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Toric complete intersection codes 

Ivan Soprunov

1. Introduction

This work is inspired by the results of Gold et al. (2005) and Ballico and Fontanari (2006) on eval-

uation codes on complete intersections in the projective space. Examples of evaluation codes include

Reed–Muller codes on points in affine and projective spaces and Goppa codes on points in alge-

braic curves. Here is a general definition. Let X be an algebraic variety over a finite field Fq and let

S = {p1, . . . , pN } be a finite set of Fq-rational points of X . Furthermore, let L be a finite-dimensional

space of regular functions over Fq defined on an open subset of X containing S . This defines an

evaluation map

evS : L → (Fq)
N , f �→ (

f (p1), . . . , f (pN)
)
.

Its image is a linear code CS,L of block length N . In the situation when X is a projective toric variety,

the set S is the algebraic torus (F∗
q)

n , and L is the space of linear sections of a Cartier divisor on X

we obtain what is called a toric code. In this case L is spanned by monomials whose exponents

are lattice points in a convex lattice polytope. The minimum distance for toric codes was studied in



Hansen (2000); Joyner (2004); Little and Schenck (2006); Little and Schwarz (2007); Ruano (2007);

Soprunov and Soprunova (2009, 2010).

Duursma et al. (2001) considered the situation when X = P
n , the set S is an arbitrary zero-

dimensional complete intersection in P
n(Fq), and L = La is the space of homogeneous polynomials

of degree a. Their paper is concerned with computing the dimension of the corresponding evaluation

codes CS,La
. Later Gold et al. (2005) found a very nice application of the Cayley–Bacharach theorem

that gave a lower bound for the minimum distance of CS,La
, generalizing the 2-dimensional result of

Hansen (2003). They showed that the minimum distance satisfies

d(CS,La )� s − a + 2,

where s = ∑n
i=1 di − (n + 1) and d1, . . . ,dn are the degrees of the polynomials defining S . Ballico and

Fontanari (2006) then gave a significantly better bound

d(CS,La )� n(s − a) + 2,

which holds for complete intersections S satisfying a “generality” condition: no n + 1 points of S lie

on a hyperplane in P
n .

In this paper we combine the two situations: X is a projective toric variety, S is a zero-dimensional

complete intersection in X , and L is a space of global sections of a Cartier divisor on X . The corre-

sponding evaluation code we call a toric complete intersection code. We give two lower bounds for

the minimum distance of such codes: for sets S with and without a “generality” condition. Our

bounds generalize the ones in Gold et al. (2005) and Ballico and Fontanari (2006). Although we largely

adopted methods from these papers, the difficulty is that no analog of the Cayley–Bacharach theorem

for toric varieties is currently known. It turned out that the Toric Euler–Jacobi theorem (Theorem 2.4)

on global residues (which can be thought of as a weak toric analog of the Cayley–Bacharach theorem,

see Corollary 2.5) provides enough information for applications to evaluation codes.

In our exposition we decided to use not the language of toric geometry but rather the more explicit

language of Laurent polynomial systems and Newton polytopes. The relationship between the two is

discussed in Section 2.3. Section 2 gives the necessary preliminaries and states the Toric Euler–Jacobi

theorem and its immediate applications. Section 3 contains the main results on the minimum dis-

tance of toric complete intersection codes: Theorem 3.5 does not use any additional assumptions, and

Theorem 3.9 assumes a certain “generality” property of S . In Section 4 we give geometric conditions

on the Newton polytopes of polynomials defining S which guarantee that this property holds when

the coefficients of the polynomials are generic. The paper concludes with applications and concrete

examples in Section 5 and remarks about further work.

2. Preliminaries

2.1. Evaluation codes

In this section we will define evaluation codes we will be dealing with throughout the paper. First

let us introduce some standard definitions and notation from the theory of Newton polytopes. Let

K be a field and K be its algebraic closure. Consider a Laurent polynomial f ∈ K[t±1
1 , . . . , t±1

n ]. Its
Newton polytope P ( f ) is the convex hull of the exponent vectors of the monomials appearing in f .

Thus we can write

f =
∑

a∈P ( f )∩Zn

cat
a, where ta = t

a1
1 · · · tann , ca ∈K.

Given a face Q of P ( f ) the restriction f Q is the Laurent polynomial

f Q =
∑

a∈Q ∩Zn

cat
a.

Next we define evaluation codes slightly adapted to our situation (see also Hansen, 2001;

Little, 2008; Tsfasman et al., 2007 for various constructions of evaluation codes). Choose a finite subset



S = {p1, . . . , pN } of (K∗)n and a finite-dimensional subspace L of K[t±1
1 , . . . , t±1

n ]. Define the evalua-

tion map

evS : L →K
N , f �→ (

f (p1), . . . , f (pN)
)
.

The image of evS is a linear code, called the evaluation code, which we denote by CS,L .

