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AN ASSESSMENT OF THE EVOLUTIONARY STABILITY OF DISTYLY IN 

HEDYOTIS CAERULEA (RUBIACEAE) 

DENNIS ARCHIE SAMPSON 

ABSTRACT 

Distylous species of flowers possess two distinct floral morphs that are generally 

found in equal numbers in naturally occurring populations.  The flower form that has a 

relatively long style is called a “pin”; the form with a short style is a “thrum.”  Within the 

distylous mating system, selfing and intramorph mating are prevented due to the spatial 

separation of stigmas and anthers and by a self-incompatibility system that is inherited 

along with the dimorphic floral structure and ancillary polymorphisms.   However, a 

breakdown of distyly has been documented in several families, either through the 

development of completely separate sexes (dioecy), or, more frequently, through the 

development of monomorphy and self-fertile homostyles.   

Here several populations of Hedyotis. caerulea, a perennial spring-flowering herb 

native to eastern North America, were surveyed in the Cleveland Metroparks and 

sampled to investigate the degree of distyly present and to detect any movement of the 

mating system towards selfing or dioecy.  Morphometric analysis of the variation within 

and across populations of stigma height and anther height indicate that this species 

exhibits reciprocal herkogamy. Nearly all populations surveyed were isoplethic (i.e., 

contained a morph ratio of pins to thrums that was not different from 1:1), which is found 

when the species’ mating system promotes intermorph pollen transfer (dissortative 
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mating) with nearly 100% outcrossing.  There was no indication that the self-

incompatibility system has broken down with no movement towards homostyly. 

Variation was present, however, in these primary traits as well as in stigma length, 

corolla tube width, pollen diameter, pollen count, dry weight, and seed set of the flowers 

collected among populations. Several ancillary floral traits, including corolla tube shape, 

pollen diameter, and length of stigmatic papilla, likewise varied.    Across populations, 

the two morphs invested a similar amount of biomass in the production of pollen and 

seed, suggesting that each morph had equal male and female fitness with no movement 

towards dioecy.  Given the significant degree of variation found in each morphometric 

analysis, extensive modification is possible were it favored by selection. Therefore the 

distylous mating system in H. caerulea appears to be a stable one.  

Finally, the development of distyly was investigated by contrasting growth of the 

flower buds and the heights of anthers and stigmas within the bud prior to the flower 

opening. Anthers of the two morphs grew at different rates throughout development of 

the bud, but growth patterns of the stigma were more complex.  Stylar growth began only 

slightly slower in thrum flowers than in pins, but growth decreased over time resulting in 

a curvilinear growth pattern for thrums.  
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CHAPTER I 

INTRODUCTION 

 

      The evolution of sex has been difficult to explain from a theoretical perspective.  

Charles Darwin and R. A. Fisher, pioneers in evolutionary theory, tackled the problem, 

and progress since has involved a synthesis of ideas from classical genetics, population 

genetics,  molecular genetics, evolutionary ecology, behavioral ecology, and comparative 

biology (Charlesworth 2006).  Sex in flowering plants is further complicated by three 

features of their reproductive biology.  First, their structural simplicity allows most plants 

to reproduce asexually, without the fusion of gametes (Richards 1997).   A plant with its 

own distinctive genotype (genet) can produce many physiologically independent 

individuals (ramets) through clonal growth, or vegetative reproduction.  While most plant 

biologists do not consider clonal growth actual reproduction, some species are able to 

produce seeds parthenogenetically (apomixis).  Second, the vast majority (approximately 

95%) of flowering plants are hermaphroditic; i.e., they have both male and female sex 

organs (Richards 1997).  Sperm cells develop within pollen grains in the male 

reproductive organs (anthers), and ovules develop within the female reproductive 

apparatus (the pistil).  A flower, therefore, can function as both the maternal and paternal 
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parent when it reproduces.  Further, if pollen is transferred from the anthers to the pistil 

within a single flower, self-fertilization may follow.  In other words, a flower can be its 

own sex partner (Richards 1997).  Third, since plants are sessile in any single generation, 

they cannot actively choose their sexual partners.  In order to mate with other individuals, 

flowers rely upon vectors (such as insects, birds, wind, or water) to deliver pollen to the 

pistils of their potential sex partners (outbreeding).  Since individual flowers typically 

produce vast quantities of pollen and multiple ovules, sex among plants can be extremely 

promiscuous.  Individual plants will mate with a number of sexual partners chosen by the 

appropriate pollinators, and consequently, it is difficult to understand the mating system 

of a plant species without consideration of how the pollinators involved in that system 

spread gametes among mates (Richards 1997).  These three features of angiosperm 

biology have given flowering plants a range of reproductive options, based upon three 

basic mechanisms of reproduction: apomixis, selfing, and outbreeding.  Each of these 

reproductive options carries its own costs and benefits.   

 Apomixis increases a population’s biomass without the expenditure of energy 

required to reproduce sexually.  From an evolutionary perspective, the reproductive 

assurance of asexual reproduction (apomixis) constantly challenges the greater genetic 

variability and fitness afforded by sexual reproduction in flowering plants.   In fact, the 

transition to complete asexuality is possible (e.g. Taraxacum officinale, a completely 

apomictic species of dandelion).   However, since plants produced asexually are 

genetically identical to their parent plants, apomixis greatly limits the creation of new 

genetic variation upon which natural selection can act in the face of changing 

environmental conditions.   
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 As in asexual reproduction, self-fertilization allows an isolated flower to 

reproduce independently with little expenditure of energy.  However, in many species 

self-fertilized flowers produce fewer seeds, and the seeds produced are of lower quality 

than when outcrossed; i.e., they exhibit inbreeding depression.  Darwin (1876) studied the 

consequences of inbreeding by quantifying reproductive success over several generations 

in a number of species (e.g. Digitalis purpurea, Zea mays, and Ipomeoea purpurea) and 

published his results in his book, The Effects of Cross and Self Fertilisation in the 

Vegetable Kingdom.  He found that the progeny of cross-fertilized plants were generally 

superior in performance when compared with those self-fertilized, and he concluded that 

avoidance of self-fertilization has been an important selective pressure in plant evolution.  

Since Darwin, the consequences of inbreeding depression in plant populations have been 

investigated intensely (as reviewed in Wright 1977; Charlesworth and Charlesworth 

1993; Thornhill 1993; Keller and Waller 2002).  However, while outbreeding avoids 

inbreeding depression, it carries greater energy costs.  Compared with species that self-

fertilize regularly, obligate outcrossers must produce a greater amount of biomass to 

create reproductive structures (i.e., flowers, pollen, and nectar), much of which provides 

no return with respect to increasing offspring numbers to the next generation.  Perhaps a 

greater consequence of relying exclusively on outcrossing is a dependence on pollinators.  

If the number of pollinators dwindles, so might the opportunity for sexual reproduction in 

any pollinator-dependent plant species.  Such a scenario could lead to diminished seed 

set, diminished population size, and, to the extreme, possible extinction.  Thus, 

reproduction in obligate outcrossers is not as assured as it is with selfing and apomixis. 
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 The majority of plant species predominately outcross, and most rarely, if ever, 

self-fertilize.  While some 40% of plant taxa self at various times (Richards 1997), only 

20–25% of plant taxa self predominately (Barrett and Eckert 1990).    For example, most 

of the world's most important crops (e.g., peas, rice, beans, corn, and wheat) are primarily 

self-fertilizing (Brown 1990).  Since both selfing and outcrossing have potential benefits 

and costs that vary relative to environmental conditions and the availability of pollinators, 

it is not surprising that many flowering plants employ a reproductive strategy called 

mixed mating that includes selfing and outcrossing in varying proportions.  In some 

species, the percentage of offspring created by outcrossing is very low, while in others it 

exceeds 50 %.  Halliburton (2004, p. 287) quantified the theoretical relationship between 

selfing and inbreeding with a recursion equation for the inbreeding coefficient in a 

system with mixed self-fertilization and random mating as 

f t + 1 = ½ S (1 + f t ) 

where f is the inbreeding coefficient, S is the proportion of self-fertilization, and t is 

generation.  Thus, this system would promote outcrossing by minimizing S. 

 However, in a pair of controversial papers (one theoretical, the other empirical), 

Lande and Schemske (1985) and Schemske and Lande (1985) argued that evolutionary 

stability can only be reached in a system in which there is either complete outcrossing or 

complete selfing.  They reasoned that if even partial selfing occurs in a population, 

recessive deleterious alleles would be purged rapidly.  They supported their theoretical 

argument with a survey of 55 plant species in which they analyzed estimates of the 

proportion of seeds produced through outcrossing for each taxon.  They found a bimodal 

frequency distribution which they argued was consistent with their prediction for only 
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two stable endpoints of mating system evolution: predominant outcrossing with strong 

inbreeding depression and predominant selfing with weak inbreeding depression.  

However, Holsinger (1992) developed a mathematical model that better reflected the 

empirical evidence, and he showed that mixed mating strategies may often be 

evolutionarily stable. 

 The growing body of empirical evidence collected since 1985 has contradicted 

Lande and Schemske’s position.  Numerous plant species with mixed mating systems that 

appear to be evolutionarily stable have been identified (Waller 1986; Aide 1986; Barrett 

and Eckert 1990).  Species with a genuine mixed mating system can achieve intermediate 

and often variable amounts of outcrossing through a mixture of self- and cross-pollination 

at various levels.  For example, in plants such as Viola canina (Darwin 1877), Impatiens 

capensis (Schemske 1978), and Laminium amplexicaule  (Lord 1979, 1982), individuals 

produce developmentally distinct self-pollinated (cleistogamous) and open-pollinated 

(chasmogamous) flowers that clearly maintain an intermediate selfing rate.  Further, 

when Goodwillie et al. (2005) expanded the Schemske and Lande (1985) survey to 

include 345 species in 78 families, they did not observe the bimodal distribution 

identified in the original survey, presumably because the number of predominantly 

selfing taxa had been overestimated in the earlier survey. 

 Characterization and classification of plant mating systems remains controversial.  

For experimental purposes Brown (1990) has divided plant species into five classes of 

mating: (1) predominately outcrossing (i.e., self-fertilization rate, s < 0.05); (2) 

predominantly self-fertilizing (i.e., outcrossing rate, t  < 0.10 (Fryxell 1957); (3) mixed 

selfing and outcrossing; (4) partially apomictic; and (5) partial selfing of the 
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gametophytes.  However, Jain (1984) argued that plant mating systems should be thought 

of as a continuum of possibilities rather than of strict types.     

  While little is understood about how plants “know” when to self and when to 

outcross, several strategies have evolved in flowers that reduce the likelihood of self-

pollination, including dichogamy (maturation of male and female reproductive organs at 

different times), herkogamy (spatial separation of reproductive organs), and dioecy 

(complete separation of reproductive organs on male and female flowers).  Once 

pollination has occurred, many flowers are able to prevent self-fertilization by rejecting 

pollen produced by the same flower or individual; these flowers are said to express self-

incompatibility (SI). 

Self-Incompatibility 

 De Nettanourt (1977) defined SI as the “inability of a fertile hermaphrodite seed 

plant to produce a zygote after self-pollination."  SI is a genetically controlled recognition 

and rejection process that biochemically prevents self-fertilization.  In a “compatible” 

pollination, pollen grains (which contain sperm cells) land on and adhere to the stigma 

(the distal end of the pistil).  The pollen grains hydrate and germinate, forming a pollen 

tube (the sperm-delivery apparatus), which grows through the stigma and style (a tube 

between the stigma and the ovary of the pistil) in a tract of transmitting tissue until it 

reaches the ovary where an ovule is fertilized.  When a flower is selfed, however, the 

pollination is “incompatible” because the pollen tube either fails to germinate or its 

growth is aborted somewhere along its path to the ovary.  Thus, when the pollen and 

pistil are of the same type, interactions between the pistil of the maternal plant and the 

pollen from the paternal plant result in the inhibition of pollen tube growth.  
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 A variety of SI systems have evolved in flowering plants that use distinctive 

mechanisms for both pollen recognition and pollen tube inhibition.  Since different SI 

systems are found in various plant families, SI is believed to have evolved independently 

multiple times (Nasrallah 2005).   

 SI systems consist of two phases: a recognition phase, in which pollen is 

identified as “self” or “non-self”, and a response phase, in which self-pollen is rejected.  

The recognition phase is regulated by a linked cluster of genes collectively known as the 

"S-locus".  Individual plants that share recognition haplotypes at the S-locus are 

incapable of successfully producing offspring (Richards 1997; Busch and Schoen 2008) 

because their pollen is rejected during the response phase.  Pollen rejection is triggered 

during recognition phase and is regulated by genes outside the S-locus.   While all SI 

systems share these two phases, the functions are accomplished by significantly different 

mechanisms.  In fact two drastically different genetic recognition systems and three 

distinct response mechanisms have been characterized. 

Genetic Systems of Control of SI 

 Genetic control of pollen recognition may be gametophytic or sporophytic.  In 

gametophytic systems, the incompatibility type of a pollen grain is determined by its own 

genotype.  In sporophytic systems the incompatibility type of a pollen grain depends on 

the genotype of the plant that produced the pollen (Sims 1993).   

