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ORIGINAL RESEARCH

Comparison of Robotics, Functional Electrical
Stimulation, and Motor Learning Methods for
Treatment of Persistent Upper Extremity Dysfunction
After Stroke: A Randomized Controlled Trial

Jessica McCabe, MPT,a Michelle Monkiewicz, DPT,a John Holcomb, PhD,b

Svetlana Pundik, MD, MS,a Janis J. Daly, PhD, MSa

From the aStroke Motor Control/Motor Learning Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland,
OH; and bDepartment of Mathematics and Statistics, Cleveland State University, Cleveland, OH.
Current affiliations for Daly, Brain Rehabilitation Research Center of Excellence, Malcom Randall Gainesville Department of Veterans Affairs
Medical Center, Gainesville, FL; Department of Neurology, College of Medicine, University of Florida, FL; and Brain Rehabilitation Research
Program, McKnight Brain Institute, University of Florida, Gainesville FL.

Abstract

Objective: To compare response to upper-limb treatment using robotics plus motor learning (ML) versus functional electrical stimulation (FES)

plus ML versus ML alone, according to a measure of complex functional everyday tasks for chronic, severely impaired stroke survivors.

Design: Single-blind, randomized trial.

Setting: Medical center.

Participants: Enrolled subjects (NZ39) were >1 year postsingle stroke (attrition rateZ10%; 35 completed the study).

Interventions: All groups received treatment 5d/wk for 5h/d (60 sessions), with unique treatment as follows: ML alone (nZ11) (5h/d partial- and

whole-task practice of complex functional tasks), robotics plus ML (nZ12) (3.5h/d of ML and 1.5h/d of shoulder/elbow robotics), and FES plus

ML (nZ12) (3.5h/d of ML and 1.5h/d of FES wrist/hand coordination training).

Main Outcome Measures: Primary measure: Arm Motor Ability Test (AMAT), with 13 complex functional tasks; secondary measure: upper-limb

Fugl-Meyer coordination scale (FM).

Results: There was no significant difference found in treatment response across groups (AMAT: P�.584; FM coordination: P�.590). All 3
treatment groups demonstrated clinically and statistically significant improvement in response to treatment (AMAT and FM coordination:

P�.009). A group treatment paradigm of 1:3 (therapist/patient) ratio proved feasible for provision of the intensive treatment. No adverse effects.

Conclusions: Severely impaired stroke survivors with persistent (>1y) upper-extremity dysfunction can make clinically and statistically significant

gains in coordination and functional task performance in response to robotics plus ML, FES plus ML, and ML alone in an intensive and long-duration

intervention; no group differences were found. Additional studies are warranted to determine the effectiveness of these methods in the clinical setting.

Archives of Physical Medicine and Rehabilitation 2015;96:981-90

ª 2015 by the American Congress of Rehabilitation Medicine

Treatment methods using motor learning (ML) principles for the
treatment of persistent upper-limb dysfunction after stroke have
been reported in the literature.1-11 Some have compared the
application of ML principles with neurorehabilitation methods
(eg, Bobath concept, neurodevelopmental treatment).1,2 Still,
others have used bilateral upper-extremity exercise3 or constraint-
induced motor therapies for mild/moderate upper-extremity
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dysfunction.4-11 Most of these studies showed promising results,
but stroke survivors did not recover normative function, and gains
were statistically significant but small.

In addition to ML-based treatment strategies, technology-based
upper-limb therapies (eg, robotics training, functional electrical
stimulation [FES]) have also produced some positive results.
Treatment with robotics has shown statistically significant gains in
measures of impairment for chronic stroke survivors,12-17 but
some reported gains were not considered clinically significant
according to an outcome measure of coordination.18 At the same
time, surface FES was reported beneficial with chronic stroke
subjects according to measures of impairment.19,20 Although ro-
botics and FES have each shown promise, there is a paucity of
information regarding the comparative benefit. Additionally, there
is little evidence of whether or not a treatment paradigm using a
combination of ML therapy and technology-based therapy would
be superior to ML alone, according to a homogeneous measure of
the performance of actual complex functional tasks of everyday
life; rather, a number of reported outcome measures contain a
mixture of impairment items and functional task items. Finally,
many studies have focused on mildly to moderately impaired
stroke survivors, with significantly less attention paid to the
severely impaired (�36 points on the upper-limb motor Fugl-
Meyer [FM] score21). Therefore, in consideration of all these is-
sues together, the purpose of this study was to investigate, for
severely impaired, chronic stroke survivors, the comparative
response to treatment using shoulder/elbow robotics plus ML
versus wrist/hand FES plus ML versus ML alone according to a
measure of actual complex functional tasks of everyday life.

Methods

Study design

This was a randomized controlled trial comparing response to
treatment across 3 different treatment groups: robotics plus ML,
FES plus ML, and ML. Subjects in all 3 groups received treatment
for 5h/d for 5d/wk for 12 weeks (60 treatment visits). Measures
were acquired at pre- and posttreatment.

Participants

There were 174 phone inquiries regarding the study. Of these, 135
did not meet criteria for an in-person screen (fig 1). Thirty-nine
subjects participated in an in-person screen. Study inclusion
criteria included persistent (>1y), upper-extremity impairment; at
least a trace muscle contraction in the wrist extensors; single
unilateral stroke; mobility and function sufficient for independent
performance of activities (eg, toileting, eating lunch during the
treatment days); stable medical condition; no other prior

neurologic condition; and ability to follow 2-step commands. The
study was conducted under the oversight of the institutional re-
view board of the medical center. All subjects provided informed
consent prior to study participation.