In the paper we will be dealing with evaluation codes CS,L where L is a space of Laurent poly-

nomials and S is a zero-dimensional complete intersection of n hypersurfaces in a toric variety. We

postpone the toric geometry definition of S until Section 2.3. Instead, we formulate this in terms of

the theory of Newton polytopes. We describe S as the solution set of a Laurent polynomial system

satisfying three assumptions below.

Fix a collection of n-dimensional convex lattice polytopes P1, . . . , Pn in R
n and let P = P1 +

· · · + Pn be their Minkowski sum. Consider n Laurent polynomials f1, . . . , fn over K with Newton

polytopes P1, . . . , Pn such that the system f1 = · · · = fn = 0 satisfies the following.

Assumptions.

(1) The system is non-degenerate with respect to P , i.e. for every proper face Q ⊂ P the restricted

system f
Q 1

1 = · · · = f
Qn
n = 0 has no solutions in (K∗)n , where Q = Q 1 +· · ·+ Qn , for unique faces

Q i ⊂ Pi ;

(2) at each p ∈ S the collection ( f1, . . . , fn) forms a system of local parameters, i.e. the 1-forms

df1, . . . ,dfn are linearly independent at p;

(3) the solution set S ⊂ (K∗)n of the system consists of K-rational points.

Before describing the space L we need to set some notation. For any set A ⊂ R
n we use AZ to

denote the set of lattice points in A, i.e. AZ = A ∩ Z
n . Also, we let P ◦ denote the interior of the

polytope P = P1 + · · · + Pn . Now let A be any subset of P ◦ . Define

L(A) = spanK
{
ta

∣∣ a ∈ AZ

} ⊂ K
[
t±1
1 , . . . , t±1

n

]
.

Definition 2.1. Let S be the solution set of a system f1 = · · · = fn = 0 with n-dimensional Newton

polytopes P1, . . . , Pn satisfying (1)–(3) above. Let the set A lie in the interior P ◦ of P = P1 + · · ·+ Pn .

The evaluation code CS,L(A) is called a toric complete intersection code. We will denote it simply by CA .

Furthermore, d(CA) will denote the minimum distance (the minimum weight) of CA .

Remark 2.2. Although the above definition makes sense for arbitrary subsets A of P ◦ , we may just as

well restrict ourselves to the case of convex polytopes A. Indeed, the construction of the code depend

on AZ rather than on A itself. Moreover, the bounds on the minimum distance of CA which we prove

in Section 3 will not change if one replaces A with the convex hull of AZ , whereas the dimension of

CA may, of course, only increase.

2.2. The Toric Euler–Jacobi theorem

Here we discuss the toric analog of the Euler–Jacobi theorem (Theorem 2.4) and its consequences.

This theorem was first discovered by Khovanskii (1978) over the field of complex numbers. In Kunz

(2008, Sec. 14) the first part of the theorem is proved over an arbitrary algebraically closed field. The

second part of the theorem is proved over fields of positive characteristic by Joshua and Akhtar (2011)

under the condition that the Pi have the same normal fan, but is currently unknown in general.

Nevertheless, the proofs of our main results will only use the first part of Theorem 2.4, so we do not

make any additional assumptions on the polytopes (with the exception of Theorem 4.3).

Definition 2.3. Let f1, . . . , fn ∈ K[t±1
1 , . . . , t±1

n ] be Laurent polynomials. The Laurent polynomial

JTf = det

(
t j

∂ f i

∂t j

)
is called the toric Jacobian of f1, . . . , fn .



It is easy to see that the Newton polytope P ( JT
f
) of the toric Jacobian lies in P = P1 + · · · + Pn ,

where Pi = P ( f i). Also, assumption (3) in Section 2.1 implies JT
f
(p) 	= 0 for every p ∈ S .

Theorem 2.4. (See Khovanskii, 1978.) Let S be the solution set of a system f1 = · · · = fn = 0 with n-

dimensional Newton polytopes P1, . . . , Pn satisfying (1)–(3) above. Let P = P1 + · · · + Pn be the Minkowski

sum. Then

(1) for any h ∈L(P ◦) we have
∑

p∈S h(p)/ JT
f
(p) = 0;

(2) for any function φ : S → K with
∑

p∈S φ(p) = 0 there exists h ∈ L(P ◦) such that φ(p) = h(p)/ JT
f
(p)

for every p ∈ S.

Here is an immediate corollary from the theorem.

Corollary 2.5. Any h ∈L(P ◦) which vanishes at |S| − 1 points of S must vanish at all points of S.

The next result, known as the Bernstein–Kushnirenko theorem, provides the size of the solution

set S for systems f1 = · · · = fn = 0 with given Newton polytopes P1, . . . , Pn .

Theorem 2.6. Let a Laurent polynomial system f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn have

isolated solution set S in (K∗)n. Then |S| cannot exceed the normalized mixed volume V (P1, . . . , Pn) of the

Newton polytopes. Moreover, |S| = V (P1, . . . , Pn) if and only if the system satisfies assumptions (1)–(2).

The original proof by Bernstein (1975) uses the homotopy continuation method and is valid over

the field of complex numbers. Kushnirenko (1976) gave an algebraic proof which works over any

algebraically closed field regardless of the characteristic. A similar argument also appears in Tuitman

(2010, Sec. 6).