 Gametophytic self-incompatibility (GSI), found in the Solanaceae (nightshade 

and tobacco family), the Rosaceae (rose family), and the Papaveraceae (poppy family), is 

more widespread than sporophytic self-incompatibility (SSI) (Sims 1993).  In GSI, if an 

individual plant is heterozygous for a gene S, the cells in the tissues that make up the 
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pistil are S1S2.  Each sperm cell receives one of the two S haplotypes, either S1 or S2.  

After pollination, the pistil responds to pollen in accordance with the genotype of the 

pollen.  If neither S haplotype in the genotype of the pistil matches an S haplotype of the 

pollen, the cross is compatible, a pollen tube is allowed to grow, and an ovule is 

fertilized.  If the S allele of the pollen matches either haplotype of the pistil’s genotype, 

the cross is incompatible, and pollen tube growth is aborted.  The SI reaction arises from 

the gene products of pollen and style, permitting pollen tube growth in cross-pollinations 

and preventing pollen tube growth in self-pollinations (Sims 1993).  By GSI, when a 

flower is selfed, the pollen would always be rejected in plants with a fully functional SI 

system. 

     The second system, sporophytic self-incompatibility (SSI), occurs in the 

Brassicaceae (cabbage family) and the Asteraceae (aster family) (Charlesworth 2000).  In 

SSI, pollen is treated as if it had the genotype of its paternal plant.  Individual plants that 

are heterozygous for gene S would have somatic cells with the genotype S1S2, and 

individual sperm cells with either an S1 or an S2 haplotype.  When these flowers produce 

pollen, they manufacture recognition proteins encoded by both haplotypes and export 

them to the developing pollen walls (Sims 1993).  During pollen-pistil interactions 

following pollination, the pistil responds to pollen as if it had the S1S2 genotype (the same 

as that of the paternal plant).  When the maternal and paternal parents share any S allele 

in common, the pollination is incompatible.  For example, pollen (haplotype S1) from one 

S1S2 parent would be rejected by a pistil with genotype S2S3.  Although the pollen (S1) 

and the pistil (S2S3) do not share a common allele, the pollen carries S2 recognition 
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proteins.  As in GSI, incompatible reactions are characterized by the abortion of pollen 

tube growth.   

Molecular Mechanisms of Pollen Rejection 

 At a molecular level, the SI specificity locus defines self and non-self.  In a pistil 

pollinated by a mixture of pollen grains or tubes, those with non-self genotypes are 

selected to grow while those with self genotypes are inhibited.  Various plant families use 

distinct mechanisms for pollen, which is consistent with phylogenetic evidence that 

suggests that SI has evolved independently multiple times during the diversification of 

flowering plants.  GSI has been intensively studied at the molecular level in the 

Solanaceae (including genera such as Solanum, Lycopersicon, Petunia, Nicotiana and the 

Papaveraceae).  SSI has been studied largely in the Brassicaceae.  Researchers have 

identified three different molecular mechanisms of SI to date: the mechanism found in 

the Brassicaceae (which is under sporophytic control), the mechanism found in the 

Solanaceae (which is under gametophytic control), and the mechanism found in the 

Papaveraceae (which is also under gametophytic control).  Since SI in a large number of 

plant families has not yet been studied, additional mechanisms may exist. 

 In the Brassicaceae, the SI mechanism disrupts hydration and germination of  

incompatible pollen grains within minutes of their contact with the stigma.  The S-locus 

codes for two highly polymorphic proteins (Kachroo et al 2002), a type of surface 

receptor on the pistil cells and a ligand released by the pollen grains.  The receptor is the 

S-locus receptor kinase (SRK), a large membrane-bound receptor kinase found on the 

plasma membranes of the papilla cells on the surface of the pistil (Takayama and Isogai 

2003).   The ligand is a small, soluble protein called the S-locus cysteine-rich (SCR) 

 
9 
 

 
 

 



                                                                                                     

protein (Schopfer 1999), alternately referred to as SP11 (Takayama et al. 2000), which is 

released from the surface of the pollen grain when it comes in contact with a papilla cell.  

Together, SRK and SCR/SP11 form a receptor-ligand pair that determines SI specificity 

in stigma and pollen.  When SCR/SP11 binds to the receptor domain of the SRK of a 

matching S haplotype, the SRK kinase domain is activated (Takayama et al 2001) and an 

intracellular signaling cascade is initiated that results in increased production of proteins 

in the papilla cell wall that prevent further development of the pollen grain or tube (Stone 

et al. 2003). 

 In the Solanaceae (as well as the Scrophulariaceae (snapdragons) and the 

Rosaceae), pollen inhibition is triggered within the pollen tube, rather than within the 

cells of the pistil, and self-pollen tubes are destroyed as they grow within the style. In this 

mechanism, the S-locus codes also for two polymorphic proteins: a ribonuclease secreted 

by the pistil (S-RNase) and an F-box protein (SLF) produced by the pollen (Sijacic et al. 

2004).  S-RNases enter pollen tubes nonselectively and act as cytotoxins, degrading the 

RNA needed for protein translation, and leading to pollen tube inhibition unless they are 

targeted for destruction by SLF through the attachment of ubiquitin.  S-RNases from 

nonmatching S haplotypes are destroyed, leaving S-RNases from matching S haplotypes 

intact and able to inhibit pollen tube growth (Lai et al. 2002). 

 The third mechanism, found in the Papaveraceae, destroys self-pollen tubes as 

well but through a programmed cell death pathway.  The stigma secretes a small 

extracellular chemical signal – a polymorphic glycoprotein encoded by the S-locus – that 

interacts with a receptor on pollen tube surfaces (Thomas and Franklin-Tong 2004).  

While it is clear that a protein made by the pollen is involved, that protein has not been 
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identified as yet.    In this mechanism, self-stigma S proteins cause a rapid increase in 

Ca+2 within growing pollen tubes, characteristic of a programmed cell death (Thomas and 

Franklin-Tong 2004).  As with the two previous mechanisms, SI in the poppy family 

demonstrates a high degree of recognition specificity. 

Heterostyly 

      In populations of some flowering plant species, individuals fall into two or three 

morphologically distinct mating types, which differ in stigma height, anther height and 

several ancillary pollen and stigma polymorphisms (Darwin 1877; Vuilleumier 1967; 

Ganders 1979; Barrett 1992).  This condition is known as distyly when two floral morphs 

exist, tristyly when there are three, and heterostyly when referring to the general 

condition.  The floral morphs coexist at roughly equal frequencies within a population 

(Richards 1997).  The relative positions of anthers and stigmas distinguish one morph 

from another.  In distylous species, one morph is long-styled with short anthers (“pin”), 

and the other is short-styled with long anthers (“thrum”).  An individual plant produces 

either pin flowers or thrum flowers – never both.  Usually the thrum is heterozygous for 

the mating system chromosome Ss, whereas the pin is homozygous ss (Richards 1997).  

The defining feature of heterostylous populations is the arrangement of anthers and 

stigmas at corresponding positions within the corolla tube, also known as reciprocal 

herkogamy (Webb and Lloyd 1986). 

 Early in his work on heterostyly, Darwin (1877) conducted pollination studies in 

the cowslip (Primula veris), a distylous species.  When he transferred pin pollen to thrum 

stigmas and thrum pollen to pin stigmas, the plants produced good seed set.  He 

considered these crosses “legitimate”.  When he self-pollinated pins or thrums, and when 
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he transferred pin pollen to the stigma of a different pin flower or thrum pollen to a 

different thrum flower, the plants produced many fewer seeds.  He called these crosses 

“illegitimate” (see Fig 1.1).  Darwin concluded that the two floral morphs represent two 

distinct mating types that are cross-compatible but incompatible within the same morph.  

He expanded his pollination studies to other heterostylous species, and compiled results 

of such crosses from other researchers, eventually publishing a monograph on the 

subject: The Different Forms of Flowers on Plants of the Same Species (Darwin 1877).  

To a large extent, studies of heterostyly since Darwin have focused on a few taxa (e.g. 

Primula and Lythrum) originally studied by Darwin (1877).  Of these, Primula is the best 

studied group and is often represented in scientific literature as a model system for 

heterostyly (Mast and Conti 2006). 

 Darwin proposed that the reciprocal placement of anthers and stigmas was a 

mechanism to promote cross-pollination between floral morphs.  According to his 

hypothesis, pollinators visiting heterostylous flowers pick up pollen on different parts of 

their bodies, thus promoting cross-pollination transfer between floral morphs.  He further 

proposed that reciprocal herkogamy promotes efficiency in cross-pollination by reducing 

male gamete wastage on incompatible stigmas (Lloyd and Webb 1992a and b).  Darwin’s 

cross-pollination hypothesis has found considerable support by modern researchers 

(Kohn and Barrett 1992; Lloyd and Webb 1992b), and heterostyly is generally described 

as an outcrossing mechanism.  

 While reciprocal herkogamy has been referred to as the “emblem” of heterostyly 

(Dulberger 1992), two additional elements are commonly found in heterostylous species: 

(1) a diallelic, sporophytic self-incompatibility system exists that interrupts pollen tube  
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Fig. 1.1  Legitimate pollination between distylous flowers.  Pollen is transferred from 
anthers to stigmas of equivalent height.  The pin has a long style and short anthers, while 
the thrum has a short style and long anthers.  (Source: Darwin 1877) 
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growth in an illegitimate cross (self or intramorph); and (2) a set of ancillary 

morphological polymorphisms of the stigmas and pollen of the floral morphs.  Taken 

together, these three characteristics are referred to as the “heterostyly syndrome”. 

 While the self-incompatibility system in heterostyles is sporophytic (Dulberger 

1992), pollen rejection in heterostylous species is substantially different from that in 

homostylous species with sporophytic self-incompatibility (Gibbs 1986; Barrett and 

Cruzan 1994).  Homostylous sporophytic self-incompatibility is characterized by pollen 

tube inhibition at a single site (Barrett and Cruzan 1994), but heterostylous sporophytic 

self-incompatibility involves pollen tube inhibition by various mechanisms, including a 

lack of adhesion, hydration, and germination of pollen, an inability of pollen tubes to 

penetrate the stigma surface, and an inhibition of pollen tube growth in the style and 

ovary (Bawa and Beach 1983; Wedderburn and Richards 1990; Dulberger 1992).  In 

many of the species there appears to be a series of barriers that screen for illegitimate 

pollen tubes, none of which are completely successful alone.  Together, however, they 

gradually eliminate illegitimate pollen tubes in a “cascade system” of pollen rejection 

(Shivanna et al. 1981, 1983).   

 The ancillary floral polymorphisms found in heterostyly include variation in 

pollen size, pollen color, pollen sculpturing, stigma shape, size of stigmatic papillae, and 

possession of hairlike projections within the corolla tubes (Ganders 1979; Dulberger 

1992).  The range of these polymorphisms varies among species (Dulberger 1992).  No 

specific list of such characters found in all heterostylous species has been identified 

(Massinga et al. 2005), and the adaptive significance of these characters remains unclear. 
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      The three components of heterostyly are believed to be controlled by a block of 

three tightly-linked loci, sometimes called a “supergene” – a model proposed by Ernst in 

1955 (as cited in Lewis and Jones 1992) to explain the inheritance of distyly in Primula.   

The gene responsible for the mechanism of SI is thought to be linked to the genes 

responsible for reciprocal herkogamy and the ancillary floral polymorphisms (Barrett 

1992; Lewis and Jones 1992).   According to the supergene model, the G locus 

determines characteristics of the pistil (or gynoecium), including style length and the 

pistil’s incompatibility response, P determines pollen size and the pollen’s 

incompatibility response, and A determines anther height. The three dominant alleles at 

each locus are linked and make up the ‘S-allele’ (GPA), while the three recessive alleles 

comprise the ‘s-allele’ (gpa) (Lewis and Jones 1992).  This genetic system is considered 

to be one of the best examples of a coadapted linkage group in plants (Wedderburn and 

Richards 1990).  

Molecular Studies of Heterostyly 

      We know almost nothing about the molecular mechanisms responsible for 

heterostyly (Barrett et al. 2000).  While GSI and homostylous SSI have been studied 

extensively at the molecular level (see reviews by Sims 1993 and Charlesworth et al. 

2005), only a handful of studies have employed molecular techniques to explore 

heterostylous self-incompatibility.   

      The initial studies of heterostyly focused on distylous species of Turnera 

(Turneraceae).  Athanasiou and Shore (1997) found three proteins unique to the styles 

and stigmas of the thrums, and mapped two izozyme loci to a region spanning the distyly 

locus, thus providing molecular evidence for the linkage of the genes for floral 
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polymorphisms and SI.  Later, the same group described a polygalacturonase that 

localized to the style transmitting tissue of thrums of distylous Turnera subulata 

(Athanasiou et al. 2003).  Tamari and Shore (2004) also detected a polygalacturonase 

specific to the thrums of six other distylous species of Turnera.  Khosravi et al. (2004) 

detected a second thrum-specific protein, an alpha-dioxygenase, in five distylous species 

of Turnera.  However, their specific roles in the expression of distyly are yet unknown. 

      The distylous species buckwheat, Fagopyrum esculentum (Polygonaceae) was the 

second heterostylous taxon to be studied at the molecular level.  Miljus-Dukic et al. 

