, since we are assuming a strict
unit. Now write pi : X

n+1 → X for projection on the ith coordinate, and write
p1,j : X

n+1 → X2 for the projection p1,j = (p1, pj+1), so that p1,j(x, x1, . . . , xn) =



(x, xj). Then for j = 1, . . . , n, we may write the (j + 1)st coordinate of the above
expression as m(x,D(x, xj)) = (π1 ·D)◦p1,j

(
(x, x1, . . . , xn)

)
. Bearing in mind that

π1 ·D ∼ π2, we compute that

Pn+1 ◦ θ =
(
p1, (π1 ·D) ◦ p1,1, (π1 ·D) ◦ p1,2, . . . , (π1 ·D) ◦ p1,n

)
◦ q

∼
(
p1, π2 ◦ p1,1, π2 ◦ p1,2, . . . , π2 ◦ p1,n

)
◦ q

=
(
p1, p2, p3, . . . , pn+1

)
◦ q = q.

Thus we have a homotopy commutative diagram

(2) Q

q
���

��
��

��
��

θ
�� PX

Pn+1
����

��
��

��
�

Xn+1.

From diagrams (1) and (2) it follows that secat(Pn+1) ≤ secat(q) ≤ secat(Pn). The
first of these is TCn+1(X) and the last of these is cat(Xn) (since PX is contractible).
Thus, for X an H-space we have TCn+1(X) ≤ cat(Xn), and equality now follows
from the general inequality cat(Xn) ≤ TCn+1(X). �

Examples 3.3. (1) Theorem 1 applies to any compact Lie group, as was pre-
viously known. Thus we have, for instance, TC

(
Sp(3)

)
= cat

(
Sp(3)

)
= 5

as computed in [7], and TC
(
Sp(9)

)
= 8 as follows from [8].

(2) Let U(r) and SU(r) denote the unitary group and special unitary group,
respectively. It is known that cat

(
U(r)

)
= r and cat

(
SU(r)

)
= r − 1 (see

[13] or [2, Prop.9.5, Th.9.47]). Although cat(−) generally behaves sub-

additively with respect to products, we may see that cat
((
U(r)

)n)
= nr

and cat
((
SU(r)

)n)
= n(r − 1). This is because, in these cases, we have

a binding lower bound for cat(−) given by (rational) cohomology, which
equals the upper bound given by the product inequality. Thus it follows
that we have TCn+1

(
U(r)

)
= nr and TCn+1

(
SU(r)

)
= n(r − 1).

(3) The H-space S7 is not homotopy-associative [9], and in particular is not
a topological group. Here we do have the equality TCn+1(S

7) = n (see
[3, Th.8] for n = 1 and [11] for n ≥ 2). But by taking products of S7

with any H-space Y (Lie group or not), Theorem 1 leads to new equali-
ties TCn+1(S

7 × Y ) = cat
(
(S7 × Y )n

)
, where S7 × Y is not a homotopy-

associative H-space (and in particular is not a topological group). These
equalities lead to many new cases in which TCn+1(−) may be determined.
For example, we have cat

(
(S7)r

)
= r, hence TCn+1

(
(S7)r

)
= nr from

Theorem 1.
(4) Arguing as in Example (2), we have new equalities TCn+1

(
S7 × U(r)

)
=

cat
((
S7 × U(r)

)n)
= n(r + 1) and TCn+1

(
S7 × SU(r)

)
= cat

((
S7 ×

SU(r)
)n)

= nr.

Although in general both cat(−) and TCn+1(−) behave sub-additively with re-
spect to products, there are situations in which they behave additively. Theorem 1
leads to the following observation.

Corollary 3.4. Suppose X and Y are H-spaces. For each n ≥ 1, we have a
product equality TCn+1(X×Y ) = TCn+1(X)+TCn+1(Y ) if and only if the identity
cat

(
(X × Y )n

)
= cat(Xn) + cat(Y n) holds. �



Theorem 1 also leads to other interesting relations involving products and topo-
logical complexities, such as the following.

Corollary 3.5. Let X be any CW H-space. Then for n ≥ 2 and k ≥ 1, we have

TCn(X
k) = TCk+1(X

n−1).