Remark 2.7. Suppose we have a system f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn . Accord-

ing to Theorem 2.6, if we can exhibit V (P1, . . . , Pn)-many K-rational solutions to the system and the

solutions are isolated then the system must satisfy assumptions (1)–(3). We will use this observation

when constructing toric complete intersection codes in Section 5.

Here is our first application to toric complete intersection codes.

Proposition 2.8. If |S| > 1 then the minimum distance of CP◦ is at least 2.

Proof. Any h ∈ L(P ◦) which is not identically zero on S may have at most |S| − 2 zeroes by Corol-

lary 2.5. Hence the weight of every non-zero codeword in CP◦ is at least 2. To see that such h exists

one can show that if |S| = V (P1, . . . , Pn) > 1 then P ◦ must contain at least one lattice point u, and so

L(P ◦) contains tu . In fact, V (P1, . . . , Pn) = 1 is equivalent to all Pi being equal to a basis simplex �,

in which case P = n� has no lattice points (Cattani et al., 2011, Prop. 2.7). �
2.3. Relation to toric varieties

Here we will show how our problem can be reformulated in the language of toric geometry. Let

X = XΣ be a projective simplicial toric variety over K of dimension n, defined by a complete rational

simplicial fan Σ ⊂ R
n . Each ray ρ ∈ Σ(1) is generated by a primitive lattice vector vρ ∈ Z

n and corre-

sponds to a torus-invariant prime divisor Dρ on X . A semi-ample divisor D on X is a torus-invariant

Cartier divisor D = ∑
ρ∈Σ(1) aρDρ for which the corresponding line bundle O(D) is generated by

global sections. This implies that the set

PD = {
u ∈R

n
∣∣ 〈u, vρ〉 � −aρ, ρ ∈ Σ(1)

}



is a lattice polytope in R
n (Fulton, 1993, Sec. 3.4). Also the space of global K-sections of O(D) is

isomorphic to L(PD) in our notation in Section 2.1.

Now fix n semi-ample divisors D1, . . . , Dn on X and let Pi = PDi
be the corresponding lattice

polytopes. Let D = D1 + · · · + Dn . For every 1 � i � n let f i be a section of the line bundle O(Di).

The assumption (1) in Section 2.1 guarantees that the hypersurfaces defined by the f i in X do not

have common points on the orbits of X of codimension greater than 1, which implies that the hy-

persurfaces intersect in isolated points S in the dense orbit. The other two assumptions say that the

intersections are transverse and consist of K-rational points.

The following is a higher-dimensional generalization of the Ω-construction of evaluation codes on

algebraic curves (Tsfasman et al., 2007, Sec. 4.1.1). Let Ωn
X be the sheaf of Zariski n-forms on X and

Ωn
X (D) the sheaf corresponding to the divisor D = D1 + · · · + Dn . The global sections of this sheaf are

n-forms whose only poles are in the support of the Di . There is an isomorphism Ωn
X (D) ∼= O(D −∑

ρ Dρ) (Cox et al., 2011, Sec. 8.2). We can write this explicitly in affine coordinates (t1, . . . , tn).

A section of Ωn
X (D) has the form

ωh = h

f1 · · · fn
dt1

t1
∧ · · · ∧ dtn

tn
,

for some Laurent polynomial h which corresponds to a section of O(D − ∑
ρ Dρ). Using the above

identification, we see that the space of global sections of O(D − ∑
ρ Dρ) is spanned by the lattice

points of the (rational) polytope corresponding to D − ∑
ρ Dρ , i.e. the interior lattice points of PD =

P1 + · · · + Pn . Hence, h ∈L(P ◦).
Now let S = {p1, . . . , pN } be the intersection of the hypersurfaces defined by the f i as above. Then

at every p ∈ S the local (Grothendieck) residue resp(ωh) is defined (Gelfond and Khovanskii, 2002).

Choose a subspace L of global sections of Ωn
X (D). This results in the residue map

resS : L →K
N , ωh �→ (

resp1(ωh), . . . , respN (ωh)
)
,

whose image is a linear code. In the case of transverse intersections at p we have resp(ωh) =
h(p)/ JT

f
(p) and the reside map becomes:

resS : L →K
N , ωh �→

(
h(p1)

JT
f
(p1)

, . . . ,
h(pN)

JT
f
(pN)

)
.

The linear code it defines is equivalent to the toric complete intersection code from Definition 2.1.

A similar construction of toric residue codes appears in Joshua and Akhtar (2011) in relation to quan-

tum stabilizer codes.

The sum of the local residues over p ∈ S is the global residue Res f (h) of h with respect to f =
( f1, . . . , fn). In these terms the first statement of Theorem 2.4 says that the global residue of any

h ∈ L(P ◦) equals zero. The global residue is closely related to the toric residue (Cox, 1996) and was

studied by Cattani et al. (1997); Cattani and Dickenstein (1997); Soprunov (2007).