(2004) detected two distinct proteins specific to thrum pistils (as in Turnera).  However, 

he also found a distinct group of proteins in Fagopyrum pin pistils.  While the function of 

these proteins has not yet been demonstrated, the existence of a group of proteins 

suggests that the genes responsible must be either physically linked (which could be 

detected through genetics) or linked by regulating mechanisms.  Variation in the proteins 

employed suggest that SSI in heterostyles may have evolved independently. 

Evolution of Heterostyly 

      Lacking much information on how heterostyly works, the evolutionary origins of 

heterostyly have remained obscure.  Especially necessary is comparison to the sister 

groups of distylous taxa.  While substantial databases have been collected on characters, 

such as chromosome numbers and pollen morphology, plant mating systems have been 

largely ignored when describing new species, and such information has not been 

collected in any systematic way (Barrett et al. 2000).   

 Heterostyly is known in 28 animal-pollinated angiosperm families, including both 

monocots and dicots (Barrett 2002).  However, heterostylous plants are still the minority 
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within the angiosperms.  Ganders (1979) lists 155 genera that include heterostylous 

species, which constitute 1 – 2% of the genera of flowering plants.  Supporting the 

biochemical evidence, the phylogenetic distribution of these families suggests that 

heterostyly has evolved independently at least 23 different times (Ganders 1979; Lloyd 

and Webb 1992a).  Since heterostyly appears to have evolved multiple times in some 

families based on non-heterostylous sister groups, this number is most likely an 

underestimate. 

 Two quantitative models have been proposed to explain the origin of heterostyly: 

the Charlesworths’ (1979) selfing avoidance model and the Lloyd and Webb (1992a) 

pollination efficiency model.  The essential difference between them is order in which 

reciprocal herkogamy and SI first evolved. In Charleworths’ model, SI evolved first, and 

then reciprocal herkogamy, in part because many botanists believe that self-

incompatibility is an ancestral condition in the evolution of flowering plants.  If SI 

evolved first, conspecific homostyles and heterostyles would likely share the same 

mechanism of SI.  According to the Lloyd and Webb model (1992a), reciprocal 

herkogamy evolved first, and then SI (as Darwin had postulated).  They reason that, if 

heterostyly is primarily an outcrossing mechanism, and if the ancestors of heterostylous 

species were already self-incompatible, the polymorphisms would not have been needed 

(Lloyd and Webb 1992a).  While each of these theoretical models has relatively weak 

empirical support at the family level, a recent historical reconstruction of character 

evolution in the genus Narcissus supports the Lloyd and Webb model (Graham and 

Barrett 2004).      
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The Study Species 

 H. caerulea L. is a little studied distylous spring flowering herb native to North 

America.  Commonly known as “bluets”, these small, delicate perennials are noticeable 

only during their brief flowering period from the end of March until early June, when 

they appear to retreat to a dormant state underground until the following spring.  They 

tend to grow in open shade and well-drained soil, always with moss, in a variety of semi-

disturbed habitats such as forest margins, roadsides, and fields (personal observations).  

This species ranges from eastern Canada to the southeastern United States (Terrell 1996).  

Bluets tend to grow in compact tufts up to 20 cm tall.  Given sufficient sunlight, the 

individual plants can spread vegetatively through rhizomes and fibrous roots, creating 

broad, circular patches.  The foliage is a distinct rosette at the base of the plant, with 

several stems usually arising from a single base.  Located on the ends of the stems, the 

flowers are light blue or occasionally white with a tubular corolla, four petal lobes, and a 

yellow center (Terrell 1996).  Their major pollinators are bee flies (Bombylius sp.) and 

small native bees (Wyatt and Hellwig 1979; Grimaldi 1988; personal observations). 

 Distyly was noted in this species in 1862 by Asa Gray (Gray, 1862, letter to 

Charles Darwin, Cambridge University Library; Ornduff 1977), and Darwin included H. 

caerulea is his monograph on distyly (Darwin 1877).  As with other distylous species, H. 

caerulea produces two distinct mating types, pin and thrum, which differ not only in the 

relative heights of their stigmata and anthers (see Fig. 1.2), but in ancillary floral 

characters, as well.  Pins have small pollen grains and long stigmatic papillae, while 

thrums have large pollen grains and short stigmatic papillae (Ornduff 1977, 1980; Wyatt 

and Hellwig 1979; Terrell 1996; personal observations).  It is also typical of a distylous  

 
18 
 

 
 

 



                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

stigma

anthers
stigma

anthers
stigma

anthers
stigma

anthers

Fig. 1.2  Pin and thrum morphs of H. caerulea.  The pin morph (on the left) has a long 
style that holds the stigma high and anthers positioned low in the corolla tube, while the 
thrum (on the right) has a short style that holds the stigma and anthers positioned high in 
the corolla tube. 
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species in that it requires insect pollinators to carry pollen between different morphs.  

Previous studies have demonstrated that intramorph crosses or self-pollinations produced 

little or no seed and intermorph crosses produced copious seed (Wyatt and Hellwig 1979; 

Ornduff 1977, 1980), suggesting that H. caerulea has a strong SI system.   

Hedyotis is a member of the large, mostly tropical family Rubiaceae which 

includes as many as half of the genera of flowering plants that are heterostylous (Bir 

Bahadur, 1968; Vuilleumier, 1967).  Bir Bahadur (1968) lists 416 distylous species in 91 

genera of the Rubiaceae.  Since these species are distributed among 21 different tribes 

and often have homostylous congeners (e.g. Hedyotis, Ornduff, 1969; Pentas, Verdcourt 

1953), they do not seem to form a phylogenetically homogeneous group that may have 

been derived from one or a few heterostylous ancestors.  Therefore, heterostyly probably 

evolved multiple times through convergent selection pressures in the Rubiaceae 

(Anderson 1973). 

Even in the genus Hedyotis (Rubiaceae-Hedyotideae), which includes 20 species 

of annual and perennial herbaceous plants found in the U.S., Canada, and Mexico, distyly 

likely evolved more than once. The genus is composed of two subgenera, Houstonia with 

six species, including H. caerulea, and Chamisme with 14 species.  Of the six species in 

subgenus Houstonia, three are distylous perennials and three are homostylous annuals.  In 

the subgenus Chamisme, nine are distylous perennials, two are distylous annuals, and 

three are homostylous annuals.  There are no homostylous perennials in the genus.  

Here the floral biology of several natural populations of H. caerulea in 

northeastern Ohio is examined in order to (1) evaluate the characteristics of the mating 

system found in this species in comparison with those of “true” distyly; and (2) determine 
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the relative stability of this species’ mating system from an evolutionary perspective.  If 

the species is distylous, its natural populations should have two distinct morphs in a one 

to one ratio.  These morphs should display reciprocal herkogamy, as well as other floral 

polymorphisms.  Intermorph mating should be strongly favored, at the expense of 

intramorph mating and selfing.  In order to be considered evolutionarily stable, 

morphometric analysis of the floral characteristics should reveal genetic variation within 

the morphs, between the morphs, and across populations.  Indications of gender 

specialization between the morphs would indicate a movement of the mating system 

towards dioecy.  Indications of increased self-incompatibility between the morphs would 

indicate a movement towards selfing.  However, if the mating system were characterized 

as truly distylous with no movement towards complete gender specialization or selfing, it 

would appear that natural selection is maintaining distyly within this species. 

In order to test these predictions, ten populations of bluets were surveyed, the 

numbers of pin and thrum plants were counted to determine morph frequencies, and 

samples of each floral morph were collected.  For each flower collected, anther height, 

stigma height, stigma length, and corolla tube widths were measured.  These 

measurements were analyzed, and indices of reciprocal herkogamy were calculated and 

compared with other distylous species.  Pollen diameter, papilla length, and dry weight 

were measured using flowers of both morphs collected during subsequent growing 

seasons.  A controlled pollination was attempted in the field over three successive 

growing seasons to determine the level of self-compatibility of these flowers.  The 

morphs were also compared by pollen count per anther and by count of seed produced 

per capsule from capsules that had matured in the field.  Morph frequencies were 
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observed through season-long surveys in several populations.  Floral development was 

studied through morphometric analysis and compared with the patterns found in similar 

studies of distylous species.  In all morphometric studies, variation within morphs, 

between morphs, and across populations was analyzed. 
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CHAPTER II 

QUANTITATIVE EVALUATION OF RECIPROCAL HERKOGAMY  

IN HEDYOTIS CAERULEA  

 

Abstract 

Reciprocal herkogamy (a reciprocal stigma-anther height polymorphism) has 

traditionally been necessary to characterize a flowering species as distylous.  The 

placement of male and female reproductive organs within the two floral morphs, pins and 

thrums of distylous species, encourages legitimate (intermorph) pollen flow, resulting in 

an outcrossing advantage.  Numerous species have often been described as distylous 

based solely on the observation of herkogamous flowers, without quantitative data 

establishing stigma-anther reciprocity in placement.  Ten populations of Hedyotis 

caerulea located in the Cleveland Metroparks were surveyed and sampled during peak 

flowering.  Equal numbers of pin and thrum flowers were randomly collected and 

measured for anther height, stigma height, and the difference between stigma height and 

anther height.  Flower dry weights were measured in an independent sampling from three 

populations in the Cleveland Metroparks.  Assessment of reciprocity was made using 

three different methods. Stigma and anther heights possessed bimodal distributions across 

 
23 
 

 
 

 



                                                                                                     

the ten populations surveyed with a slight overlap between morphs.  The species clearly 

expressed two distinct morphs with little if any overlap in sizes of male and female 

reproductive characters between the two morphs.  Significant variation among 

populations and significant population-by-morph type interactions suggest that the 

populations studied possess heritable differences upon which selection could act.  Thus, 

the heights of the reproductive organs in this species have not yet become fixed.  Thrum 

flowers, on average, are slightly heavier than pin flowers, a result that may be explained 

by the larger mass of the thrum’s wider corolla tube.  Two of the three measures used to 

assess reciprocity were inconsistent with precise symmetry.  Further study of the plant’s 

self-incompatibility system and its morph-frequency ratios are required in order to 

evaluate the biological significance of these deviations from precise reciprocity. 

Introduction 

The primary character used to define distyly is the presence of a reciprocal 

stigma-anther height polymorphism (Darwin 1877; Ganders 1979; Lloyd et al. 1990; 

Lloyd and Web 1992a).  As the stigmas and anthers are spatially separated within a 

flower (herkogamy) the height of the pin stigmas within the flower matches that of the 

thrum anthers, and that of the pin anthers matches that of the thrum stigmas (Webb and 

Lloyd 1986; Lloyd and Webb 1992a).  Called reciprocal herkogamy (Darwin 1877), this 

condition has traditionally been necessary and sufficient to characterize a flowering 

species as distylous (Richards, 1986; Webb and Lloyd, 1986).  Darwin (1877) proposed 

that reciprocal herkogamy is adaptive within his Disassortative Pollen Flow Hypothesis.  

He predicted that pollen from the two morphs would be carried on different locations on 

pollinators’ bodies.  Thus, pollen from a pin flower would be positioned to be transferred 
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to the stigma of a thrum flower, and vice versa, resulting in greater proportion of 

legitimate pollen flow (pollen transfer in which the recipient and donor flowers are 

different morphs) than illegitimate pollen flow (in which the recipient and donor flowers 

are the same morph) compared to that expected from random placement of pollen.  The 

resulting outcrossing advantage is thought to have driven the evolution and maintenance 

of distyly (Darwin, 1877; Lloyd and Webb, 1992a).  

Since Darwin’s pioneering work, numerous species often have been described as 

distylous based solely on the observation of herkogamous flowers, without quantitative 

data establishing stigma-anther reciprocity in placement.  Here herkogamy in bluets 

(Hedyotis caerulea) has been evaluated, and to better assess potential variation in this 

mating system within the species, sampling was performed across 10 populations from 

natural areas in the region in order to present a proper assessment of reciprocity as put 

forth by Faivre and McDade (2001) and by Richards and Koptur (1993). 

Materials and Methods 

Ten populations of Hedyotis caerulea in northeast Ohio were surveyed and 

sampled during peak flowering in May and early June, 2005.  All were located in the 

Cleveland Metroparks.  Seven of the populations surveyed were in the Bedford 

Reservation, one in the North Chagrin Reservation, one in the Rocky River Reservation, 

and one in the Brecksville Reservation (see Table 2.1 and Fig. 2.1).  These populations 

were chosen because they were of sufficient size to allow study over multiple growing 

seasons.  

One flower from each individual plant was collected from each population.  The 

flowers were then taken back to the lab, separated and counted by morph.  Forty pin 
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flowers and forty thrum flowers from each population were selected at random by 

drawing them blindly from a pool of flowers of each morph in a Petri dish with the 

exception of Site 3, where the relatively small size of the population limited collection to 

only 20 pin individuals, although 40 thrum individuals were sampled.  All flowers were 

preserved in 3% formalin for measurement of anther height, stigma height, and the 

difference between stigma height and anther height. 

 Anther height (AH) was measured from just above the ovary to the tip of the 

longest anther (see Figure 2.2); stigma height (SH) was measured from just above the 

ovary to the tip of the longer bifurcation of the stigma; difference between anther height 

and stigma height (D) was calculated as the absolute value of the difference AH – SH.  

Measurements were made in millimeters using an Olympus SZX12 dissecting 

microscope equipped with an ocular micrometer. 