Proof. Both are equal to cat(Xk(n−1)), by Theorem 1. �

Examples 3.6. [11, Prop.5.1] gives the inequality TCn(T
2) ≥ 2n− 2, where T 2 =

S1 × S1 is the 2-torus. (Note: the TCn of [11] is the number of open sets in a
cover, and is thus one greater than our TCn.) We may improve on this inequality,
as does [1, Cor.3.13], with the formula

TCn(T
k) = cat(T k(n−1)) = k(n− 1),

for n ≥ 2 and k ≥ 1, with T k = (S1)k the k-torus. Thus, for example, we have
identities TC3(S

1) = TC(T 2) (both equal 2), and TC4(T
2) = TC3(T

3) (both equal
6). We also observe the sequences {TCn+1(T

k)}n∈N = {kn}n∈N, as examples of the
sequence Rudyak asks after in [11].

We end this section by sketching a variant of the proof we have given for Theo-
rem 1. We feel the variant is worth mentioning as it uses the following intermediate
result, of interest in its own right.

Proposition 3.7. Let X be a connected, CW H-space. For n ≥ 1, let fn : X
n+1 →

X be the map defined in the proof of Theorem 1 using the map D : X × X → X.
Then there is a homotopy pullback diagram

X ��

Δn+1

��

∗

��

Xn+1
fn

�� Xn.

That is, the diagonal Δn+1 : X → Xn+1 may be viewed as the fibre inclusion of the
map fn : X

n+1 → Xn.

Sketch Proof. One shows that the map θ : Q → PX , as in diagram (2) in the proof
of Theorem 1, is a homotopy equivalence. Now by standard results on homotopy
pullbacks, we may replaceQ in the pullback diagram (1) by the homotopy equivalent
space PX which, in turn, may be replaced by X , and the map q by Pn+1 and, in
turn, Δn+1. As usual, we may further replace PX by a point. �

Proof (bis) of Theorem 1. From the homotopy pullback of Proposition 3.7, it fol-
lows that secat(Δn+1) ≤ secat(∗ → Xn), that is, that TCn+1(X) ≤ cat(Xn). �

4. Shear Maps and Homotopy Actions

In this section we generalize Theorem 1. Our first step in this direction is to
generalize the condition that X be an H-space. Suppose we have a (right) action
of a space Y on a space X , with strict (right) unit. That is, we have a map

A : X × Y → X

that satisfies A(x, y0) = x, for all x ∈ X and for y0 ∈ Y the basepoint. Write
π1, π2 : X ×X → X and π1 : X × Y → X for the projections—preserving previous



notation but also distinguishing the distinct domains by our notation. Then we
may define a corresponding shear map

sh: X × Y → X ×X,

by sh = (π1, A), so that sh(x, y) =
(
x,A(x, y)

)
for (x, y) ∈ X × Y .

Definition 4.1. For an action A : X×Y → X as above, we call a map D : X×X →
Y a (homotopy) difference (map) if it satisfies

A ◦ (π1, D) ∼ π2 : X ×X → X.

If an action admits a difference, we say the action is homotopy-transitive.

Remark 4.2. In other words, a homotopy difference map satisfies the identity
A(x,D(x, x′)) = x′ up to homotopy; we think of D as continuously assigning,
to each pair (x, x′), an element that acts on x so as to “translate it” to x′. If
X = Y = G, a topological group, and if the action is the group multiplication,
then we may set D(x, y) = x−1y. We used the difference map D : X × X → X
in the proof of Theorem 1, in the context of an H-space X acting on itself by the
multiplication.

Lemma 4.3. Let A : X × Y → X be an action with strict unit and shear map
sh = (π1, A) : X × Y → X ×X. The shear map admits a right homotopy inverse if
and only if the action admits a difference D : X ×X → Y .

Proof. In fact, homotopy classes of right inverses to the shear map correspond
bijectively to homotopy classes of differences, under the identity [σ] = [(π1, D)].
Remark that we may write 1X×X = (π1, π2) : X×X → X×X . Now suppose given
a right inverse σ = (σ1, σ2) of sh: X ×X → X × Y . Define D = σ2 : X ×X → Y .
Then we have

(π1, π2) = 1X×X ∼ sh ◦ σ = (π1, A) ◦ (σ1, D) ∼
(
σ1, A ◦ (σ1, D)

)
.