3. Bounds for the minimum distance

Recall that the evaluation code CA is constructed by choosing a subset A of P ◦ . Note that lat-

tice translations of A, i.e. translations by lattice vectors, result in equivalent codes, so the minimum

distance d(CA) is independent of such translations. Consider a “complementary” set B , for which

A + B ⊆ P ◦ . It turns out that d(CA) is related to properties of the space L(B) as Theorem 3.2 below

shows. The following definition from classical algebraic geometry will be used throughout the paper.

Definition 3.1. We say that a finite set of points T ⊂ (K∗)n imposes independent conditions on a space

of Laurent polynomials L if the evaluation map evT :L→ K
|T | is surjective.

Theorem 3.2. Let S be the solution set of a system f1 = · · · = fn = 0 satisfying assumptions (1)–(3) above. Let

A and B be two subsets of Rn such that A + B ⊆ P ◦ . If any T ⊆ S of size m imposes independent conditions

on the space L(B) then d(CA) �m + 1.



Proof. We need to show that any h ∈ L(A), not identically zero on S , vanishes at no more than

|S| −m − 1 points of S . Assume there exist h ∈ L(A) and a subset Z ⊂ S of size |S| −m such that h

vanishes on Z , but h(p) 	= 0 for some p ∈ S . By our assumption S \ Z imposes independent conditions

on L(B), so there exists g ∈ L(B) such that g vanishes at every point of S \ (Z ∪ {p}), but not at p.

Now the polynomial hg belongs to L(A + B) ⊆ L(P ◦) and vanishes at every point of S but not at p,

which contradicts Corollary 2.5. �
Remark 3.3. Consider a special case: X = P

n , f1, . . . , fn are homogeneous polynomials of degrees

d1, . . . ,dn; and L(A) and L(B) are subspaces of homogeneous polynomials of degrees a and s − a,

respectively, where s = ∑n
i=1 di − (n+ 1). In this case Theorem 3.2 follows from the Cayley–Bacharach

theorem (Eisenbud et al., 1996) and serves as the main tool in the proofs of the results of Gold

et al. (2005) and Ballico and Fontanari (2006). We would like to point out that no toric analog of the

Cayley–Bacharach theorem is currently known, however, the Toric Euler–Jacobi theorem is sufficient

for our application to toric complete intersection codes.

Our next goal is to understand what sets B satisfy the condition of the above theorem for some

value of m. Here is our first example.

Lemma 3.4. Let B = B1 + · · · + Bm where the lattice set Bi ∩ Z
n affinely generates Zn for every 1 � i �m.

Then any m + 1 points in (K∗)n impose independent conditions on the space L(B).

Proof. Suppose m = 1 and let T = {p0, p1} be any subset in (K∗)n . It is enough to show that there

is a polynomial g ∈ L(B) such that g(p1) = 0 and g(p0) 	= 0. We may assume that B contains the

origin. Let {v1, . . . , vn} ⊆ B be a basis for Z
n and let s = tM = (tv1 , . . . , tvn ) be the corresponding

automorphism of (K∗)n . Choose a linear function l(s) such that l(pM
1 ) = 0 and l(pM

0 ) 	= 0. Then the

polynomial g(t) = l(tM) lies in L(B) and satisfies the required property.

In general, let T = {p0, . . . , pm} be any subset of m + 1 points in (K∗)n . By the previous case for

every 1 � i � m there exists gi ∈ L(Bi) such that gi(pi) = 0 and gi(p0) 	= 0. Then the polynomial

g = ∏m
i=1 gi lies in L(B), vanishes on T \ {p0}, and is not zero at p0. This implies that T imposes

independent conditions on L(B). �
In our first application of Theorem 3.2 we estimate d(CA) using the number of “primitive” sim-

plices �i one can add to A and still stay in P ◦ , after a possible lattice translation. We say that a

simplex � is primitive if � = conv.hull{0, v1, . . . , vn}, where {v1, . . . , vn} is a basis for Zn .

Theorem 3.5. Let S be the solution set of a system f1 = · · · = fn = 0 satisfying assumptions (1)–(3) above.

Let A be any set such that A + �1 + · · · + �m ⊆ P ◦ up to a lattice translation, where each �i is a primitive

simplex. Then d(CA) �m + 2.

Proof. This follows from Theorem 3.2 and Lemma 3.4. �
In our next application we will consider solution sets S ⊂ (K∗)n satisfying one additional assump-

tion.

Assumption.

(4) There exists an n-polytope Q such that any |QZ| points of S impose independent conditions on

L(Q ). In other words, for any subset T ⊂ S of size |QZ| the evaluation map evT : L(Q ) → K
|QZ|

is an isomorphism.

Example 3.6. Suppose X = P
n and Q = � is the standard n-simplex, i.e. the convex hull of the origin

and the n standard basis vectors. Then (4) is equivalent to saying that no n + 1 points of S lie on a



hyperplane. Complete intersections in P
n with this “generality” assumption were considered by Ballico

and Fontanari (2006).