Technology

Robotics training was implemented using the InMotion2 Shoulder-
Elbow Robot.a This robotic device is a 2-degrees-of-freedom sys-
tem that is back-drivable and impedance-controlled to allow for
near-frictionless movement in a horizontal plane. The robot used
the QNX real-time operating system,b which allowed for high-
performance control and integrated graphics. Subjects were
seated comfortably in a chair with their hemiplegic forearm and
hand supported by a forearm cradle and cone-shaped hand support.
Training movements were shoulder/elbow movements of flexion/
extension and horizontal shoulder movements from a center target
to and from 8 points located on a circle around the center point.

FES was provided with the commercially available EMSþ2
stimulatorc and surface gel electrodes (flexible PALS surface
electrodesd). The EMSþ2 is a portable, battery-operated, 2-
channel surface electrical stimulator that delivers a biphasic,
symmetrical, rectangular output for each of the 2 available
channels. The stimulation parameters were as follows: 300-
millisecond pulse width, 40Hz, and amplitude varied according
to subject tolerance. The muscles stimulated included wrist and
finger flexors/extensors and forearm supinators/pronators.

Interventions

The goal of training was recovery of the movement components
composing functional tasks and recovery of performance of the
whole complex task. Treatment was based on ML principles
including the following: movement practice as close to normative
as possible,22,23 high number of repetitions,24-27 attention to the
motor task,28 and training specificity.29 Progression of training
was based on the recovery of volitional capability and motor task
difficulty, according to the motor task difficulty hierarchy shown
in appendix 1. ML exercises were provided for training-isolated
joint movement coordination of the scapula, shoulder, elbow,
forearm, wrist, fingers, and thumb; task component movements;
and whole arm/hand functional training (appendix 2).

Examples of practiced task components are reaching, grasp
preparation, and grasp release. To encourage participation, func-
tional tasks that were meaningful to the subject were used. We
used a 1:3 group therapy paradigm, whereby 1 therapist treated a
group of 3 subjects for 5h/d. There were 3 interventionists; each
one was assigned to 1 of the 3 treatment groups. Standardization
of treatment was addressed through weekly meetings that included
identification of subject impairments and consensus of treatment
addressing each given impairment.

Those in the robotics plus ML group used the robot for 1.5h/d.
For the remainder of the day they were provided with ML without
technologies (3.5h). Similarly, those in the FES plus ML group
used FES for 1.5h/d. The ML group was provided with the ML
intervention for 5h/d.

Primary outcome measure: Arm Motor Ability Test

All measures were acquired at pre- and posttreatment. There was 1
assessor, who was blinded to the group assignment of the subject.
The primary outcome measure was the Arm Motor Ability Test
(AMAT), which is a homogenous measure of functional tasks of

List of abbreviations:

AMAT Arm Motor Ability Test

AMAT-F AMAT Function scale

AMAT S/E Arm Motor Ability Test for shoulder/elbow

AMAT S/E-F AMAT S/E Function scale

AMAT W/H Arm Motor Ability Test for wrist/hand

AMAT W/H-F AMAT W/H Function scale

FES functional electrical stimulation

FM Fugl-Meyer

ML motor learning
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everyday living.30 The AMAT consists of 13 complex functional
tasks, which are videotaped and timed for performance. Examples
of the AMAT tasks of everyday living are as follows: pick up and
drink from a mug and pick up comb and comb hair.

Secondary measures

Because the robotics and FES technologies were focused on shoul-
der/elbow or wrist/hand, respectively, we used 2 AMAT subscales:
AMAT for shoulder/elbow (AMAT S/E) and AMAT for wrist/hand
(AMAT W/H). The AMAT S/E and AMAT W/H subscales were
scored by recording the time of the shoulder/elbowmovements or the
wrist/hand movements, respectively, performed during each AMAT
task performance. These subscales have shown good validity and
reliability (AMAT S/E intraclass correlation coefficient: .82; AMAT
W/H intraclass correlation coefficient: .96).31

The FM coordination scale is a measure of limb joint movement
coordination,32with good validity and intra- and interrater reliability,
used inmost upper-limb rehabilitation studies of stroke.33 In addition
to using the overall FM upper-limbmotor score, we generated values

for the shoulder/elbow movement items and wrist/hand items,
summing them for each participant into the subscale scores of FM for
shoulder/elbow and FM for wrist/hand, respectively.

In addition to the quantitative timed AMAT used for the pri-
mary measure, the AMAT can be scored using an ordinal,
observational scale (0e5 points; AMAT Function scale [AMAT-
F]). To investigate clinical significance within groups, we used the
AMAT-F for which others have reported that a gain of .21 points is
indicative of clinical significance.34,35 The AMAT-F has shown
correlation with the clinically meaningful FM score.36

Statistical analyses

Analyses were completed using the IBM SPSS version 19.0 statis-
tical software package.e Baseline measures were compared across
the 3 treatment groups for the AMAT and FM coordination scale
using the nonparametric Kruskal-Wallis test. For the primary study
question of group treatment difference on the AMAT, the Kruskal-
Wallis test was used on the improvement scores (pre-post). Addi-
tionally, 95% confidence intervals for mean differences for pairwise

Fig 1 Consolidated Standards of Reporting Trials diagram. Depiction of subject selection, group allocation, attrition and data analysis.

Abbreviations: FES ML, FES plus ML group; ML, ML group; ROB ML, robotics plus ML group.