Projecting onto first coordinates gives π1 ∼ σ1, and then projecting onto second
coordinates gives π2 ∼ A◦(σ1, D) ∼ A◦(π1, D), so that D is a difference. Evidently,
homotopic right inverses result in homotopic differences.

Conversely, suppose given a difference D : X ×X → Y , and define σ = (π1, D) :
X ×X → X × Y . Then we have sh ◦ σ = (π1, A) ◦ (π1, D) =

(
π1, A ◦ (π1, D)

)
∼

(π1, π2) = 1X×X . Once again, it is evident that homotopic differences result in
homotopic right inverses. �

If an actionA : X×Y → X is homotopy-transitive, we may repeat the steps of the
proof of Theorem 1, suitably adapted, to obtain inequalities TCn+1(X) ≤ cat(Y n)
for each n ≥ 1, and in particular the inequality TC(X) ≤ cat(Y ). In principle,
this appears a satisfactory generalization of Theorem 1. However, the following
observation reveals that these upper bounds would actually be weaker than that
given by Theorem 1, in all cases in which they apply.

Lemma 4.4. Let A : X × Y → X be a homotopy-transitive action. Then

(1) X is a retract of Y ; and
(2) X is an H-space.

Proof. Let σ = (π1, D) be a right inverse of the shear map (π1, A), so that D : X ×
X → Y is a difference that satisfiesA◦(π1, D) ∼ π2. Then define j = D◦i2 : X → Y .



Also, let a = A ◦ i2 : Y → X be the usual orbit map of the action. We observe that
i2 ◦D ◦ i2 ∼ σ ◦ i2 : X → X ×X → X × Y , and hence we have

a ◦ j ∼ (A ◦ i2) ◦ (D ◦ i2) = A ◦ (i2 ◦D ◦ i2)

∼ (π2 ◦ sh) ◦ (σ ◦ i2) = π2 ◦ (sh ◦ σ) ◦ i2 ∼ π2 ◦ i2 = 1X .

Thus, the orbit map a : Y → X is a retraction of Y onto X .
For (2), we define m = A ◦ (1 × j) : X ×X → X . For m to be a multiplication,

we only need check that it satisfies the two-sided unit condition: m ◦ i1 ∼ 1X ∼
m ◦ i2 : X → X . The second identity is what we have just shown: a ◦ j ∼ 1X .
The first follows immediately, from the assumptions that j is a based map (which
we may assume, without loss of generality, if spaces are well-pointed) and that the
action has a strict unit. �

To generalize Theorem 1, then, we go further and also relax the requirement of
a section (right homotopy inverse) of the shear map. We use instead local sections,
exactly as in the notion of sectional category. This leads to local differences, which
may be used in the same way as their global counterparts, with suitable adaptations
of the argument. The upshot is the second main result enunciated in Section 1,
whose proof we now give. Notice that the result places no assumption on the action:
although the conclusion may not be particularly strong, it has the advantage of
applying very generally.

Proof of Theorem 2. Suppose that secat(shn+1) = m, so that we have m+ 1 open
sets {U0, . . . , Um} which cover Xn+1 and for each of which we have a local section
of shn+1. Fix an i, and write the corresponding local section of shn+1 as σ =
(σ1, D1, . . . , Dn) : Ui → X × Y n, to define maps Dj : Ui → Y . As in Section 3 and
the enunciation of Theorem 2 in Section 1, write pk : X

n+1 → X , p1 : X×Y n → X ,
and pk≥2 : X × Y n → Y for the projections. For the inclusion incl : Ui → Xn+1,

incl ∼ shn+1 ◦ σ =
(
p1, A ◦ (p1, p2), . . . , A ◦ (p1, pn+1)

)
◦ (σ1, D1, . . . , Dn)

=
(
σ1, A ◦ (σ1, D1), . . . , A ◦ (σ1, Dn)

)
.