The assumption (4) allows us to obtain better bounds on the minimum distance of the codes CA ,

as was suggested by Ballico and Fontanari (2006) in the case of the projective space. In fact, their

approach generalizes to arbitrary toric varieties. We will begin with a toric analog of their Horace

Lemma.

Proposition 3.7. Let T ⊂ (K∗)n be a finite subset and A a bounded subset of Rn. Consider a hypersurface H in

(K∗)n defined by h ∈L(Q ). If T ∩ H imposes independent conditions on L(A + Q ) and T \ (T ∩ H) imposes

independent conditions on L(A) then T imposes independent conditions on L(A + Q ).

Proof. Take any point p ∈ T . If p /∈ H then there exists g ∈ L(A) which does not vanish at p, but

vanishes at all the other points of T \ (T ∩ H). Then the polynomial f = gh ∈ L(A + Q ) vanishes at

all points of T \ {p}. Also f (p) = g(p)h(p) 	= 0 since p /∈ H .

Now if p ∈ H then there exists f1 ∈ L(A + Q ) which does not vanish at p, but vanishes at all the

other points of T ∩ H . Consider the function φ : T \ (T ∩ H) → K given by q �→ f1(q)/h(q). We know

that there exists g ∈ L(A) such that g(q) = φ(q) for any q ∈ T \ (T ∩ H). Put f = f1 − gh. Clearly

f ∈L(A + Q ) and f vanishes at every point of T except at p. �
Proposition 3.8. Let S be any subset of (K∗)n satisfying assumption (4). Then, for any k� 0, any subset T ⊆ S

of size |T | = (|QZ| − 1)k + 1 imposes independent conditions on L(kQ ).

Proof. The proof is by induction on k. For k = 0 we have T = {p} which imposes independent condi-

tions on the space L(kQ ) ∼= K.

For k > 0 choose T ′ ⊂ T of size m = |QZ| − 1. Since m < |QZ| = dimL(Q ) there exists a non-

zero polynomial h ∈ L(Q ) which vanishes on T ′ . Moreover, T ′ = S ∩ H , where H is the hypersurface

defined by h. Indeed, if S ∩ H contains a point p not in T ′ then the evaluation map evT ′∪{p} :L(Q ) →
K

m+1 is degenerate which contradicts the assumption (4). Clearly, since T ′ ⊂ T ⊂ S we have T ′ =
S ∩ H = T ∩ H .

Now T \T ′ has size m(k−1)+1 and by induction imposes independent conditions on L((k − 1)Q ).

Also by (4) the set T ′ imposes independent conditions on L(Q ) and hence on L(kQ ) as Q ⊂ kQ up

to a lattice translation. It remains to apply Proposition 3.7. �
Theorem 3.9. Let S be the solution set of a system f1 = · · · = fn = 0 satisfying assumptions (1)–(4). Let A be

any set such that A + kQ ⊂ P ◦ up to a lattice translation, for some k� 0. Then

d(CA)�
(|QZ| − 1

)
k + 2.

Proof. The theorem follows from Proposition 3.8 and Theorem 3.2 where we put m = (|QZ| −
1)k + 1. �
4. Constructing toric complete intersection codes

In this section we give geometric conditions on the polytopes P1, . . . , Pn and Q that produce sys-

tems satisfying assumption (4) if the coefficients are generic elements of K. We use these conditions

when constructing examples of toric complete intersection codes in Section 5.

Theorem 4.1. Let Q be an n-dimensional lattice polytope such that QZ generates Zn. Suppose

1. V (P1, . . . , Pn−1, Q )� |QZ|,
2. (|QZ| − 1)Q ⊂ Pn.



Then the solution set of any system f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn and generic coeffi-

cients satisfies assumption (4).

Proof. Let m = |QZ| − 1. Let Γi be the hypersurface in (K∗)n defined by f i . Consider the curve C =
Γ1 ∩ · · · ∩ Γn−1 in (K∗)n . Let V consist of all ordered collections (p0, . . . , pm) of regular points in C

such that {p0, . . . , pm} do not impose independent conditions on L(Q ). In other words,

V = {
T = (p0, . . . , pm) ∈ Cm+1

reg

∣∣ evT : L(Q ) → (
K

∗)m+1
is not surjective

}
,

where by abuse of notation we denote by T both the ordered collection (p0, . . . , pm) and the set

{p0, . . . , pm}. The set V is algebraic with a dense open subset V0 ⊂ V consisting of points of V for

which the map evT has one-dimensional kernel.

First we will show that dim V = m. Indeed, every T ∈ V0 defines a unique hypersurface H , de-

fined by a polynomial in L(Q ), such that the corresponding set T lies in C ∩ H . We obtain a map

π : V0 → PL(Q ). On the other hand, by the Bernstein–Kushnirenko theorem (see Theorem 2.6) any

generic hypersurface H with Newton polytope Q satisfies |C ∩ H| = V (P1, . . . , Pn−1, Q ) � m + 1,

so the image of π is dense in PL(Q ). Clearly, the fibers π−1(H) are finite, so we get dim(V ) =
dim(V0) = dim(π(V0)) = dim(PL(Q )) =m.