Recovery of arm function in chronic stroke 983

www.archives-pmr.org

http://www.archives-pmr.org


comparisons were completed. A similar group analysis was con-
ducted on the secondary measure of the FM coordination scale. For
the additional secondary within-group analyses, we made pre-/
posttreatment comparisons within each group using the Wilcoxon
signed-rank test. A 95% Hodges-Lehman confidence interval was
included for estimating the median change from pre- to posttreat-
ment. To correct for multiple testing, sets of related hypotheses were
grouped together,37 and then the Holm Bonferroni stepdown
correction method was used to determine statistical significance.38

For the secondary measure, the ordinal AMAT-F measure and the
subscales of AMAT S/E Function scale (AMAT S/E-F) and AMAT
W/H Function scale (AMAT W/H-F), we calculated the following
descriptive statistics: meanAMAT-F score for each individual across
the task scores for both pre- and posttreatment, change score, and
group means and change score. We inspected each group change
score relative to the value of 0.21 point (clinically significant change
for the AMAT-F).

Results

A total of 39 subjects enrolled in this study, with all but 1 subject
in the severe range of impairment, according to the upper-
extremity motor FM score �36 points21 (table 1). The attrition
rate was 10% (4/39) (see fig 1). There were 4 subjects who

enrolled (2 in the ML alone group, 2 in the FES plus ML group)
but did not complete the study. Their characteristics did not alter
the relative subject characteristics across groups, and the char-
acteristics are as follows: sex (FES plus ML group: 1 woman and
1 man; ML alone group: 2 men), stroke type (FES plus ML:
cortical [nZ1] and subcortical [nZ1]; ML alone group: cortical
[nZ2]), years poststroke (FES plus ML group: 1e3y [nZ2]; ML
alone: 1e3y [nZ1] and injury >4y [nZ1]), and age (FES plus
ML group: 50e81y [nZ2]; ML alone group: 50e81y [nZ2]).
The reasons for their withdrawing from the study were things
such as transportation and family issues. A total of 35 subjects
completed the study (see fig 1). The analyses subsequently re-
ported were conducted on those who completed the study. No
adverse events occurred as a result of participation in the study.

Prior to beginning treatment, there was no statistically signif-
icant difference among the 3 treatment groups based on baseline
AMAT (P�.866) or baseline FM score (P�.966).

AMAT measure

Group comparison
For the primary measure (AMAT), there was no significant
difference across groups regarding treatment response
(P�.584). Similarly, for the secondary measures of the AMAT

Table 1 Subject characteristics

Group

Stroke Type

Years

Poststroke Age Range (y) Sex Baseline FM Upper-

Limb Score (SD)Cortical Subcortical Both Brainstem 1e3 �4 21e49 50e81 Male Female

ML 6 1 2 2 8 3 2 9 6 5 23.58�5.86

FES plus ML 6 3 3 0 10 2 3 9 7 5 22.85�6.92

Robotics plus ML 3 4 4 1 9 3 2 10 10 2 22.62�5.66

NOTE. Values for stroke type, years poststroke, age range, and sex are n.

Table 2 No significant difference between groups for AMAT measure of complex function

AMAT Measure Comparison Groups Pretreatment (s) Posttreatment (s)

Mean Change

Score (s) Mean Difference 95% CI (s) P

AMAT ML vs FESþML ML: 1794�479

FESþML: 1868�501

ML: 1417�637

FESþML: 1367�566

377

501

�124 (�430 to 182) .584

ML vs ROBþML ML: 1794�479

ROBþML: 1868�597

ML: 1417�637

ROBþML: 1463�573

377

405

�28 (�334 to 278) .972

ROBþML vs FESþML ROBþML: 1868�597

FESþML: 1868�501

ROBþML: 1463�573

FESþML: 1367�566

405

501

�96 (�395 to 206) .712

AMAT S/E ML vs FESþML ML: 931�288

FESþML: 956�285

ML: 709�316

FESþML: 707�263

222

249

�27 (�194 to 141) .917

ML vs ROBþML ML: 931�288

ROBþML: 979�286

ML: 709�316

ROBþML: 711�267

222

268

�46 (�213 to 122) .786

ROBþML vs FESþML ROBþML: 979�286

FESþML: 956�285

ROBþML: 711�267

FESþML: 707�263

268

249

18 (�146 to 182) .960

AMAT W/H ML vs FESþML ML: 864�250

FESþML: 912�245

ML: 682�326

FESþML: 660�320

182

252

�70 (�257 to 117) .631

ML vs ROBþML ML: 864�250

ROBþML: 890�325

ML: 682�326

ROBþML: 751�320

182

139

43 (�143 to 231) .831

ROBþML vs FESþML ROBþML: 890�325

FESþML: 912�245

ROBþML: 751�320

FESþML: 660�320

139

252

�113 (�297 to 69) .288

NOTE. Values are mean � SD or as otherwise indicated.

Abbreviations: CI, confidence interval; FESþML, FES plus ML group; ML, ML group; ROBþML, robotics plus ML group.
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S/E and AMAT W/H subscales, there was no difference across
groups in treatment response (P�.786 and P�.288, respec-
tively) (table 2).

Within-group improvement
All 3 treatment groups demonstrated a statistically significant
improvement according to the AMAT, AMATS/E, and AMATW/H,
after adjusting for multiple tests (P�.009) (table 3).

Coordination impairment secondary measures

Group comparison
For the secondary measures of joint coordination (FM scale, FM
scale for shoulder/elbow, FM scale for wrist/hand), there was no
significant difference across groups regarding treatment response

(FM scale: P�.590; FM scale for shoulder/elbow: P�.979; FM
scale for wrist/hand: P�.340) (table 4).