 Flower dry weights were measured in an independent sampling during May, 

2008.  Twenty five pin and twenty five thrum flowers were collected from three bluet 

populations in the Cleveland Metroparks.  The flowers were placed in individual 

weighing vials and heated in a drying oven for three days.  The vials were weighed using 

a microbalance (Mettler AB54) first with the dried flower inside and then empty, and dry 

flower weights were calculated by subtraction.    

For each population, variation among individuals of the same floral morph was 

assessed by the two characters and their difference described above and in Fig. 2.2 using 

one-way and two-way mixed-model ANOVA.  Variation in dry weight between floral 

morphs was also assessed using a two-way ANOVA.  All analyses were conducted in 

SAS (SAS, 1990).  Assessment of reciprocity was made using three different methods:  
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Figure 2.1 – A map of the Cleveland Metroparks indicating localities of populations 
studied. 
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Table 2.1:  Locations and sizes of ten populations of H. caerulea surveyed showing 
variation in population sizes. 
____________________________________________________________________ 
    Locality No.      Site Location    N (No. Individuals)___ 

 1  Buckeye Trail    326 
   Brecksville Reservation 

  2  Emerald Circle Prairie   338 
   Bedford Reservation 

  3  Girl's Scout Camp        68 
   Bedford Reservation   

  4    Willis Picnic Area    543 
   Bedford Reservation   

  5  Hemlock Creek    883 
   Bedford Reservation  

  6   Hermit Hollow    254 
   Bedford Reservation 

  7  Egbert (population 1)       89 
   Bedford Reservation   

  8  Egbert (population 2)    200 
   Bedford Reservation   

  9  Big Cedar Area    825 
   Rocky River Reservation 

10  Strawberry Hill Picnic Area  913 
   North Chagrin Reservation 
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Figure 2.2   Floral measurements of Hedyotis caerulea.  SH = stigma height; AH = 
anther height; D = the absolute value of the difference between the anther height and the 
stigma height. 
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 (1) by comparison of the absolute value of anther height less stigma height (as in Faivre 

and McDade 2001); and (2) by measuring the relative reciprocity between organ levels 

(as in Richards and Koptur 1993) calculated for each organ level as (Anther Height – 

Reciprocal Stigma Height)/(Anther Height + Reciprocal Stigma Height). 

Results 

 At a cursory glance the pin and thrum flowers looked similar enough that one 

could easily miss the features that distinguish them.  Both morphs had diminutive, light 

blue flowers (occasionally white) with tubular corollas, a characteristic common among 

distylous flowers that is thought to confine pollen-bearing portions of the insect 

pollinators’ bodies to predictable positions along the reproductive structures of the 

flowers.  However, if one simply picked a flower and held it to eye level, one could see a 

dark spot within the corolla tube, which was actually the presence of four anthers within 

the corolla tube.  In pin flowers, the dark spot appeared at the base of the corolla tube, 

just above the ovary.  In thrum flowers, the spot was visible higher in the corolla tube just 

where the tube splits into petal-like structures.  Since the anther collective appeared 

nearly as wide as the corolla tube itself, the width of the tube varied with the position of 

the anthers.  Thus, in pins, the corolla tube was relatively uniform in width from the base 

to the petals.  In thrums, the tube was narrow at its base and flared wide below the petals 

in a shape somewhat resembling a trumpet.  These observations suggested that pin and 

thrum flowers differ in ways that are not obvious by external inspection of the flower 

alone. 

Quantitatively, stigma and anther heights expressed bimodal distributions across 

the ten populations surveyed (see Figure 2.3).  However, the stigma-anther height 

 
30 
 

 
 

 



                                                                                                     

differences showed a continuous distribution with a nearly equivalent number of pins and 

thrums in each height class with no significant variation among populations (see Figure 

2.6).  When comparing the two morphs (see Figures 2.4 and 2.5, the mean stigma and 

anther heights differed significantly (stigma height, F1,9 = 1310, P < 0.0001; anther height 

F1.9 = 1836, P < 0.0001).  In the ANOVA for stigma height, between-morph variation 

accounted for 73% of the total variation; for anther height, between-morph variation 

accounted for 90% of the total variation.  However, locality had a significant effect on 

stigma height in both pins (F9,390 = 8.29, P < 0.0001) and thrums (F9,370 = 5.53, P < 

0.0001) and in anther height in thrums (F9,370 = 6.47, P < 0.0001).  Locality did not have a 

significant effect on anther height in pins (F9,390 = 2.43).  There was a statistically 

significant interaction between morph and locality on anther heights (F9,760 = 4.27, P < 

0.0001) due to variation of flower size at the different sites as quantified by flower dry 

weights.  The mean dry weight for a pin flower was 1.183 ± 0.59 mg, and for a thrum 

flower 1.443 ± 0.071 mg.  While the difference in dry weight between morphs was 

significant (F1,144 = 6.79, P < 0.0101), locality effects accounted for a greater amount of 

the variation among individuals across the three populations sampled (F2,144 = 16.0, P < 

0.0001).  There was no interaction effect between morph and locality. 

Across the ten populations, the mean pin stigma height was 5.95 ± 0.097 mm (CV 

= 0.33) with a span of 0.93 mm from smallest to largest population mean, while the mean 

thrum stigma height was 3.79 ± 0.065 mm (CV = 0.33) with a span of 0.76 mm (see 

Figure 2.4).  The mean pin anther height across these ten populations was 3.16 ± 0.025 

(CV = 0.29) with a span of 0.25 mm from smallest to largest population mean, while the 
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mean thrum anther height was 6.62 ± 0.099 (CV = 0.33) with a span of 1.06 mm (see 

Figure 2.5). 

 Reciprocity of organ placement was assessed three ways.  First, the mean heights 

of the two long organs were compared (see Figure 2.4 and 2.5), and then the mean 

heights of the two short organs were compared.  The mean height of the pin stigmas (5.95 

mm) and mean height of the thrum anthers (6.62 mm) differed significantly (P < 0.0001).  

Similarly, the mean height of the pin anthers (3.11 mm) and the thrum stigmas (3.79 mm) 

also differed significantly (P < 0.0001).  Secondly, the difference between stigma and 

anther heights were analyzed between morphs (see Figure 2.6), and this variation was 

minor (F = 0.53, n.s.).  Instead, a significant locality effect was shown in both morphs 

(F9,760 = 8.61, P < 0.0001), as well as an interaction between locality and morph (F9,760 = 

7.68, P < 0.0001) and these differences related more to size variation among flowers 

from these populations.  Third, relative reciprocity indices for long and short organ levels 

for all ten populations gave a mean ratio for the long organs of -0.091 and that for the 

short organs of 0.053 (see Figure 2.7). 

Discussion 

 In spite of the uniform external appearance of Hedyotis caerulea flowers, 

variation in floral morphology is pronounced both within and among these populations.  

The species clearly maintains two distinct morphs with little, if any, overlap in sizes of 

male and female reproductive characters.  The two morphs differ in regard to the heights 

of their stigmas and anthers, which defines the flowers that H. caerulea displays as 

distylous, meets the first of three criteria needed to qualify their mating system as 

distylous.  While the majority of the variation found within and between populations was  
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Figure 2.3  Scatterplot representing the anther and stigma heights of flowers measured.  
Each point represents an individual flower with its placement along the X axis indicating 
its stigma height (in mm) and its placement along the y-axis indicating its anther height 
(in mm). 
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Figure 2.4 – Mean stigma height (in mm) by morph across ten populations of H. 
caerulea.  The error bars represent standard errors. 
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Figure 2.6 – Mean absolute value of difference between anther height and stigma height 
(in mm) by morph across ten populations of H. caerulea.  The error bars represent 
standard errors. 
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Figure 2.7   Relative reciprocity ratio for the pin organ level vs. the short organ level for 
distylous species in the Rubiaceae, including new data from H. caerulea.  Abbreviations 
for species are adjacent to each point on the graph. Abbreviations are: HC = H. caerulea; 
CE = Cephaelis elata; CT = Cephaelis tomentosa; FS = Faramea suerrensis; GS = 
Guettarda scabra; HN = Hedyotis nigricans; MR = Mitchella repens; OU = Oldenlandia 
umbellata; OS = Oldenlandia scopulorum; PF = Palicourea fendleri; PL = Pentas 
lanceolata; PN = Psychotria nervosa; PS = Psychotria suerrensis.  Adapted from 
Richards and Koptur 1993. 
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due to intermorph differences, these flowers also showed a also great deal of intramorph 

variation, as well as a marked degree of interpopulation variation in some instances.  

While environmental causes cannot be entirely dismissed without further study, 

significant variation among populations and significant population-by-morph type 

interactions tentatively suggest that the populations studied possess heritable differences 

upon which selection could act.  Thus, the heights of the reproductive organs in this 

species have not yet become fixed. 

Several authors have stated that reciprocal herkogamy (i.e., having exact 

reciprocity of placement between stigmas and anthers between floral morphs) is the 

minimum criterion for a species to be considered distylous.  From a theoretical 

perspective, precise reciprocity would allow intermorph pollination in a distylous 

population to be most efficient and expresses a perfectly symmetrical exchange of pollen; 

i.e. functionally equivalent amounts of pollen would be carried from one morph to the 

other.  Pollen would be transferred with equal efficiency when attached to pollinators at 

one of two positions on the pollinator’s body – the position at which it carries pollen from 

long anthers and pollen from short anthers.  The pollinator would then be prepared to 

pollinate stigmas that are both long and short through legitimate pollination. 

 It is doubtful, however, that a mating system such at this would actually require 

precise symmetry, as small differences, even if statistically significant, would not 

necessarily be biologically significant. Such a deviation from the ideal was evidenced in 

H. caerulea by the difference in the size of the two morphs.  Thrum flowers, on average, 

are slightly heavier than pin flowers, a result that may be explained by the larger mass of 

the thrum’s wider corolla tube.  Larger flower size could underlie a greater energetic 
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investment in thrum flowers, but, in spite of the asymmetry created by the differences in 

weight, there was no evidence to indicate differential fitness of the two morphs.  While 

Ganders (1979) found that, for flowers of Lithospermum californicum (Boraginaceae), 

differences of as little as 2 mm in stigma and anther height in pin flowers significantly 

affected the degree of legitimate pollination, the corresponding differences in flowers of 

H. caerulea were much smaller.  

Also, two of the three measures used to assess reciprocity were out of line with 

symmetry.  In order to determine the degree to which distylous plants actually present the 

‘‘typical’’ heterostylous syndrome, the absolute value of the difference between anther 

and stigma heights should be identical between floral morphs (Faivre and McDade 2001).  

The results presented here show no significant difference in these values between pin and 

thrum flowers.  However, a more direct comparison of the mean heights of the two long 

organs and then the two short organs revealed a statistically significant difference 

between values that would be equal if strong reciprocity for sex-organ position existed 

between the two morphs.  Third, the relative reciprocity index (R) of the short organs is 

within the range observed in other Rubiaceae (Richards and Koptur 1993; Pailler and 

Thompson 1997), although the R value for the long organs suggests their heights are less 

strongly reciprocal.  In order to evaluate the biological significance of these deviations 

from precise reciprocity, further studies of the plant’s self-incompatibility system and its 

morph-frequency ratios are required. 
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CHAPTER III 

VARIATION IN ANCILLARY FLORAL CHARACTERS AND THEIR 

RELATIONSHIP TO THE EVOLUTION OF HETEROSTYLY 

 

Abstract 

In addition to reciprocal herkogamy and a self-incompatibility system, the 

“heterostylous” syndrome usually includes several, less prominent “ancillary” 

polymorphisms involving such characteristics as pollen production, pollen size, size of 

the stigmatic papillae, and corolla diameter.  These ancillary floral polymorphisms have 

been the least investigated aspects of distyly, and thus their functional significance and 

evolution in distylous species remain obscure.  Stigma length, width of corolla tube base, 

and width of corolla tube top of the flowers were measured on the same flowers of 

Hedyotis caerulea collected and measured previously for anther height, stigma height, 

and difference between anther height.  Papilla length and pollen size were measured on 

separate collections of flowers.  Width of the corolla tube, measured at its base and its 

mouth, showed significant differences between morphs.  Pins were wider at the base and 

thrums were wider at the top.  No significant differences between pin and thrum flowers 

were found in stigma lengths.  Pin papillae were significantly longer than thrum papillae, 
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while pin pollen were smaller than thrum pollen. Analysis of correlations among the 

characters measured produced weak correlations across the matrix.   In pin flowers, 

ancillary characters of the stigma showed stronger correlations than those of the anthers.  

In thrum flowers, these ancillary characters of the anthers showed larger correlations than 

those of the stigma.   

Among each of these trait sets that are related to fitness – corolla tube shape, 

stigma morphology, and pollen size – variation across the populations sampled was 

almost always significant and generally considerable.  Population differences are 

commonly considered to reflect genetic differences and the possibility for the traits to 

change over time.  The ancillary traits discussed here likely shift evolutionarily in 

response to subtle changes in as yet unidentified selection pressures. 