Equating coordinates yields σ1 ∼ p1 : Ui → X , and then A ◦ (p1, Dj) ∼ pj+1 : Ui →
X for each j = 1, . . . , n. In this way, the Dj are thus local differences on Ui. Write
Di = (D1, . . . , Dn) : Ui → Y n, and form the pullback

(3) Qi

qi

��

�� PY

Pn

��

Ui
Di

�� Y n,

so that

Qi = {(x, x1, . . . , xn, α) ∈ Ui × PY | α(0) = y0, α(tj) = Dj(x, x1, . . . , xn)},

and qi : Qi → Ui is just projection on the first (n + 1) coordinates. Finally, define
a map θi : Qi → PX by setting θi

(
(x, x1, . . . , xn, α)

)
= A(x, α), which gives a

path in X evaluated as A(x, α)(t) = A
(
x, α(t)

)
for each t ∈ I. Write the n-

tuple (x1, . . . , xn) as x, and (x, x1, . . . , xn, α) as (x,x, α). Then composing θi and



Pn+1 : PX → Xn+1 gives

Pn+1 ◦ θi(x,x, α) =
(
A(x, α(0)), A(x, α(t1)), . . . , A(x, α(tn))

)

=
(
A(x, y0), A(x,D1(x,x)), . . . , A(x,Dn(x,x))

)

=
(
p1, A ◦ (p1, D1), . . . , A(p1, Dn)

)
◦ qi(x,x, α),

which gives Pn+1 ◦ θi ∼ incl ◦ qi as maps into Xn+1, from the argument above
diagram (3). Since Pn+1 is a fibration, we may replace θi by a homotopic map such
that Pn+1 ◦ θi = incl ◦ qi, and thus we have a commutative diagram

Qi

qi

��

θi
�� PX

Pn+1

��

Ui
incl

�� Xn+1.

From this diagram, local sections of qi compose with θi to give local sections of
Pn+1. Recall that the steps taken thus far were for a typical Ui in the original
(m+ 1)-fold cover of Xn+1. It follows that we have an upper bound

TCn+1(X) = secat(Pn+1) ≤

m∑

i=0

(secat(qi) + 1)− 1.

From pullback diagram (3), for each i we have secat(qi) ≤ cat(Y n). Hence we have

TCn+1(X) ≤
(
secat(shn+1) + 1

)(
cat(Y n) + 1

)
− 1. �

Observe that Theorem 1 is indeed a special case of Theorem 2: in the former
case, we have Y = X acting transitively on itself, and secat(shn+1) = 0 (the shear
map admits a section).

Remark 4.5. An in-principle finer upper bound on TCn+1(X) is obtained by re-
turning to diagram (3) in the proof above and observing that, for each i, we have
secat(qi) = cat(Di). Here, cat(Di) denotes the L-S category of the map Di; the
equality follows from standard results about secat(−) [2, Prop.9.18]. This yields
the upper bound TCn+1(X) ≤

∑m

i=0(cat(D
i) + 1)− 1.

5. Open Questions

5.1. Is it possible to characterize spaces X for which TCn+1(X) takes either its
minimum value of cat(Xn), or its maximum value of cat(Xn+1)? We have estab-
lished the minimum value is taken by H-spaces. Examples at the other extreme
include even-dimensional spheres, since we have TCn+1(S

2r) = n + 1 [11, Sec.4],
and cat

(
(S2r)n+1

)
= n+ 1.

5.2. Examples 3.6 prompt the following: For powers Xk of a space X , (when) is
there a relation (such as equality) between TCn(X

k) and TCk+1(X
n−1)?

As regards this question, notice that the standard inequalities

cat(Xk(n−1)) ≤ TCn(X
k) ≤ cat(Xkn)

and
cat(Xk(n−1)) ≤ TCk+1(X

n−1) ≤ cat(X(n−1)(k+1))

give a common lower bound, but different upper bounds. Relations of a similar
nature are given in [1, Cor.3.5, Cor.3.6]



5.3. From Proposition 3.7 (cf. Remark 4.5) it follows that, for X an H-space, we
have that TCn+1(X) = cat(fn) (as well as being equal to cat(Xn)). Are there
other situations in which TCn+1(X) may be identified as the L-S category of some
auxiliary map or space?

5.4. We mention briefly another invariant of the L-S type, namely relative category
(see [2, Sec.7.2]). This is an invariant of a map p : E → B, which we denote by
relcat(p). We omit the definition here, but record the general inequalities secat(p) ≤
relcat(p) ≤ cat(B) + 1. This invariant would seem of interest as regards TC(−)
because of the resulting inequalities TCn(X) ≤ relcat(Δn) ≤ cat(Xn) + 1. Is it
possible to identify situations in which relcat(Δ) gives a better upper bound for
TCn(X) than the usual cat(Xn)?
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