Within-group improvement
All 3 treatment groups demonstrated a statistically significant
within-group improvement according to the FM scale, FM scale
for shoulder/elbow, and FM scale for wrist/hand after adjusting for
multiple tests (P�.007) (table 5).

Descriptive statistics for the AMAT-F scale

Table 6 provides descriptive statistics for the ordinal AMAT-F
scale, AMAT S/EeF, and AMAT W/HeF for each of the 3
groups. Pre-/posttreatment change scores for all measures were
>.21 point, which is considered the minimum value for clini-
cally important improvement. All scores, except for 2 change

Table 3 Within-group gains in functional task performance (AMAT) for each of the 3 treatment groups

Treatment Group Functional Task Measure Pretreatment (s) Posttreatment (s) Median Difference (95% CI) (s) P

ML AMAT 1794�479 1417�637 �277 (�341 to �217) .003*

AMAT S/E 931�288 709�316 �209 (�284 to �155) .003*

AMAT W/H 864�250 682�326 �144 (�344 to �51) .009*

FES plus ML AMAT 1868�501 1367�566 �415 (�655 to �290) .002*

AMAT S/E 956�285 707�263 �206 (�387 to �115) .002*

AMAT W/H 912�245 660�320 �232 (�374 to �133) .003*

Robotics plus ML AMAT 1868�597 1463�573 �402 (�509 to �298) .002*

AMAT S/E 979�286 711�267 �262 (�339 to �208) .002*

AMAT W/H 890�325 751�320 �119 (�207 to �72) .003*

NOTE. Values are mean � SD or as otherwise indicated.

Abbreviation: CI, confidence interval.

* Adjusted P value.

Table 4 No significant difference between groups according to gain in coordination (FM scale)

Functional Task

Measure Groups Compared Pretreatment (points) Posttreatment (points)

Mean Change

Score for

Each Group

Group Mean

Difference

(95% CI) (points) P

FM scale ML vs FESþML ML: 23.6�5.8

FESþML: 23.5�6.5

ML: 33.5�8.3

FESþML: 32.3�7.9

9.9

8.8

1.1 (�4.1 to 6.2) .867

ML vs ROBþML ML: 23.6�5.8

ROBþML: 23.6�5.9

ML: 33.5�8.3

ROBþML: 31.3�6.2

9.9

7.7

2.2 (�3.1 to 7.2) .590

ROBþML vs FESþML ROBþML: 23.6�5.9

FESþML: 23.5�6.5

ROBþML: 31.3�6.2

FESþML: 32.3�7.9

7.7

8.8

1.1 (�4.0 to 6.0) .877

FM scale for

shoulders/elbows

ML vs FESþML ML: 12.7�2.9

FESþML: 12.7�3.5

ML: 16.4�3.9

FESþML: 16.5�3.9

3.7

3.8

0.1 (�2.6 to 2.2) .979

ML vs ROBþML ML: 12.7�2.9

ROBþML: 12.9�1.9

ML: 16.4�3.9

ROBþML: 16.6�2.5

3.7

3.7

0 (�2.5 to 2.4) .999

ROBþML vs FESþML ROBþML: 12.9�1.9

FESþML: 12.7�3.5

ROBþML: 16.6�2.5

FESþML: 16.5�3.9

3.7

3.8

0.1 (�2.2 to 2.6) .984

FM scale for

wrists/hands

ML vs FESþML ML: 9.1�2.6

FESþML: 8.8�3.5

ML: 14.7�4.7

FESþML: 13.4�4.2

5.6

4.6

1 (�2.3 to 4.5) .728

ML vs ROBþML ML: 9.1�2.6

ROBþML: 8.3�4.3

ML: 14.7�4.7

ROBþML: 12.0�4.1

5.6

3.7

1.9 (�1.4 to 5.4) .340

ROBþML vs FESþML ROBþML: 8.3�4.3

FESþML: 8.8�3.5

ROBþML: 12.0�4.1

FESþML: 13.4�4.2

3.7

4.6

0.9 (�2.4 to 4.2) .777

NOTE. Values are mean � SD or as otherwise indicated.

Abbreviations: CI, confidence interval; FESþML, FES plus ML group; ML, ML group; ROBþML, robotics plus ML group.
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scores, were less than or equal to twice the minimum value for
clinically important improvement. The 2 individual participant
change scores, which were the smallest, were in the robotics
group plus ML group (AMAT-F, .37 point; AMAT W/HeF:
.26 point).

Descriptive statistics for the FM coordination scale

Descriptive statistics for the FM coordination measure provide
some additional insight into the level of clinically significant
change for the subjects in each of the treatment groups. In the
robotics plus ML and FES plus ML groups there were 75% and
92% of subjects, respectively, with a clinically significant gain in
coordination impairment (�4.25 points on the FM coordination

scale). For the ML alone group, 100% of subjects were equal to or
beyond a clinically significant gain. No subjects in the study
worsened. Highest FM gain score for a participant in each group
was: FES plus ML (25 points); robotics plus ML (15 points); and
ML alone (18 points).