Introduction 

In addition to reciprocal herkogamy and a sporophytically controlled, diallelic 

self-incompatibility system, the “heterostylous” syndrome usually includes several, less 

prominent “ancillary” polymorphisms involving such characteristics as pollen size, pollen 

production, size of the stigmatic surface, corolla diameter, and style pubescence (Ganders 

1979; Dulberger 1992; Richards 1997).  Of the characteristics that define heterostyly, 

ancillary polymorphisms have been least investigated and their functional significance 

and evolution remain obscure.  In published descriptions of distylous species (reviewed 

in Ganders 1979 and Dulberger 1992), these ancillary polymorphisms have traditionally 

been scored as characters without analysis, probably because the details of the 

polymorphic characters vary between genera and families, and there are numerous 

exceptions across taxa to any generalization one might use to describe the dimorphism.   
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  The most common ancillary polymorphism shared by most distylous taxa is 

pollen size.  In general, pollen grains from thrum flowers are larger than those from pin 

flowers (e.g., Primula vulgaris: Ornduff 1979; Fagopyrum esculentum: Dulberger 1992; 

Cratoxylum formosum: Lewis 1982).  However, there are a significant number of 

exceptions to this generalization.  In some distylous species, the pin flowers have larger 

pollen grains (e.g. Linum flavum: Punt & den Breejen 1981; Limoniastrum feei: Weber 

1981), and others reportedly lack size dimorphism (e.g., Amsinckia spectabilis var. 

spectabilis: Ray & Chisaki 1957; Linum pubescens: Dulberger 1973).  In most species 

examined, morphs also differ in pollen production, with pin flowers generally producing 

more pollen than those of thrum flowers (Ganders 1979). 

 A number of characters associated with stigmas have also been described as 

polymorphic.  The receptive surface of the pin morph is typically larger than that of the 

thrum (Jepsonia parryi: Ornduff 1970).  In contrast, however, thrum stigmas are larger 

than pin stigmas in Amsinckia grandiflora (Ornduff 1976) and Primula malacoides 

(Pandey and Troughton 1974).  In Rudgea jasminoides, thrum stigmas are long, narrow, 

and curled, whereas pin stigmas are short and flat (Baker 1956).  The most frequently 

reported polymorphism of stigmas is that papillae in pins are larger than those in thrums 

(Vuilleumier 1967; Dulberger 1974).  However, actual measurements of papilla size are 

documented in relatively few plants (e.g., Lythrum junceum: Dulberger 1970; L. curtisii: 

Ornduff 1978; Pulmonaria obscura: Oleson 1979). 

While the nature of these polymorphism may be complex, researchers (Mather & 

de Winton 1941; Dulberger 1975) have suggested that the associations between these 

traits may function in an integrated fashion and may have evolved together to promote 
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cross-fertilization (Darwin 1877; Lloyd & Webb 1992b).  Thus, quantitative analysis of 

the ancillary traits in heterostylous species may shed light on the functional significance 

of these floral characters and will improve the understanding of the nature and evolution 

of heterostyly. 

Materials and Methods 

Stigma length (SL), width of corolla tube base (CB), and width of corolla tube top 

(CT) (see Figure 3.1) were measured on the same flowers collected and measured 

previously and scored for anther height, stigma height, and difference between anther 

height (see Table 2.1 and Fig. 2.1 for localities of the populations sampled).  

Measurements were made in millimeters using an Olympus SZX12 dissecting 

microscope equipped with an ocular micrometer.  Papilla length and pollen size were 

measured on separate collections of flowers. 

Papilla length was measured in an independent sampling of five of these 

populations (locality # 1 in the Brecksville from Table 2.1, locality # 10 in the North 

Chagrin, localities # 2 and # 7 in Bedford, and locality # 9 in Rocky River) in May of 

2007.  Fifteen pin flowers and 15 thrum flowers were collected from each site, and were 

preserved in 70% ethanol.  The lengths of four papillae on each stigma were measured in 

micrometers using a microscope (Leitz Dialux EB20) equipped with an ocular 

micrometer.  The most clearly visible papilla in the best-focused field of view was 

measured on each side of the stigma’s bifurcation.  For each population, variation among 

individuals of the same floral morph was assessed by the six characters described above 

using one-way and two-way mixed-model ANOVA.  Correlations among stigma height, 

stigma length, anther height, distance between anther and stigma height, width of corolla  
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Figure 3.1   Floral measurements of Hedyotis caerulea.  CT = width of the corolla tube at 
the top; CB = width of the corolla tube at the bottom; SL = stigma length.  
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tube tops, and width of corolla tube base were assessed. All analyses were conducted in 

SAS 9.1 (SAS 2002).   

Results 

   The most obvious morphological difference between the two morphs was the 

shape of the corolla tube (see Figure 3.1).  In thrums, the anthers were located at the 

mouth of the tube, and the width of the corolla tube was correspondingly greater at the 

mouth to make room for the anthers.  Below the position of the anthers, the corolla tube 

narrowed as it approached the ovary, making the base of the tube much narrower than the 

top.  In pins, the anthers were located at the base of the corolla tube, near the ovary.  To 

accommodate this position of the anthers, the base of the corolla tube was much wider at 

the base than it was in the thrum flowers, and there was little difference between the 

widths at the top and the base of the pin corolla tube.  These differences were verified by 

morphometric analysis.  Corolla tubes differed in width between morphs (Figures 3.2 and 

3.3), and were larger at the base in pins (F1,9 = 1277, P < 0.0001) but larger in thrums at 

the top of the tubes (F1,9 = 598, P < 0.0001).  When the corolla tubes were measured at 

the base, the mean pin width was 1.14 ± 0.01 mm (CV = 0.15) with a span of 0.27 mm 

from the smallest to largest population mean, while the mean thrum width was 0.80 ± 

0.01 mm (CV = 0.15) with a span of 0.09 mm across populations.  When the corolla 

tubes were measured at the top, the mean pin width was 1.47 ± 0.01 mm (CV = 0.12) 

with a span of 0.21 mm from the smallest to largest population mean, while the mean 

thrum width was 1.80 ± 0.01 mm (CV = 0.11) with a span of 0.14 mm among 

populations.  Morph, therefore, accounted for the majority of the variation in width of 

corolla tube, but variation among localities was significant for width of the tube base 
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(F9,760 = 14.12, P < 0.0001).  The locality effect was significant in both pins (F9,390 = 

16.72, P < 0.0001) and thrums (F9,370 = 2.77, P < 0.001).  An interaction between morph 

and locality (F9,760 = 6.17, P < 0.0001) was significant, as well.  Similarly, there was a 

significant locality effect among populations for width of tube top (F1,9 = 7.07, P < 

0.0001), although no consistent geographic trend was suggested (see Table 3.1).  This 

effect appeared in both pins (F9,390 = 5.98, P < 0.0001) and thrums F9,370 = 3.46, (P < 

0.001).  However, there was no significant interaction between morph and locality (F1,9 = 

2.22). 

Unlike the corolla tubes, the stigmas of the pins and thrums did not appear to 

differ appreciably, an observation that also was verified through morphometry.  Across 

the ten populations, the mean pin stigma length was 1.36 ± 0.02 mm (CV =  0.24) with a 

span of 0.34 mm from the smallest to largest population mean, and the mean thrum 

stigma length was 1.37 ± 0.02 mm (CV = 0.22) with a span of 0.45 mm.  Therefore, these 

values overlapped to a great degree (see Figure 3.4).  When comparing the stigma lengths 

measured, morph did not contribute significantly to the variation (F1,9 = 0.53); rather, 

locality (F9,760 = 8.61, P < 0.0001) and an interaction between morph and locality (F9,760 = 

7.86, P < 0.0001) accounted for a significant proportion (16%) of the variation.  One-way 

ANOVAs suggested that locality had a significant effect in both pins (F9,390 = 7.37, P < 

0.0001) and thrums (F9,370 = 8.90, P < 0.0001), although no consistent geographic trend 

was suggested (see Tables 3.3 and 3.4). 
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Figure 3.2    Mean width (in millimeters) of corolla tube (at base) across ten populations 
of H. caerulea.  Error bars represent standard errors. 
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Figure 3.3    Mean width of corolla tubes (at top) across ten populations of H. caerulea.  
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Table 3.1   Tukey groupings for width of corolla tops in pins.  Means with the same letter 
are not significantly different. 
________________________________________________________ 
Locality Mean (mm)  N   Tukey Groupings_____ 
      7  1.59  40    A 
      8  1.55  40  B  A 
    10  1.53  40  B  A C 
      9  1.48  40  B D A C 
      3  1.48  40  B D A C 
      2  1.44  40  B D  C 
      1  1.43  40  B D  C 
      5  1.42  40   D  C 
      4  1.41  40   D  C 
      6  1.38  40   D 
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Table 3.2   Tukey groupings for width of corolla tops in thrums.  Means with the same 
letter are not significantly different. 
___________________________________________________ 
Locality Mean (mm)  N  Tukey Groupings 
      7  1.86   40  A   
      9  1.86   40  A   
    10  1.85   40  A B  
      4  1.85   40  A B  
      8  1.83   40  A B  
      6  1.79   20  A B  
      2  1.78   40  A B  
      1  1.73   40  A B  
      3  1.72   20  A B   
      5  1.72   40   B  
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Table 3.3   Tukey groupings for stigma length in pins.  Means with the same letter are 
not significantly different. 
___________________________________________________ 
Locality Mean (mm)  N   Tukey Groupings 
     3  1.53  40   A 
     8  1.46  40  B A 
     7  1.43  40  B A 
     2  1.42  40  B A 
     9  1.42  40  B A 
   10  1.41  40  B A 
     5  1.32  40  B C 
     4  1.28  40  B C 
     1  1.20  40   C 
     6  1.19  40   C 
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Table 3.4   Tukey groupings for stigma length in thrums.  Means with the same letter are 
not significantly different. 
 
Locality Mean (mm)  N  Tukey Groupings____________________ 
     3   1.60  20  A     
     7   1.54  40  A     
     4   1.49  40  A  B    
     6   1.46  40  A  B    
     5   1.39  40  A B C   
     2   1.37  40  A B C   
     8   1.31  40   B C D  
     1   1.25  40    C  D    
     9   1.22  40    C D   
   10   1.15  40     D  
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Analysis of correlations among stigma height, anther height, the difference among 

stigma height and anther height, stigma length, corolla tube width at the top, and corolla 

tube width at the base largely showed weak correlations across the matrix (see Table 3.5).  

In pin flowers, there was a strong correlation (P < 0.0001) between the corolla tube width 

at the top and at the base (reflecting the shape of the pin corolla tube).  Features of the 

stigma showed stronger correlations than features of the anthers.  Corolla tube width at 

the top also corresponded strongly (P < 0.0001) with stigma height, stigma length, and 

the difference between stigma height and anther height.  Stigma length also correlated (P 

< 0.0001) strongly with stigma height and distance between stigma height and anther 

height.   

In thrum flowers, the corolla tube width at the base and corolla tube width at the 

top also showed a strong correlation (P < 0.0001), but features of the anthers showed 

greater correlations than features of the stigma.  Anther height correlated strongly (P < 

0.0001) with stigma length, stigma height, corolla tube width at the top, and difference 

between stigma height and anther height.  However, as in pins, stigma height and stigma 

length also correlated strongly (P < 0.0001) in thrums.   

The structure of the stigma appeared to be a simple extension of the style after the 

tissue on the distal end split into two forks.  Papillae projected out from the surface of the 

stigmatic bifurcation with no apparent difference between the two morphs, although 

measurement revealed mean length of the papillae differed significantly between morphs 

(F1,4 = 267, P < 0.0001; see Figure 3.5).  Across all five populations, papilla length was 

longer in pins (0.047 ± 0.001 mm, CV = 0.26 with a span of 0.011 mm from smallest to 

largest population mean) than in thrums (0.029 ± 0.0004 mm, CV = 0.28 with a span of  
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Table 3.5   Correlation Matrix for width of corolla tube top (CT), width of corolla tube 
base (CB), height of stigma (SH), distance between stigma and anther (DSA), stigma 
length (SL), and height of anther (AH).  All measurements were taken in millimeters.  
Values for correlation of pin measurements (N = 400) are on the top portion of the 
matrix, while values for correlation in thrums (N = 380) are on the base. 
 
 

 CT CB SH DSA SL AH 
CT  0.38 

<.0001 
0.24 

<.0001 
0.19 

0.0001 
0.23 

<.0001 
0.08 
0.13 

CB 0.41 
<.0001 

 0.14 
.0056 

0.18 
0.0003 

0.13 
0.011 

0.06 
0.21 

SH 0.19 
0.0002 

0.17 
0.0007 

 0.89 
<.0001 

0.51 
.0001 

0.18 
0.0002 

DSA 0.093 
0.070 

-0.04 
0.42 

-0.27 
<. 0001 

 0.53 
<.0001 

0.09 
0.063 

SL 0.084  
0.10 

0.07  
0.17 

0.50 
<. 0001 

-0.17 
0.0009 

 0.03 
0.61 

AH 0.23 
<.0001 

0.10 
0.056 

0.53 
<. 0001 

0.67 
<. 0001 

0.24 
 <. 0001 

 

 

 
55 
 

 
 

 



                                                                                                     

0.005 mm, Figure 3.5).  A two-way mixed-model ANOVA showed a significant effect 

between morphs (F1,4 = 267, P < 0.0001), a significant interaction between individual 

flower sampled within locality (F70,450 = 3.79, P < 0.0001), a significant interaction 

between locality and morph (F4,70 = 6.07, P < 0.0001), and a significant interaction 

between morph and individual by locality (F70,450 = 3.40, P < 0.0001).  However, locality 

as a factor by itself made highly significant contributions to the variation when the 

morphs were analyzed separately (F4,225 = 4.08, P < 0.0001 in pins and F4,225 = 7.38, P < 

0.0001 in thrums), but insignificantly when morphs were combined in the analysis (F4,70 

= 1.27, n.s.).  An interaction between individual flower and locality was significant in 

both morphs (pins, F70,225 = 3.77, P < 0.0001 and thrums, F70,225 = 3.23, P < 0.0001). 