Now we will show that choosing a generic fn with Newton polytope Pn produces S = C ∩ Γn

which satisfies assumption (4). For this consider the set

W =
⋃
T∈V

WT , where WT = {
f ∈ L(Pn)

∣∣ f vanishes on T
}
.

Clearly, every fn in the complement of W produces such S (we also must avoid those fn which

have zero coefficients corresponding to the vertices of Pn), so we need to show that W has positive

codimension in L(Pn). Indeed, according to our assumption mQ ⊂ Pn , so every set of m + 1 points

in S imposes independent conditions on L(mQ ) (by Lemma 3.4) and hence on L(Pn). Therefore the

codimension of every subspace WT equals m + 1. Thus W is a vector bundle with m-dimensional

base and codimension m + 1 fiber, so W has codimension one. �
In the next theorem we show that in some situations the condition (|QZ| − 1)Q ⊂ Pn can be

replaced with P1 +· · ·+ Pn−1 + Q ⊂ Pn . When |QZ| grows fast as a function of n, the latter condition

is preferable if one wants to avoid dealing with unnecessarily large Pn .

We will need the following consequence of the Toric Euler–Jacobi theorem.

Proposition 4.2. Let P1, . . . , Pn be n-dimensional lattice polytopes with the same normal fan, such that

charK does not divide the normalized mixed volume V (P1, . . . , Pn). Let S be the solution set for a system

f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn, satisfying assumptions (1)–(3). Then S imposes inde-

pendent conditions on the space L(P ).

Proof. We need to show that for any function ψ : S → K there exists g ∈ L(P ) with g(p) = ψ(p)

for all p ∈ S . Define φ : S → K by setting φ(p) = ψ(p)

JT
f
(p)

− c, where c = 1
|S|

∑
p∈S

ψ(p)

JT
f
(p)

. Then∑
p∈S φ(p) = 0, so by Theorem 2.4 there exists h ∈ L(P ◦) such that h(p) = JT

f
(p)φ(p) for all p ∈ S .

Now we can put g = h + c JT
f
∈L(P ), as g(p) = h(p) + c JT

f
(p) = ψ(p) for all p ∈ S , as required. �

This can be slightly refined. As we have seen in the above proof, Proposition 4.2 still holds if we

replace L(P ) with spanK{L(P ◦), JT
f
}.

Theorem 4.3. Let P1, . . . , Pn and Q be n-dimensional lattice polytopes with the same normal fan and such

that QZ generates Zn. Suppose

1. V (P1, . . . , Pn−1, Q ) � |QZ|,
2. P1 + · · · + Pn−1 + Q ⊂ Pn.



Then the solution set of any system f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn and generic coeffi-

cients satisfies assumption (4).

Proof. The proof is the same as for Theorem 4.1, except for the last two sentences. Instead we need

the following observation. Let T ∈ V . By the definition of V there exists a hypersurface H defined by a

polynomial in L(Q ) such that T ⊆ C∩H . By Proposition 4.2, C∩H imposes independent conditions on

the space L(P1 + · · · + Pn−1 + Q ). Therefore T imposes independent conditions on L(Pn) and hence

the codimension of the subspace WT equals m + 1. The rest is as in the proof of Theorem 4.1. �
5. Examples

In this section we put several applications of the results of the previous section as well as provide

specific examples of toric complete intersection codes over finite fields.

We start by showing how Theorem 3.5 and Theorem 3.9 recover the results of Gold et al. (2005)

and Ballico and Fontanari (2006).

Example 5.1. Let S be a zero-dimensional smooth complete intersection in P
n given by n homo-

geneous polynomials F1, . . . , Fn over K. Suppose S lies in P
n(K). Up to a projective change of

coordinates we may assume that S lies in the algebraic torus (K∗)n . Rewriting Fi in the affine coordi-

nates for (K∗)n we obtain a polynomial f i with Newton polytope Pi = di� where � is the standard

n-simplex and di = deg(Fi). It is easy to see that S satisfies the assumptions (1)–(3) in Section 2.1.

Now let s = ∑n
i=1 di − (n + 1) and let A = a� for some 1� a� s. Notice that L(A) is the space of

polynomials of total degree at most a. We are going to apply Theorem 3.5 with l = s − a and all the

�i being simply �. Clearly, A+�1 +· · ·+�n , which equals s�, lies in the interior of P = (
∑n

i=1 di)�.

Therefore, by Theorem 3.5, d(CA) � s − a + 2. This is the result of Gold et al. (2005).

Next suppose S satisfies assumption (4) with Q = �. As pointed out before this means that no

n + 1 points of S lie in a hyperplane in P
n . Applying Theorem 3.9 with k = s − a we obtain d(CA) �

n(s − a) + 2, which is the result of Ballico and Fontanari (2006).

In the next example we consider systems defined by multi-homogeneous polynomials. This is the

case of toric variety X = P
1 × · · · × P

1.