Discussion

Direct comparison of shoulder/elbow robotics,
wrist/hand FES, and ML

To our knowledge, this is the first study of chronic stroke sur-
vivors making a comparison of robotics and FES and a direct
comparison of either technology with intensive ML. We found
no significant difference among the 3 groups in terms of treat-
ment response, according to a measure of 13 complex functional
tasks and an impairment measure of joint coordination. This
could have been because all 3 groups received treatment that was
based on ML principles (eg, as close to normative practice as is
possible, focused attention on the task, high number of daily
practice repetitions of motor task components, whole-task
practice of functionally meaningful tasks, and generalization of
movement component practice to >1 type of whole-task prac-
tice). In preliminary work, we reported that emphasis of shoul-
der/elbow robotics treatment resulted in significantly greater
gains in AMAT S/E versus treatment with FES emphasis for the
wrist/hand. We also found the converse; that is, emphasis of
wrist/hand FES treatment resulted in significantly greater gain in
AMAT W/H versus treatment with emphasis on shoulder/elbow
robotics.31 However, that sample size was very small (nZ6 and
nZ6, respectively).31 The current results did not bear out our
findings from that preliminary work. Because all 3 groups had
the benefit of comprehensive coordination training, any unique
advantage of either robotics or FES could have been superseded
by the importance of the general framework and principles of
treatment. It could be that the hours of ML without the tech-
nologies served to consolidate newly learned joint coordination
that was gained through the use of either robotics or FES.
Alternatively, a larger sample size may show a significant group
difference.

Table 5 Within-group gains in impaired coordination (FM) for each of the 3 treatment groups

Treatment

Group Coordination Measure

Pretreatment

(points)

Posttreatment

(points)

Median Gain

Score (95% CI)

(points) P

Mean Gain

Score

ML FM 23.6�5.8 33.5�8.3 9 (7.5e12.5) .003* 11

FM scale for shoulders/elbows 12.7�2.9 16.4�3.9 3.5 (2.5e4.5) .003* 4

FM scale for wrists/hands 9.1�2.6 14.7�4.7 5 (4.0e7.5) .003* 6

FESþML FM 23.5�6.5 32.3�7.9 8 (5.5e12) .002* 10

FM scale for shoulders/elbows 12.7�3.5 16.5�3.9 4 (2.0e6.0) .005* 4

FM scale for wrists/hands 8.8�3.5 13.4�4.2 5 (2.0e7.0) .003* 5

ROBþML FM 23.6�5.9 31.3�6.2 7.8 (4.5e11) .003* 8

FM scale for shoulders/elbows 12.9�1.9 16.6�2.5 3.5 (2.5e5.0) .002* 3

FM scale for wrists/hands 8.3�4.3 12.0�4.1 4.0 (1.5e5.0) .007* 4

NOTE. Values are mean � SD or as otherwise indicated.

Abbreviations: CI, confidence interval; FESþML, FES plus ML group; ML, ML group; ROBþML, robotics plus ML group.

* Significant according to adjusted P value.

Table 6 AMAT-Function ordinal measure descriptive statistics

showing clinically significant change scores*

Treatment Group Pretreatment Posttreatment

Change

Score*

a. AMAT function

measure

ML 1.82�0.48 2.30�0.77 0.48�0.34

FESþML 1.78�0.53 2.22�0.62 0.44�0.24

ROBþML 1.75�0.60 2.13�0.56 0.37�0.25

b. AMAT S/E function

measure

ML 2.12�0.53 2.55�0.67 0.43�0.23

FESþML 2.04�0.52 2.47�0.56 0.42�0.35

ROBþML 2.00�0.57 2.44�0.42 0.44�0.30

c. AMAT W/H function

measure

ML 1.37�0.57 1.89�0.93 0.53�0.61

FESþML 1.42�0.67 1.92�0.71 0.50�0.27

ROBþML 1.35�0.73 1.60�0.82 0.26�0.21

NOTE. Values are mean � SD.

Abbreviations: FESþML, FES plus ML group; ML, ML group; ROBþML,

robotics plus ML group.

* Clinically significant improvement is >.21 points.
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Considerations of extent of recovery, level of
impairment, and treatment duration/intensity for
severely impaired chronic stroke survivors

This study contributes to the literature in the extent of improve-
ment that was shown in the FM joint coordination measure for all
3 groups of more severely involved participants in the chronic
phase (>1y after stroke). In our consideration of the literature
here, we are focusing on studies of others that enrolled stroke
survivors at �6 months poststroke because some have reported
spontaneous or endogenous recovery up to 3 to 6 months after
stroke, which could confound a study of group difference.

Contrasting response to treatment for the less impaired
subjects in other studies versus the more impaired subjects in
the current work
Our study cohort was in the severely impaired category (baseline
upper-limb motor FM score �36 points). Even still, compared with
the work of others for mild to moderately impaired stroke survivors,
the gain scores in our study of the severely impaired were either
comparable (robotics plus ML group), higher (ML alone group), or
almost twice as high (FES plus ML group) as that reported for the
less impaired. For example, for mild to moderately impaired chronic
stroke survivors, FM gains were reported in response to treatment as
follows. In robotics therapy, gains reported ranged from 3.36 to 9
points.13,39,40 In FES therapy, a 5-point gainwas reported.41 InMLor
exercise, gains of 6 to 8 points were reported.5,7,10,42,43 In contrast
with those studies of lesser impaired individuals, the current study
focused on severely impaired stroke survivors and yielded the
following results for FM mean gains: the robotics plus ML group
yielded 8 points, the FES plus ML group yielded 9 points, and the
ML alone group yielded 11 points. In terms of clinically important
difference, other studies18 have suggested that the estimated clini-
cally important difference for the upper-extremity FM coordination
scale ranges from 4.25 to 7.25 points in scores. Our results for all 3
groups were beyond those values for the severely impaired. In
addition, our gain scores for the AMAT-F scale (see table 6) were
more than twice the clinically significant value of .21 point for the
ML alone and FES plus ML groups and were greater than clinically
significant for the robotics plus ML group.