A difference in the size of the pollen grains was also obvious, however, when pin 

pollen and thrum pollen were observed side by side under a microscope (F1,5 = 98.3, P < 

0.0001).  The mean pin diameter was 24.78 ± 0.16 µm (CV = 0.16), with a 1.56µm span 

from smallest to largest population mean across six populations (see Figure 3.6).  The 

mean thrum diameter was 29.72 ± 0.20 µm (CV = 0.12), with a 3.6µm span.  One-way 

ANOVAs showed no significant locality effect in pins (F5,270 = 3.20), but there was a 

significant interaction between individual flower sampled and locality (F24,270 = 5.28, P < 

0.0001).  In thrums, locality was significant (F5,270 = 14.86), and there was also a 

significant interaction between individual and locality (F24,270 = 8.57, P < 0.0001).   

Discussion 

 The enclosure of the flower’s sex organs within a tube beneath the petals is 

characteristic of distylous species (Ganders 1979).  Since the pollen is held either above 

or below the stigma inside the tube, the space in which a pollinator can move is strictly  
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Figure 3.5   Mean papilla length (in microns) across five populations of H. caerulea. 
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Figure 3.6     Mean pollen diameter (in microns) across six populations of H. caerulea 
Error bars represent standard errors. 
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limited, presumably facilitating precise legitimate pollen deposition.  In H. caerulea, the 

corolla tube width of each morph is only slightly larger than the collective width of the 

anthers, which creates a very narrow passageway for pollinators to explore, encouraging 

contact with both floral sex organs.  The differential placement of the anthers within the 

corolla tube causes the morphs to differ in shape.  Width of the corolla tube, measured at 

its base and its mouth, showed significant correlation upon analysis and helped create the 

distinct shapes of the two flower morphs.  A pin corolla tube resembles a water glass, 

with a base just wide enough to hold the anthers, and then becomes slightly (1.3 times) 

wider at the mouth.  In contrast, the corolla tube in a thrum flower is more than two times 

wider at the mouth than at the base caused by a bulge created by the anthers positioned 

there.  The tube narrows dramatically just below this bulge and continues to the ovary, 

creating a shape that resembles a fluted champagne glass with the thrum stigma located 

just above the ovary enclosed in the narrowest portion of the corolla tube.  Thus, pins are 

wider at the base and thrums are wider at the top.  Since pin anthers are located near the 

base of the tube, corolla tube width at the top correlated most weakly with anther height 

and correlated strongly with stigma height and difference between stigma height and 

anther height.  Conversely, thrum corolla tube width at the top (where anthers are 

positioned) correlated most strongly with anther height. 

 The morphology of the stigma has functional significance as an important 

component of receptive surface area as pollen grains must adhere to its surface in order to 

complete pollination.  When stigmata provide greater receptive surface area, individual 

flowers can collect more pollen (i.e., the greater its stigmatic load), more ovules can be 

fertilized, and more seeds can be produced, leading to greater fitness.  Stigma length is an 
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important component of receptive surface area.  In both morphs the stigma is bifurcated 

and pollen adheres to both sides of each projection.  No significant difference between 

pin and thrum flowers was found in stigma lengths, which suggested that, at least in this 

aspect of female reproductive function, the morphs might be equally fit.  However, 

reflective of the developmental differences between the morphs (see chapter 5), stigma 

length correlated more strongly with the anther characteristics in pin flowers than in 

thrum flowers, presumably because pin stigmas continue to grow until they reach the 

mouth of the corolla tube while thrum stigmas stop growing earlier and closer to the base. 

 The stigma is not a flat surface, however.  Stigmatic papillae both increase the 

surface area of the stigma and provide grooves in which pollen grains fit.  Pin papillae 

were significantly longer than thrum papillae meaning that short-styled flowers have 

short papillae and long-styled flowers have long papillae.  In the current model for the 

heterostyly supergene in Primula (Richards 1997), the characteristics of the female 

reproduction organ (gynoecium), including stigma height and length, are located on the 

same gene.  And, this same mechanism likely controls papillae height.  In H. caerulea, 

stigma length correlated strongly with stigma height. 

 Like papillae, pollen diameter showed intermorph variation;  pin pollen was 

smaller than thrum pollen.  In H. caerulea, the thrum:pin pollen diameter ratio found in 

northeast Ohio populations was 1.20, the same value reported by Ornduff (1977) and 

Wyatt and Hellwig (1979).  This difference suggests a symmetry in regards to the size of 

pollen and papillae that interact during a legitimate pollen exchange.  In a legitimate 

pollination, the smaller pin pollen interacts with the smaller thrum papillae, and the larger 

thrum pollen interacts with the larger pin papillae.  Also, the average diameter of thrum 

 
60 
 

 
 

 



                                                                                                     

pollen is equal to the average length of thrum papillae.  The functional significance of 

these relationships is unclear, however.  Darwin (1877) suggested that thrum pollen is 

larger because the pathway down the longer pin style would require a greater store of 

nutrients, a premise invalidated by subsequent empirical evidence (Richards 1997).   In 

the Primula model of the heterostyly supergene, pollen size and development of the male 

reproductive organ (androecium) are controlled by separate genes (Richards 1997).  In H. 

caerulea, long-styled flowers produced smaller pollen grains than short-styled flowers, 

which suggests that style-length and pollen size may be controlled by different genes.    

 Among each of these traits predicted to relate to fitness – corolla tube shape, 

stigma morphology, and pollen size– variation across the populations sampled was 

almost always significant and generally considerable, as is common with fitness 

components (Price and Schluter 1991; Houle 1998).  For example, Conner et al. (2003) 

quantified levels of phenotypic variation in many of these traits within radishes, noting 

high variance levels both in greenhouse experiments and in field approaches, although 

high variance levels from the field collections largely precluded separation of genetic and 

environmental influences to the traits.  The variation reported here in H. caerulea was 

expressed either as differences among the means from the populations within pins and 

thrums, or as interaction effects, which means larger/smaller sizes in one morph were not 

necessarily the larger/smaller in the alternate morph.  Population differences are 

commonly considered to reflect evolvability, or the possibility for the traits to change 

over time (Hansen et al., 2003).  Although these traits were sampled from different 

localities all from a small region with various parks totaling 21,000 acres, these 
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populations may be isolated.  Urban lands separate most without obvious corridors for 

genetic exchange. 

Why does so much variation exist?  Fisher (1930) suggested that fitness-relevant 

traits under selection should exhaust additive genetic variation.  Variation among field 

populations certainly confound phenotypic plasticity and possible genetic variation, and 

variation present may combine dominant, pleiotropic and epistatic events to additive 

variation typically used to estimate heritability (Kelly 2005; Koczorowski et al. 2008).  A 

trade-off must be present in the distylous mating system, as selection has favored two 

stable flower forms, the pins and the thrums, although the differences in anther and 

stigma heights a are not precisely reciprocal (Chapter 2).  Variation in ancillary traits 

discussed here support that the dimorphisms have not yet reached fixation, and therefore 

flowers likely vary and may shift evolutionarily in response to subtle but largely 

unidentified changes in selection pressures. 

Quantitative genetics has shown the possibility for single traits to change rapidly 

in response to selection.  Flower size (Lehtila and Brann 2007) and ancillary traits, such 

as pollen size (Lamborn et al. 2005) will likewise respond rapidly to direct selection.  No 

one has yet tried to select concurrently on a suite of floral characters, as in distyly, and 

therefore understanding how so much variation can be sustained in this system must 

await future experimentation in a more tractable species. 
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CHAPTER IV 

FUNCTIONAL STATUS OF DISTYLY IN HEDYOTIS CAERULEA  

 

Abstract 

The mating system of a species is a dynamic property subject to modification in 

response to changes in selective pressures.  Where a breakdown of distyly has been 

documented, changes have included the development of completely separate sexes 

(dioecy), or, more frequently, the development of a monomorphy consisting of self-fertile 

homostyles. Twelve populations of Hedyotis caerulea in or near the Cleveland 

Metroparks were surveyed in order to evaluate the functional status of distyly as a mating 

system of this species.  Morph frequency was assessed and pollen production was used as 

a measure of male fitness by estimating the number of pollen grains per anther sac in a 

sample from four populations.  The number of seeds per mature capsule was estimated 

from independent samples in three populations, which served as a measure of maternal 

fitness.  All populations surveyed were isoplethic (i.e., contained a morph ratio of pins to 

thrums that was not different from 1:1), a result predicted when the species’ mating 

system promotes intermorph pollen transfer (dissortative mating) with nearly 100% 

outcrossing.  Pin flowers were found to produce significantly more pollen than thrum 
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flowers.  However, pin flowers produced significantly smaller pollen than thrum flowers.  

Therefore, if volume of pollen grains produced is considered a measure of investment, 

pins and thrums appear to be allocating roughly the same amount of resources to pollen 

production and appear to have equal male fitness.  No significant difference in seed set 

was found between pins and thrums, suggesting that female fitness also is equal.  The 

ratios and similarity in fitness between morphs supports that the SI system in H. caerulea 

is stable. 

Introduction 

The mating system of a species is a dynamic property subject to modification in 

response to changes in selective pressures (Barrett and Eckert 1990), and distyly is no 

exception.  The breakdown of distyly has been documented in several families, either 

through the development of completely separate sexes (dioecy), or, more frequently, 

through the development of a monomorphy consisting of self-fertile homostyles.  The 

possibility of the first type of breakdown, gender specialization, was recognized by 

Darwin (1877).  The replacement of distylous, self-incompatible hermaphrodites by male 

and female flowers has traditionally been explained by a persistent pattern of 

asymmetrical pollen flow between morphs sustained over evolutionary time (Ganders 

1974; Nicholls 1986; Feinsinger and Busby 1987; Stone 1996; Ree 1997; Nishihiro and 

Washitani 1998).  In the most common pattern of asymmetry, pin morphs receive more 

compatible pollen and have greater female fitness than thrum morphs (Lau and Bosque 

2003).  Thus, pin morphs presumably could have become the female sex while thrums 

became the male sex, a scenario that has been proposed to explain the evolution of dioecy 

from distyly in many species (Ornduff 1966, 1970; Barrett 1980; Opler et al. 1975; Lloyd 
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1979b; Baker 1958; Beach and Bawa 1980; Vuilleumier 1967; Bir Bahadur 1968; Opler 

et al 1975; Ornduff 1966; Ganders 1979; Wyatt and Hellwig 1983; Pailler et al. 1998; 

Naiki and Kato 1999).  However, dioecy is also believed to have resulted from the 

opposite pattern of asymmetrical pollen flower in at least four species (Feinsinger and 

Busby 1987; Stone 1996; Hicks et al. 1985; Lau and Bosque 2003).  In all cases, the 

transition from distyly to dioecy is inferred by comparing closely related taxa.   

More frequently, however, distyly has broken down in the direction of 

increasingly associative mating through weaker selection for outbreeding, changes that 

have been reported in several genera (Ganders 1979; Barrett 1988, 1992; Schoen et al. 

1997).  In general, the shift from obligate outbreeding to predominant self-fertilization is 

one of the major pathways of mating system evolution in flowering plants (Stebbins 

1957, 1974; Baker 1959; Jain 1976).  In distylous species, distinct morphs have been 

replaced by self-compatible homostyles in which the proximity of male and female sex 

organs within individual flowers facilitates self-pollination (Baker 1959, 1966), and in 

which the self-incompatibility system has broken down (Sakai and Wright 2008), 

possibly due to decreases in pollinator availability (e.g. Washitani et al. 1994; Pauw 

2005) or population size (e.g., Ganders 1975). 

Plant mating systems are measured (Barrett and Eckert 1990) by evaluating the 

functional status of various parameters in a species’ natural environment through a series 

of investigations, including (1) determination of morph ratios of naturally occurring 

populations, (2) assessment of the degree of self-compatibility of the species, and (3) a 

comparison of the functional gender of the two morphs.  First, studies of morph 

frequency in distylous plants can provide information on the dynamics of selection on 

 
65 
 

 
 

 



                                                                                                     

genes controlling mating systems.  Since distyly promotes outcrossing through 

intermorph pollen transfer (disassortative mating), it is expected to result in populations 

with a stable equilibrium state of 1:1 morph frequencies (isoplethy), ready availability of 

compatible pollen, and optimal reproductive success (Barrett 1992; Matsumura and 

Washitani 2000; Kery et al. 2003; Shibayama and Kadono 2003).  Heuch (1979) has 

shown theoretically that, provided no fitness differences among the style morphs exist, an 

isoplethic equilibrium is the only possible condition in large populations with 

disassortative mating (i.e., in distylous plant species).  In distylous populations where 

morph frequencies are unequal, several possible factors may be involved including clonal 

propagation, founder effects, mating asymmetries among the morphs, relaxation of SI, or  

breakdown of distyly.  Second, the degree of self-compatibility in a species is critical 

when characterizing a plant mating system because SI is often incomplete and varying 

degrees of seed set are produced after self-pollination (Lloyd and Schoen 1992).   The 

degree of self-compatibility permitted by the SI system is assessed through controlled 

pollination programs involving the comparison of the seed set following self, intramorph, 

and intermorph pollinations (Schoen and Lloyd 1992).  The resulting data can be used to 

calculate a self-compatibility index (Becerra and Lloyd 1992), which is the average seed 

or fruit set after self-pollination divided by the seed or fruit set after cross-pollination.  