Example 5.2. For 1 � i � n let Pi be the lattice box with dimensions (di1, . . . ,din), each dij � 1. Let

S be the solution set of a system f1 = · · · = fn = 0 with Newton polytopes P1, . . . , Pn satisfying as-

sumptions (1)–(3). By the Bernstein–Kushnirenko theorem |S| = V (P1, . . . , Pn) which equals Perm(D),

the permanent of the matrix D = (dij). Indeed, since each Pi is the Minkowski sum of segments

Pi = ∑n
j=1 Ii j , where Ii j = [0,dije j], by the multi-linearity of the mixed volume we obtain

V (P1, . . . , Pn) = V

(
n∑
j=1

I1 j, . . . ,

n∑
j=1

Inj

)
=

∑
σ∈Sn

V (I1σ (1), . . . , Inσ (n))

=
∑
σ∈Sn

d1σ (1) · · ·dnσ (n) = Perm(D).

Now let A be a lattice box with dimensions (a1, . . . ,an). Note that P is a lattice box with dimen-

sions (d1, . . . ,dn), where d j = ∑
i di j . Hence A lies in P ◦ whenever 1� a j � d j − 2. Next, suppose S

satisfies the assumption (4) with Q = �, the unit n-cube. Then for k = min j(d j − 2 − a j) we have

A + k� ⊂ P ◦ . Applying Theorem 3.9 we get

d(CA)�
(
2n − 1

)
min

1� j�n
(d j − 2− a j) + 2.

Let us now see under which condition on the polytopes Pi the assumption (4) is generically sat-

isfied. According to Theorem 4.1 and Theorem 4.3 it is enough to require V (P1, . . . , Pn−1,�) � 2n



Fig. 5.1. The Newton polygons and their Minkowski sum.

and either (2n − 1)� ⊆ Pn or P1 + · · · + Pn−1 + � ⊆ Pn . The latter occurs when dnj � min(2n − 1,∑n−1
i=1 dij +1) for 1� j � n. For the former note that �⊂ Pi , so by monotonicity of the mixed volume

V (P1, . . . , Pn−1,�) � V (�, . . . ,�) = n! � 2n,

for n� 4. For n = 2 we require V (P1,�) = d11 + d12 � 4. For n = 3 we require that at least one edge

of either P1 or P2 has length 2, since in this case

V (P1, P2,�) = d11d22 + d12d23 + d13d21 + d13d22 + d12d21 + d11d23 � 8.

In the next two examples we present two explicit toric complete intersection codes over F16 and

F128, respectively. In both cases the toric variety is a del Pezzo surface. We use MAGMA (Bosma et al.,

1997) for constructing these examples.

Example 5.3. Let ξ be a generator of the cyclic group F
∗
16. Let P1 and P2 be as in Fig. 5.1. Consider

the following system.{
f1 = x2 y2 + ξ7x2 y + ξ11xy2 + ξ4xy + x+ ξ7 y2 + ξ13 = 0,

f2 = x2 y2 + ξ7x2 y + ξ6x2 + ξ14xy2 + ξ12xy + ξ3x+ y2 + ξ5 y + ξ4 = 0.

The system has 8 = V (P1, P2) simple solutions in (F∗
16)

2:

S = {(
ξ, ξ6

)
,
(
ξ4, ξ3

)
,
(
ξ11,1

)
,
(
ξ11, ξ12

)
,
(
ξ12, ξ7

)
,
(
ξ13, ξ9

)
,
(
ξ14, ξ4

)
,
(
ξ14, ξ13

)}
.

Let Q = �, the unit square. One can check that any 4 points of S impose independent conditions on

the space L(�). Now choose A = � as well. We have A +� ⊂ P ◦ , so

d(CA) � (4− 1) + 2 = 5.

Furthermore dimCA = |AZ| = 4, so we get an MDS [8,4,5]-code over F16.

To construct a bigger example we start with polygons P1, P2 satisfying the conditions of Theo-

rem 4.1. Then we choose a random polynomial f1 with Newton polytope P1. If the size of the field is

big enough we can choose V (P1, P2) rational points on the curve f1 = 0 which satisfy assumption (4).

Example 5.4. The polygons P1 and P2 and their Minkowski sum P are depicted in Fig. 5.2. Consider

a system f1 = f2 = 0 over Fq with Newton polytopes P1, P2 satisfying assumptions (1)–(3), and let

S be the solution set of the system. We have |S| = V (P1, P2) = 14. On the other hand, a simple

application of the Serre bound shows that for q� 8 the curve f1 = 0 has less than 14 rational points.

Therefore we must have q > 8.

First we consider an application of Theorem 3.5. Take A to be a 2×2 lattice square, �1 the convex

hull of {(0,0), (1,0), (1,1)}, and �2 the convex hull of {(0,0), (0,1), (1,1)}. Then A + �1 + �2 ⊂ P ◦ .
Therefore, by Theorem 3.5, we have d(CA)� 2+2 = 4. The evaluation map evS :L(A) → Fq

14 has one-

dimensional kernel spanned by f1. Therefore, dimCA = |AZ| − 1 = 8 and we obtain a [14,8,�4]-code
over Fq with q� 9.





about the size of the field for which toric complete intersections with given polytopes exist and

with what probability they occur. This would allow a more systematic way of constructing them and

studying their parameters.