Potential effect of treatment intensity (number of sessions,
hours/session)
Emerging empirical evidence is supporting long-held clinical obser-
vation; that is, for recovery of persistent discoordination after stroke,
many hours of specifically formulated practice are required.24,29,44,45

The current study included intensive practice of coordinated tasks (5h/
session, 60 sessions); this treatment intensity may help to explain the
larger gains reported here in coordination and function for these
severely involved stroke survivors. Although Kraft et al20 studied only
6 subjects in its FES group, they also provided 3 months of treatment,
which may explain their high FM mean gain (8 points).

For our other 2 treatment groups (robotics plus ML and ML
alone), treatment intensity may also explain gains that were greater
for our severely impaired individuals than that reported by other
researchers for severely impaired stroke survivors. For example, for
severely impaired stroke survivors, others reported FM gains in
response to robotics ranging only from 1.2 to 5 points,15,46-48 and
ML alone was reported to have produced only a 4-point FM gain in
46 participants who were more severely impaired.15 In the current
study, more hours of treatment were provided than for these cited
studies. Given the results reported here (robotics plus ML group:

FM gain of 8; ML alone: FM gain of 11), it is reasonable to
consider that greater treatment intensity is needed for the more
severely impaired using those 2 types of interventions (ML alone or
robotics plus ML groups) to achieve the greater FM score gains.

The current clinical practice milieu prevents the provision of
long-duration, high-intensity treatment; therefore, this new infor-
mation is an important contribution to the literature. One reason for
the lack of provision of long-duration interventions in standard
clinical care is the out-of-date belief that nomore recovery can occur
after 3 to 6 months poststroke. In contrast with these inaccurate
beliefs, our results are consistent with others who have demonstrated
the possibility of motor recovery beyond that time period, through
the application of a variety of treatment methods.3,4,13-17,19,40,43,46-57

Functional task improvement

Although many research studies report significant gains in impair-
ment, there is less information available regarding the recovery of
actual functional tasks in response to experimental interventions,
according to a homogenous measure of complex functional task
performance (ie, everyday functional tasks). In the current work, the
statistically significant improvement within each group for the
AMAT (13 complex function tasks) can be explained in a number of
ways. First, the high gain in the FM score in all 3 groups may have
been sufficiently robust to produce a significant improvement in a
measure of 13 actual complex function tasks. Second, the purposeful
application of fundamental ML principles could explain both the
relatively high gains in coordination (FM score) and AMAT gains.
Third, the protocol was specific in practice of joint movement
components within the context of actual task practice. (supplemental
video S1 shows recovery of coordination and functional capability;
available online only at http://www.archives-pmr.org/.)

Patient group delivery of intensive and
long-duration intervention

We found that it was feasible to deliver the study protocol using a
group treatment method (1:3 ratio of therapist to patients). The
relatively high gain in FM scores for all 3 groups could serve as
evidence to support the feasibility of the 1:3 therapist to patient
ratio. According to the work of others58,59 and our study thera-
pists’ reports, the group treatment paradigm was more reasonably
feasible with the use of the robotics or FES technologies because
these practice-assist devices could be quickly set up in a manner
enabling some independent practice, while the therapist could
focus on other participants. This allowed a more calm therapeutic
setting and a more satisfying work situation for the therapist.

Cost considerations

We calculated the cost of each of the 3 treatment protocols in this
study. The following assumptionswere used: therapist cost ($98,000,
which is the annual salary for an experienced therapist inOhiowhere
the studywas conducted; source: Department ofVeteransAffairs and
additional local hospital); shoulder/elbow clinical level robot cost
($89,000) and 5-year robot life; annual robot warranty and mainte-
nance ($8000; source: robot distributing company); and FES cost for
a 4-channel table top and 2-channel portable system ($4000), with a
5-year equipment life. We used the facts of our protocol (number of
visits; duration of sessions for use of each piece of equipment and
ML alone; and a ratio of 1:3, therapist to patient). Our calculations
yielded the following costs per patient for the entire treatment pro-
tocol: ML alone ($4570), FES plus ML ($4604), and robotics plus
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ML ($5686). These costs are in the ballpark in comparison with the
calculations of others15; however, our treatment was considerably
longer, the cost of our robot was significantly less because we used
only 1 type of robot, and the robot cost is for a clinical robot. OurML
alone protocol was less expense than the robotics plus ML protocol
by $1116 and less than the FES plus ML protocol by $34. Therefore,
if a cost differential of approximately $1000 per patient is considered
important, then the FES plus ML protocol and/or the ML alone
protocol would be preferable.

Study limitations

There were a number of study limitations. First, the sample sizes per
group were 11, 12, and 12, respectively. Although there was no
significant difference and no indication of a trend in group differ-
ence, a larger sample size might have shown group differences.
Second, this was a research trial. To determine whether the 1:3 ratio
of therapist to patients is practical and beneficial in clinical practice,
this treatment paradigm would require testing in a clinical environ-
ment. Third, in this study, FES and robotics were differentially tar-
geted to either wrist/hand or shoulder/elbow, respectively; therefore,
this study did not make a direct comparison of either robotics versus
FES for shoulder/elbow or robotics versus FES for wrist/hand.
Rather, this study design was selected and funded based on 2 as-
sumptions. The first assumption was that FES may be preferable for
wrist/hand intervention because it can be applied quickly and easily
to wrist/hand flexors and extensors, and notably, it provides practice
of an actual muscle contraction. In contrast, robotics can encourage
and enable less therapeutic passive participation. The second
assumption was that robotics may be preferable for shoulder/elbow
intervention because it can be quickly and easily set up to support and
guide movement of the complex shoulder/elbow movement com-
ponents composing the reach task. In contrast, FES would have
required time-consuming application of multiple electrodes for
scapular and limb muscles and control of complex precision timing
of multiple muscle activations for the greatest effectiveness.