The SC index can range from nearly zero to more than one, reflecting the continuous 

nature of self-compatibility.  Third, hermaphroditic plants can obtain fitness by pollen 

donation (male fitness) as well as by fruit and seed production (female fitness).  A plant 

that allocates its resources disproportionately to pollen production and dispersal would be 

considered functionally male, and a plant that allocates its resources to ovule production, 
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fertilization, and seed maturation would be considered functionally female.  Since the 

resources available for sexual reproduction are finite, an increase in resource allocation to 

male function must be accompanied by a decrease in resource allocation to female 

function, and vice versa.  Defining male fitness as α and female fitness as β, then 

theoretically the equilibrium of α, β is the pair which maximizes the product α β 

(Sutherland and Delph 1984).  A fully distylous species would be made of individuals 

with equal male and female fitness, and would be typified by equivalent amounts of 

pollen from each morph pollinating the stigmas of the opposite morph.  The functional 

gender of plants can be estimated by following pollen flow in natural populations and by 

counting the number of fruits and seeds a plant produces (Sutherland and Delph 1984).   

 The functional components of Hedyotis caerulea have been understudied.  Morph 

frequencies in populations of this species have been quantified and published by three 

researchers: Ornduff (1977, 1980), who studied 19 populations in North Carolina over a 

period of several successive years, Wyatt and Hellwig (1979), who studied six 

populations in North Carolina; and Grimaldi (1988), who reported that pins slightly 

outnumbered the thrums in several New York populations.  The results of controlled 

pollination programs have also been published by Ornduff (1977, 1980) and Wyatt and 

Hellwig (1979).  Ornduff (1977) measured pollen flow and seed set in natural populations 

of H. caerulea, and he found that although compatible pollen flow from pins to thrums 

was greater than from thrums to pins, seed production by the two morphs was equal.  

Based on observations in the field, Ornduff (1980) and Wyatt and Hellwig (1979) 

suggested that, while the pin and thrum morphs may produce the same number of buds, 
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flowers, and capsules per plant, it is possible that differences in these morphs may occur 

across populations or at certain times of the flowering period. 

 In order to evaluate the functional status of distyly in naturally occurring 

populations of H. caerulea in northeastern Ohio, this study focused on morph ratios, the 

calculated species’ self-compatibility index, and the functional gender of the two morphs.  

In order to ascertain any temporal component of the mating system, several populations 

were surveyed at multiple times throughout the flowering period. 

Materials and Methods 

Twelve populations of H. caerulea in or near the Cleveland Metroparks were 

surveyed in May of 2005 (see Table 4.1).  Ten of these populations also were sampled for 

measurement of floral characters (see chapters 1 and 2).  For each population, one flower 

from each individual plant was collected.  The flowers were then taken back to the lab, 

separated and counted by morph.  Morph frequencies were compared using a chi-square 

test. 

Four populations were surveyed every two weeks over the 2008 growing season 

(i.e., on May 7, May 18, June 1, and June 14).  Populations surveyed included # 1 (in 

Brecksville), # 13 (a previously unstudied population in Bedford), # 7A and # 7B 

(population # 7 subdivided into two smaller populations; see Table 2.1). In each survey 

the following were counted: the number of individual pins and thrums, the number of 

flowers per individual pin and thrum, and the number of capsules per individual pin and 

thrum.  Due to the difficulty in finding and identifying the morph of a plant without at 

least one flower, only flowering individuals were counted.  
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Pollen count per anther sac was estimated in a third sampling of four of these 

populations (locality # 14 in the Brecksville, locality # 10 in North Chagrin, locality # 2 

in Bedford, and locality # 9 in Rocky River) in 2008.  Ten pin flowers and ten thrum 

flowers were collected from each site.  One of the four anthers from each flower was 

placed in a small plastic vial with 70% ethanol, 2 drops of methylene blue, and one drop 

of detergent, for a total volume of one milliliter.  The pollen was suspended throughout 

the liquid in the vial using a vortex mixer.  The pollen grains contained within 0.1 mL of 

the suspension were scored using a microscope (Leitz Dialux EB20) and a slide equipped 

with a grid.  Total pollen count was calculated for each anther sac. 

In June 2008, forty mature capsules from pin plants and forty mature capsules 

from thrum plants were collected from each of three populations (#2 in Bedford, # 10 in 

North Chagrin, and # 14, a population in the Brecksville Reservation that had not been 

sampled previously).  In the lab each capsule was opened using a dissecting needle and 

the seeds were counted under a dissecting microscope. 

Attempts to determine the degree of self-incompatilibity in Hedyotis caerulea 

through controlled pollinations were made in site # 2 (see Table 2.1) during three 

consecutive growing seasons.   In May and June 2005 a total of 60 previously 

unpollinated flowers were hand pollinated in the field using a dissecting needle (Ornduff 

1980) and a field magnifier and covered with parafilm (Mal and Lovett-Doust 1997) to 

prevent further pollination.  Since mature buds could be forced open with a tap of a 

probe, selecting them for the study precluded previous pollination.  Five pins and five 

thrums served as controls (covered without pollination); ten pins and ten thrums were 

pollinated legitimately; five pins and five thrums were self-pollinated; five pins were 
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pollinated with pin pollen from other pin flowers; five thrums were pollinated with thrum 

pollen from other thrum flowers.  In May and June 2006 the study was repeated.  In May 

and June 2007 the study was again repeated with modification; the number of flowers 

pollinated was doubled, and half of the pollinated flowers were covered with parafilm, as 

done previously, and half were enclosed in a tent of gauze to prevent visitation by 

pollinators but to allow circulation of air.  A series of pollinations were also done in the 

lab by collecting mature buds and carrying out the pollination program under a dissecting 

microscope, staining according to Kearns and Inouye (1993) and observing the 

gynoecium for growth of a pollen tube via fluorescence microscopy (Leitz Dialux EB20).  

Results 

 The twelve populations surveyed were generally found in two types of settings: 

along forest trails (populations 1, 3, 4, 5, 6, 8, 12; see Table 4.1) and on the edges of 

picnic areas (populations 7, 9, 10) in the Cleveland Metroparks.  The trails tended to 

follow the edges of ridges, which allowed nearly full sun part of the day and diffuse sun 

part of the day.  Populations in picnic areas were exposed to full sun a greater part of the 

day, and appeared to experience less competition for light from other plants in the 

community.  Population density appeared to be greater in picnic areas than along trails.  

Populations 2 and 11 did not fit into either category: population 2 was located in a large 

field in Bedford Reservation, while population 11 was located on the back lawn of 

privately owned property near the Metroparks, and both received full sun all day. 

 Population size ranged from 68 to 913 individuals, with a mean size of 404 (see 

Table 4.1).  Chi square tests indicated that, with the exception of population 3, the morph 

ratio of pins to thrums was not different from 1:1, which made these populations 
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isoplethic.  Population 3, which was the smallest population, was anisoplethic with a pin 

to thrum ratio of 2.6:1 (P < 0.05), but not significant at an experiment wide level (Rice 

1989).  In an independent follow-up survey in 2008, population 3 was isoplethic. 

 The results of season-long surveys done in two trail and two picnic area 

populations are given in Figures 4.1, 4.2, 4.3, and 4.4.  In all four populations there were 

no statistical differences in the number of pin and thrum plants across the flowering 

season with the exception of the third survey of population 1 in which pin plants 

outnumbered thrum plants (P < 0.01; see figure 4.3).  The number of pin flowers was also 

statistically not different from the number of thrum flowers, with the following 

exceptions in which pin flowers outnumbered thrum flowers: the second survey of 

population 6b (P < 0.001; see figure 4.2); the third survey of population 1 (P < 0.05; see 

Figure 4.3); and the first survey of population 13 (P < 0.001; see figure 4.4).  With one 

exception, there was no statistical difference between the number of pin capsules 

collected and the number of thrum capsules collected; more pin than thrum capsules were 

found in the third survey of population 13 (P < 0.05; see figure 4.4).  

 Across four populations, the mean pollen count was 856 ± 67.4 pollen grains per 

anther sac in pin flowers and 583 ± 49.8 per anther sac in thrum flowers.  Pins therefore  

produced significantly more pollen grains than thrums (P < 0.001).  Mean pollen counts 

per population also varied, and ranged from 752 ± 181 to 937 ± 93.7 in pins and from 483 

± 55.2 to 672 ± 130 in thrums (see Figure 4.5), giving a significant locality effect (P = 

0.012).  

Analysis of seed number produced per capsule showed a small but significant 

locality effect (P < 0.05), but no intermorph variation (P = 0.67, n.s.).  On average, pin  
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Table 4.1   Results of a survey of twelve populations of Hedyotis caerulea in the greater 
Cleveland area, mostly in the Cleveland Metroparks.  The morph ratio of pins to thrums 
was calculated for each population. 
 
 

 
Site # 

 
Location 

 
N 

#  
pins 

#  
thrums 

 
Χ2

Morph 
Ratio 

1 Buckeye Trail 
Brecksville Reservation 

326 169 157 0.22 1:1 

2 Emerald Circle Prairie 
Bedford Reservation 

338 156 182 1 1:1 

3 Girl’s Scout Camp 
Bedford Reservation 

68 49 19 4.97 2.6:1 

4 Willis Picnic Area 
Bedford Reservation 

543 275 268 0.045 1:1 

5 Hemlock Creek 
Bedford Reservation 

883 443 440 0.046 1:1 

6 Hermit Hollow 
Bedford Reservation 

254 122 132 0.20 1:1 

7 Egbert (population 1) 
Bedford Reservation 

89 42 47 0.14 1:1 

8 Egbert (population 2) 
Bedford Reservation 

200 105 95 0.25 1:1 

9 Big Cedar Area 
Rocky River Reservation 

825 407 418 0.073 1:1 

10 Strawberry Hill Picnic Area 
North Chagrin Reservation 

913 466 447 0.22 1:1 

11 Howe Road, Strongsville 
(private property) 

266 127 139 0.27 1:1 

12 
 

State Road, Hinckley 
(private property) 

147 
 

81 
 

66 0.76 
 

1:1 
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Figure 4.1   The results of four successive surveys of the bluet population in locality 7a 
in the Bedford Reservation over a single growing season.  For each survey, the number of 
individual plants, the number of flowers and the number of capsules were counted for 
each morph.  White columns represent pins, and black columns represent thrums. 
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Figure 4.2   The results of four successive surveys of the bluet population in locality 7b 
in the Bedford Reservation over a single growing season.  For each survey, the number of 
individual plants (a), the number of flowers (b), and the number of capsules (c) were 
counted for each morph.  White columns represent pins, and black columns represent 
thrums. 
 
 
 

 
74 
 

 
 

 



                                                                                                     

10

20

30

40

50

60

1 3 5 7

Week

N
um

be
r o

f P
la

nt
s

10

20

30

40

50

60

1 3 5 7

Week

N
um

be
r o

f P
la

nt
s

(b)

(a)

 

10
20
30
40
50
60

70
80

1 3 5 7

Week

N
um

be
r o

f F
lo

w
er

s

10
20
30
40
50
60

70
80

1 3 5 7

Week

N
um

be
r o

f F
lo

w
er

s

 

Pins
Thrums
Pins
Thrums

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c)

5

10

15

20

25

1 3 5 7

Week

N
um

be
r o

f C
ap

su
le

s

5

10

15

20

25

1 3 5 7

Week

N
um

be
r o

f C
ap

su
le

s

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3   The results of four successive surveys of the bluet population in locality 10 
in the Brecksville Reservation over a single growing season.  For each survey, the 
number of individual plants (a), the number of flowers (b), and the number of capsules 
(c) were counted for each morph.  White columns represent pins, and black columns 
represent thrums. 
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Figure 4.4   The results of four successive surveys of the bluet population in locality 13 
in Bedford over a single growing season.  For each survey, the number of individual 
plants (a), the number of flowers (b), and the number of capsules (c) were counted for 
each morph.  White columns represent pins, and black columns represent thrums. 
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Figure 4.5    Pollen counts per single anther sac of Hedyotis caerulea pin and thrum 
flowers collected from four populations in the Cleveland Metroparks.  Error bars 
represent standard errors.   
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Figure 4.6   Seed counts per capsule collected from Hedyotis caerulea pin and thrum 
flowers collected from three populations in the Cleveland Metroparks.  Error bars 
represent standard errors.   
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capsules produced 11.0 ± 0.58 seeds and thrum capsules produced 11.5 ± 0.54 seeds (see 

Figure 4.6).   

 Despite repeated attempts, controlled pollination experiments failed, first in 2006 

due to vandalism of the field site, but in other attempts due to the delicate nature of the 

species.  The flowers were very small, difficult to manipulate in the field, and easily 

damaged by attempts at controlled pollen transfer, attempts to isolate the flower to 

prevent uncontrolled pollination, and simply by attempts to label the plants so each could 

be located and identified at the end of the study.  Controlled bud pollinations under a 

microscope in the laboratory failed to produce identifiable pollen tubes.  