Computing the dimension of CS,L(A) is not obvious since the evaluation map will have a non-

trivial kernel, in general. It requires computing the codimension of the ideal generated by the f i in

the space L(A). Although this can be done in concrete examples one would like to have a general

way of doing so.
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I thank Ştefan Tohaneanu for several fruitful discussions about evaluation codes on complete inter-

sections and explaining his work in Tohaneanu (2009, 2011); and Jan Tuitman for answering questions

about the Bernstein–Kushnirenko theorem in positive characteristic. I am grateful to two anonymous

referees whose comments helped to improve the exposition.

References

Ballico, E., Fontanari, C., 2006. The Horace method for error-correcting codes. Appl. Algebra Engrg. Comm. Comput. 17 (2),

135–139.

Bernstein, D.N., 1975. The number of roots of a system of equations. Funct. Anal. Appl. 9 (2), 183–185.

Bosma, Wieb, Cannon, John, Playoust, Catherine, 1997. The Magma algebra system. I. The user language. J. Symbolic Comput. 24,

235–265.

Cattani, E., Cox, D.A., Dickenstein, A., 1997. Residues in toric varieties. Compos. Math. 108 (1), 35–76.

Cattani, E., Cueto, M.A., Dickenstein, A., Di Rocco, S., Sturmfels, B., 2011. Mixed discriminants. arXiv:1112.1012v1 [math.AG].

Cattani, E., Dickenstein, A., 1997. A global view of residues in the torus. J. Pure Appl. Algebra 117/118, 119–144.

Cox, D.A., 1996. Toric residues. Ark. Mat. 34, 73–96.

Cox, D.A., Little, J., Schenck, H., 2011. Toric Varieties. Grad. Stud. Math., vol. 124. AMS, Providence, RI.

Duursma, I., Rentería, C., Tapia-Recillas, H., 2001. Reed–Muller codes on complete intersections. Appl. Algebra Engrg. Comm.

Comput. 11, 455–462.

Eisenbud, D., Green, M., Harris, J., 1996. Cayley–Bacharach theorems and conjectures. Bull. Amer. Math. Soc. 33 (3), 295–324.

Fulton, W., 1993. Introduction to Toric Varieties. Princeton Univ. Press, Princeton.

Gelfond, O.A., Khovanskii, A.G., 2002. Toric geometry and Grothendieck residues. Mosc. Math. J. 2 (1), 99–112.

Gold, L., Little, J., Schenck, H., 2005. Cayley–Bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra 196

(1), 91–99.

Hansen, J., 2000. Toric surfaces and error-correcting codes. In: Buchmann, J., et al. (Eds.), Coding Theory, Cryptography, and

Related Areas. Springer, pp. 132–142.

Hansen, J., 2001. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl. 7 (4), 530–552.

Hansen, J., 2003. Linkage and codes on complete intersections. Appl. Algebra Engrg. Comm. Comput. 14, 175–185.

Joshua, R., Akhtar, R., 2011. Toric residue codes: I. Finite Fields Appl. 17 (1), 15–50.

Joyner, D., 2004. Toric codes over finite fields. Appl. Algebra Engrg. Comm. Comput. 15, 63–79.

Khovanskii, A.G., 1978. Newton polyhedra and the Euler–Jacobi formula. Russian Math. Surveys 33 (6), 237–238.

Kunz, E., 2008. Residues and Duality for Projective Algebraic Varieties. Univ. Lecture Ser., vol. 47. AMS, Providence, RI.

Kushnirenko, A.G., 1976. Newton polyhedra and Bezout’s theorem. Funktsional. Anal. i Prilozhen. 10 (3), 82–83 (in Russian).

Little, J., 2008. Algebraic geometry codes from higher dimensional varieties. In: Martinez-Moro, E., et al. (Eds.), Advances in

Algebraic Geometry Codes. In: Ser. Coding Theory Cryptol., vol. 5. World Sci. Publ., Hackensack, NJ, pp. 257–293.

Little, J., Schenck, H., 2006. Toric surface codes and Minkowski sums. SIAM J. Discrete Math. 20 (4), 999–1014.

Little, J., Schwarz, R., 2007. On toric codes and multivariate Vandermonde matrices. Appl. Algebra Engrg. Comm. Comput. 18 (4),

349–367.

Ruano, Diego, 2007. On the parameters of r-dimensional toric codes. Finite Fields Appl. 13, 962–976.

Soprunov, I., 2007. Global residues for sparse polynomial systems. J. Pure Appl. Algebra 209 (2), 383–392.

Soprunov, I., Soprunova, J., 2009. Toric surface codes and Minkowski length of polygons. SIAM J. Discrete Math. 23 (1), 384–400.

Soprunov, I., Soprunova, J., 2010. Bringing toric codes to the next dimension. SIAM J. Discrete Math. 24 (2), 655–665.
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