Fourth, because of limitations in resources, it was not feasible
to acquire follow-up data. However, others have documented good
maintenance of gains after ML, robotics, and FES. For severely
impaired individuals, robotics,15 ML (intensive therapy15), and
FES60 produced gains in response to treatment that were main-
tained at follow-up. With these reported maintenance gains taken
together, along with our high gains after treatment, it is reasonable
to consider that gains may have been maintained in the current
study. However, further study is required to quantitatively
compare follow-up maintenance across groups.

Conclusions

Severely impaired chronic stroke subjects (>1y) with persistent
upper-extremity dysfunction can make clinically significant gains in
joint movement coordination and functional task performance in
response to the 3 tested interventions (ML, combined robotics and
ML, combined FES and ML) in an intensive and long-duration
intervention. There was no difference in treatment response across
the 3 intervention groups according to measures of joint movement
coordination or complex functional task performance. It was feasible
in the research laboratory to deliver effective group treatment for
severely impaired stroke survivors in a 1:3 (therapist/patient) ratio.
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Appendix 2 Examples of Functional Tasks
Practiced During Training Sessions

� Stir food in a bowl.
� Place objects in kitchen cupboard.
� Carry objects (unilateral and bilateral).
� Write with pen/pencil.
� Type at computer.
� Sweep with broom.
� Throw ball.
� Swing a golf club.
� Sand wood.
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32. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-

stroke hemiplegic patient. 1. A method for evaluation of physical

performance. Scand J Rehabil Med 1975;7:13-31.

33. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer

assessment of sensorimotor recovery following cerebrovascular ac-

cident. Phys Ther 1983;63:1606-10.

34. Harvey RL, Winstein CJ; Everest Trial Group. Design for the everest

randomized trial of cortical stimulation and rehabilitation for arm

function following stroke. Neurorehabil Neural Repair 2009;23:

32-44.

35. Page SJ, Levin L, Hermann V, Dunning K, Levine P. Longer versus

shorter daily durations of electrical stimulation during task-specific

practice in moderately impaired stroke. Arch Phys Med Rehabil

2012;93:200-6.

Recovery of arm function in chronic stroke 989

www.archives-pmr.org

http://refhub.elsevier.com/S0003-9993(14)01228-3/sref1
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref1
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref1
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref2
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref2
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref2
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref3
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref3
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref3
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref4
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref4
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref4
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref4
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref5
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref5
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref5
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref5
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref6
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref6
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref6
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref6
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref7
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref7
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref7
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref7
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref8
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref8
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref8
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref8
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref9
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref9
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref9
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref10
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref10
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref10
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref10
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref11
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref11
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref11
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref12
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref12
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref12
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref13
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref13
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref13
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref14
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref14
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref14
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref14
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref15
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref15
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref15
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref16
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref16
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref16
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref17
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref17
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref17
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref17
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref17
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref18
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref18
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref18
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref19
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref19
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref19
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref20
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref20
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref20
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref21
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref21
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref21
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref22
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref22
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref22
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref23
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref23
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref23
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref24
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref24
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref24
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref25
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref25
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref25
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref26
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref26
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref26
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref27
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref27
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref27
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref28
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref28
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref28
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref29
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref29
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref29
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref30
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref30
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref30
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref30
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref31
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref31
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref31
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref32
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref32
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref32
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref33
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref33
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref33
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref34
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref34
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref34
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref34
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref35
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref35
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref35
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref35
http://www.archives-pmr.org


36. Chae J, Labatia I, Yang G. Upper limb motor function in hemi-

paresis: concurrent validity of the Arm Motor Ability test. Am J Phys

Med Rehabil 2003;82:1-8.

37. Miller RG Jr. Simultaneous statistical inference. New York: Springer-

Verlag; 1981.

38. Holm S. A simple sequentially rejective Bonferroni test procedure.

Scand J Stat 1979;6:65-70.

39. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC.

Robot-based hand motor therapy after stroke. Brain 2008;131:

425-37.

40. Hu XL, Tong KY, Song R, Zheng XJ, Leung WW. A comparison

between electromyography-driven robot and passive motion device

on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair

2009;23:837-46.

41. de Kroon JR, Ijzerman MJ. Electrical stimulation of the upper ex-

tremity in stroke: cyclic versus EMG-triggered stimulation. Clin

Rehabil 2008;22:690-7.

42. Lin KC, Wu CY, Liu JS, Chen YT, Hsu CJ. Constraint-induced

therapy versus dose-matched control intervention to improve motor

ability, basic/extended daily functions, and quality of life in stroke.

Neurorehabil Neural Repair 2009;23:160-5.

43. Page SJ, Levine P, Khoury JC. Modified constraint-induced therapy

combined with mental practice: thinking through better motor out-

comes. Stroke 2009;40:551-4.

44. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to

explore dose-response relationships in stroke rehabilitation. Stroke

2014;45:2053-8.

45. Daly JJ, Ruff RL. Evidence-based construction and measurement of

efficacious gait and upper limb functional interventions after stroke; a

case for combination interventions. Scientific World 2007;7:2031-45.

46. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M.

Robot-assisted movement training compared with conventional

therapy techniques for the rehabilitation of upper-limb motor func-

tion after stroke. Arch Phys Med Rehabil 2002;83:952-9.

47. Finley MA, Fasoli SE, Dipietro L, et al. Short-duration robotic

therapy in stroke patients with severe upper-limb motor impairment.

J Rehabil Res Dev 2005;42:683-92.

48. Fazekas G, Horvath M, Troznai T, Toth A. Robot-mediated upper

limb physiotherapy for patients with spastic hemiparesis: a pre-

liminary study. J Rehabil Med 2007;39:580-2.

49. Boyd LA, Winstein CJ. Impact of explicit information on implicit

motor-sequence learning following middle cerebral artery stroke.

Phys Ther 2003;83:976-89.

50. Piron L, Turolla A, Agostini M, et al. Motor learning principles for

rehabilitation: a pilot randomized controlled study in post stroke

patients. Neurorehabil Neural Repair 2010;24:501-8.

51. Hanlon RE. Motor learning following unilateral stroke. Arch Phys

Med Rehabil 1996;77:811-5.

52. Yen JG, Wang RY, Chen HH, Hong CT. Effectiveness of modified

constraint-induced movement therapy on upper limb function in

stroke subjects. Acta Neurol Taiwan 2005;14:16-20.

53. Byl N, Roderick J, Mohamed O, et al. Effectiveness of sensory and

motor rehabilitation of the upper limb following the principles of

neuroplasticity: patients stable poststroke. Neurorehabil Neural

Repair 2003;17:176-91.

54. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C.

Overview of clinical trials with MIT-MANUS: a robot-aided neuro-

rehabilitation facility. Technol Health Care 1999;7:419-23.

55. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle acti-

vation patterns after retraining of reaching movements with the

MIME robotic system in subjects with post-stroke hemiparesis. IEEE

Trans Neural Syst Rehabil Eng 2004;12:186-94.

56. Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT.

Robot-aided sensorimotor arm training improves outcome in patients

with chronic stroke. Neurology 2003;61:1604-7.

57. Lo AC, Guarino P, Krebs HI, et al. Multicenter randomized trial of

robot-assisted rehabilitation for chronic stroke: methods and entry

characteristics for VA ROBOTICS. Neurorehabil Neural Repair

2009;23:775-83.

58. Kwakkel G, Kollen B, Krebs H. Effects of robot-assisted therapy on

upper limb recovery after stroke: a systematic review. Neurorehabil

Neural Repair 2009;22:111-21.

59. Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-

assisted therapy on stroke rehabilitation in upper limbs: systematic

review and meta-analysis of the literature. J Rehabil Res Dev 2012;

49:479-96.

60. Thorsen R, Cortesi M, Jonsdottir J, et al. Myoelectrically driven

functional electrical stimulation may increase motor recovery of

upper limb in poststroke subjects: a randomized controlled pilot

study. J Rehabil Res Dev 2013;50:785-94.

990 J. McCabe et al

www.archives-pmr.org

http://refhub.elsevier.com/S0003-9993(14)01228-3/sref36
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref36
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref36
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref37
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref37
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref38
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref38
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref39
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref39
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref39
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref40
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref40
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref40
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref40
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref41
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref41
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref41
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref42
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref42
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref42
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref42
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref43
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref43
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref43
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref44
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref44
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref44
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref45
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref45
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref45
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref46
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref46
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref46
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref46
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref47
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref47
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref47
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref48
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref48
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref48
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref49
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref49
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref49
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref50
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref50
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref50
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref51
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref51
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref52
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref52
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref52
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref53
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref53
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref53
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref53
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref54
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref54
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref54
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref55
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref55
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref55
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref55
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref56
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref56
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref56
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref57
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref57
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref57
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref57
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref58
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref58
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref58
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref59
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref59
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref59
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref59
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref60
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref60
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref60
http://refhub.elsevier.com/S0003-9993(14)01228-3/sref60
http://www.archives-pmr.org

	Comparison of Robotics, Functional Electrical Stimulation, and Motor Learning Methods for Treatment of Persistent Upper Extremity Dysfunction After Stroke: A Randomized Controlled Trial
	Repository Citation

	Comparison of Robotics, Functional Electrical Stimulation, and Motor Learning Methods for Treatment of Persistent Upper Ext ...
	Methods
	Study design
	Participants
	Technology
	Interventions
	Primary outcome measure: Arm Motor Ability Test
	Secondary measures
	Statistical analyses

	Results
	AMAT measure
	Group comparison
	Within-group improvement

	Coordination impairment secondary measures
	Group comparison
	Within-group improvement

	Descriptive statistics for the AMAT-F scale
	Descriptive statistics for the FM coordination scale

	Discussion
	Direct comparison of shoulder/elbow robotics, wrist/hand FES, and ML
	Considerations of extent of recovery, level of impairment, and treatment duration/intensity for severely impaired chronic s ...
	Contrasting response to treatment for the less impaired subjects in other studies versus the more impaired subjects in the  ...
	Potential effect of treatment intensity (number of sessions, hours/session)

	Functional task improvement
	Patient group delivery of intensive and long-duration intervention
	Cost considerations
	Study limitations

	Conclusions
	Suppliers
	Appendix 1. Appendix 1Upper-Limb Training Protocol: Treatment Progression Hierarchy for Coordinated Movement Practice
	Appendix 2. Appendix 2Examples of Functional Tasks Practiced During Training Sessions•Stir food in a bowl.•Place objects in kitchen cup ...
	References