Discussion 

All populations surveyed were isoplethic, with the possible exception of 

population 3 (the smallest one, N = 68).  Considering that the experiment included ten 

populations, it was not unexpected to find one anisoplethic population by chance.   Small 

populations of distylous species often show skewed morph ratios as a result of genetic 

drift (e.g. Eckert and Barrett 1992; Husband and Barrett 1992; Endels et al. 2002; Kery et 

al 2003), and population 3 had reached isoplethy when surveyed again three years later.  

An equal, 1:1 balance of morph frequencies in a population is achieved when the species’ 

mating system promotes intermorph pollen transfer (dissortative mating) with nearly 

100% outcrossing (Barrett, 1992; Van Rossum et al. 2006), and when the two morphs are 

of equal fitness.  Thus, it is assumed that an isoplethic population offers both morphs 

equally prolific reproductive success through optimal availability of compatible pollen 

(Matsumura and Washitani 2000; Kery et al. 2003; Shibayama and Kadono 2003).  

Surveys of H. caerulea populations previously done in North Carolina (Wyatt and 
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Hellwig 1979; Ornduff 1977, 1980) found greater variation in morph frequencies per 

population as pins outnumbered thrums by a ratio of 1.5:1 in most of the populations he 

surveyed.  While Wyatt and Hellwig (1979) also found that pins frequently outnumbered 

thrums, when they pooled the data from all populations surveyed the morph frequency 

was deemed isoplethic.  The suggestion made by Wyatt and Hellwig (1979) and Ornduff 

(1977; 1980) that morph frequencies may fluctuate in some predictable pattern over the 

course of a flowering season was not supported empirically in the present study.  While 

some variation was detected, three of the four populations studied for temporal effects 

showed no morph-specific differences in any time period, and while several showed 

differences in total flowers, there was no consistent pattern with respect to the growing 

season.  Thus, any temporal difference in morph frequency is probably insignificant to 

the mating system. 

As stated in Chapter 3, pin flowers produce significantly smaller pollen than 

thrum flowers, but they also produce significantly more pollen than thrum flowers.  This 

inverse correlation between pollen size and pollen production has been shown in a 

number of distylous species (Ganders 1979; Dulberger 1992; Richards 1996).  If male 

fitness were measured strictly by the number of pollen grains produced, pins would have 

the greater estimate of fitness.  However, when the total volume of individual pollen 

grains produced was estimated for populations 1, 2, 9, and 10, based on average pollen 

counts and average pollen diameters from samples taken from those populations, the 

intermorph difference was not statistically significant (P=0.11).  Therefore, if volume of 

pollen grains produced is considered a second measure of investment, pins and thrums 
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appear to be allocating roughly the same amount of resources to pollen production and 

appear to have equal male fitness.   

Another measure of male fitness is pollen flow.  Ornduff (1980) reported a 

somewhat skewed pattern of pollination in natural populations in North Carolina, 

specifically lower levels of intermorph pollen flow and higher levels of intramorph pollen 

flow than expected.  He came to this conclusion by collecting naturally pollinated flowers 

from the field, examining the stigmas microscopically, and scoring the number of pin and 

thrum pollen grains on each stigma, using pollen size to distinguish the morph that had 

created each pollen grain.  He reported that the number of pin pollen grains mostly 

outnumbered the thrum pollen grains when he examined pin stigmas.  This procedure was 

not used with the Ohio bluets because of the overlap in diameters of pin and thrum 

pollen, larger than Ornduff found.  However, given the balanced morph ratios of the 

populations surveyed here, any differences in pollen flow have not affected morph 

frequency. 

Female fitness is frequently measured as seed set.  No significant differences in 

seed set were found between pins and morphs, suggesting equal female fitness.  These 

findings support sex allocation theory (Sutherland and Delph 1984), which predicts that, 

since resources for sexual reproduction are finite, any increase in resource allocation to 

male function must be accompanied by a decrease in resource allocation to female 

function and vice versa.  Defining male fitness as α and female fitness β, then it can be 

theoretically demonstrated that, under natural selection, the equilibrium of α, β is the pair 

which maximizes the product α β.  In H. caerulea, all evidence suggests that αpins = 
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αthrums, and βpins = βthrums.  It follows, then, that this species shows no movement towards 

dioecy in northeastern Ohio. 

This study offers no new results from controlled pollinations.  Previous studies 

indicate, however, that H. caerulea has a strong self-incompatibility system that strictly 

enforces outcrossing.  In a program involving plants transplanted from the field into pots 

in a greenhouse, Ornduff (1977, 1980) conducted a total of 560 self-, intramorph, and 

intermorph pollinations.  He reported that self-pollinated pins produced an average of 0.1 

seeds per pollination and that self-pollinated thrums produced 1.0 seeds per pollination.  

Pollinations between different plants of the same floral morph are also relatively 

unproductive; pin x pin pollinations produced 0 seeds; thrum x thrum pollinations 

produced an average of 1.1 seeds.  Pollinations between pins and thrums produced an 

average of 23.0 seeds per pollination.   In northeastern Ohio under natural field 

conditions pins and thrums produced approximately half that number of seeds per 

pollination. 

Thus, mating within each group is essentially non-existent; sexual reproduction 

likely occurs only as a result of mating between groups.  Wyatt and Hellwig (1979) 

conducted a smaller study that involved 48 incompatible pollinations that resulted in 2% 

success in producing seed and 20 compatible pollinations that resulted in 95% success in 

producing seed.  To date no report has been published that disputes the existence of a 

fully functioning SI system in H. caerulea, a conclusion that is supported by the 

isoplethic morph ratios found in Ohio.  Just as there is no evidence to indicate a 

movement towards dioecy, there no indication that the SI system is undergoing a break 

 
82 
 

 
 

 



                                                                                                     

down that would be necessary for the species to move towards selfing or homostyly.  

Distyly in H. caerulea is apparently a stable, functional system.  
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CHAPTER V 

DEVELOPMENTAL ASPECTS OF DISTYLY IN HEDYOTIS CAERULEA 

 

Abstract 

Studies of floral development have made significant contributions to the 

understanding of the evolution of plant mating systems.  However, evolutionary events 

leading to distyly remain obscure because few detailed studies on early floral 

development exist.  Here the initiation, rate, and termination of growth between the 

stamens and stigmas in Hedyotis caerulea were quantitatively compared to determine 

when and how floral morphology of pins and thrums diverge.  Buds at multiple stages of 

development were collected from five populations of Hedyotis caerulea in the Cleveland 

Metroparks.  Each bud was then measured for length, opened, and the heights of these 

developing stigmas and anthers were compared against total bud length.  Pins and thrums 

were distinguishable when the bud length was less than one millimeter. The growth rate 

of anthers was uniform for both morphs, but thrum anthers grew faster than pin anthers, 

suggesting dimorphy in anther height developed from a significant difference in growth 

rates between anthers and whole buds.  Dimorphy in stigma heights developed through a 

less straightforward mechanism.  Pin stigmas grew at a faster rate early in development, 
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but in addition, late in bud development, the rate of thrum stylar growth slowed, which 

resulted in a curvilinear growth pattern for thrums.  This growth pattern differed from 

that of another distylous Hedyotis species, H. salzmannii. 

Introduction 

Morphological variation in flowers is determined by the combined effects of 

genotype, developmental programming, and environmental factors (Diggle 1992).  Not 

surprisingly then studies of floral development have made significant contributions to 

understanding the evolution of plant mating systems.  When available, phylogenetic 

hypotheses concerning the taxa studied can be merged with variation in their 

developmental patterns to identify possible evolutionary pathways by which new 

morphologies emerged (e.g., Guerrant 1982; Hufford 1995; Kellogg 1990; Friedman and 

Carmichael 1998). 

The understanding of the evolution of distyly has been hampered by a lack of 

data, particularly on floral development.  Fewer than 20 papers during the last 100 years 

have critically examined how the different forms of flowers present in heterostylous 

species arose (Cohen 2008), and the majority of them focused on tristylous species 

(Faivre 2000; Hernandez and Ornelas 2007).  In one review, Richards and Barrett (1992) 

concluded that variation in floral organ development among families derives from 

independent evolutionary events that led to tristyly.  While they predicted that the same 

could be true for distyly, they lacked information on distylous floral development in a 

sufficient number of species to test this hypothesis (see Table 5.1).    

Despite the limited number of distylous species studied, at least four distinct 

developmental pathways have been characterized for achieving the distinct difference 
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 Table 5.1   Published studies on floral development in various distylous species. 

________________________________________________________________ 
Species   Family  Publication____________ 
Primula spp.   Primulaceae  Stirling 1932 
Faramea suerrensis   Rubiaceae   Richards and Barrett 1992 
Guettarda scabra   Rubiaceae  Richards and Koptur 1993 
Quinchamalium chilense  Santalaceae   Riveros et al. 1995  
Hedyotis salzmannii   Rubiaceae  Riveros et al. 1995  
Psyochotria spp.   Rubiaceae   Faivre 2000  
Bouvardia ternifolia   Rubiaceae   Faivre 2000 
Primula vulgaris   Primulaceae   Webster and Gilmartin 2006  
Linum spp.    Linaceae   Arbruster et al. 2006  
Palicourea padifolia   Rubiaceae  Hernandez and Ornelas 2007  
Lithospermum spp.   Boraginaceae   Cohen et al. 2008  
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observed in stigma height between pin and thrum flowers, and at least two developmental 

patterns contribute to differences in anther height between the morphs (Faivre 2000; 

Cohen 2010).  It is therefore likely that additional developmental pathways will be 

identified as more distylous species are studied (Cohen 2010).  

Here I quantitatively compared the initiation, rate, and termination of growth 

between the stamens and stigmas in the distylous H. caerulea in order to establish when 

and how the floral morphogy of pins and thrums diverged.  These observations are 

compared to developmental patterns reported for other distylous species and to putative 

phylogenies of these taxa to produce inferences about the frequency and pattern by which 

distyly evolved. 

Materials and Methods 

In May 2008, 212 pin buds and 219 thrum buds at various stages of development 

were collected from five populations of H. caerulea in northeastern Ohio (populations #2 

and #4 in Bedford; #9 in Rocky River; #10 in North Chagrin; and #13 in Brecksville).  

Buds were chosen in manner that included the widest range of development possible, 

although the smallest buds were selected first in order to ensure their adequate 

representation in the data set given a short growing season.  All buds were preserved in 

80% ethanol.  Buds were dissected to measure bud length, stigma height, and anther 

height using an Olympus SZX12 dissecting microscope equipped with an ocular 

micrometer.   

Bud size and floral organ measurements were log-transformed for analyses to 

normalize data.  Size of developing stigmas and anthers were analyzed against total bud 
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length using linear regression analyses (Proc GLM; SAS Institute 2002) both with and 

without a second-order term in the model to determine if the relationship could best be 

described as curvilinear or linear.  Bud length provided a relative estimate of time to 

which stigma height and anther height were compared in pin and thrum morphs. 

Results 

Differences in anther height made the pins and thrums distinguishable when the 

bud length was less than one millimeter, which indicated that variation in growth rates 

occurs very early in development (Fig. 5.1).  In both morphs, the filament serves only to 

attach the anther to the inner surface of the corolla tube and made no contribution to the 

height of the anther.  When the results from all five populations sampled were pooled and 

log-transformed, the linear term (P < 0.0001) explained most of the variation in the 

relationship between bud length and anther length in both pin (r2 = 0.877) and thrum (r2 = 

0.950) flowers (see Tables 5.1, 5.2, 5.3, and 5.4).  A second-order term did not increase r2 

significantly in either morph (P = 0.175, n.s.).  Thus, the relative growth of bud length 

versus anther height in both pins and thrums was described by a best fit linear equation.  

The slope of these lines differed significantly between morphs, however, with a slope for 

the pin flowers of 0.43 ± 0.01, while that of the thrums was 0.69 ± 0.01 (see Tables 5.2 

and 5.3).  Importantly, these slopes also were significantly less than one [pins 

(P<0.0001); thrums (P<0.0001)].  

Intermorph differences in stigma development were not as straightforward as 

those in anthers (see Fig. 5.2).   The slope of bud length versus stigma height again 

differed significantly between morphs, but for stigma growth, shape as well as magnitude 

of growth rate varied.  The slope based only on linear regression for the pin flowers was 
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0.97 ± 0.17, while that of the thrums was faster at 1.40 ± 0.11 (see Table 5.2).  The 

relationship between bud length and stigma height for pins could be described solely by 

the linear term, (r2 = 0.836, P < 0.0001), and a second-order term did not increase r2 

significantly (P = 0.706, n.s.).  Thus, the relative growth of bud length versus stigma 

height in pin morphs was described as isometry, meaning the slope was not different 

from one.   

This relationship in thrums possessed some curvilinear characteristics (see Tables 

5.4 and 5.5).  Both the linear (P < 0.0001) and the second-order (P < 0.0001) terms were 

necessary to describe the relationship between the development of buds and stigmas in 

thrum flowers.  Growth began at a rate significantly faster than one (a slope of 2.44 ± 

0.30 for the range 0-1.5 mm) and then tapered off significantly (P < 0.0001) for buds 

larger than 1.5 mm (to 0.38 ± 0.08). 

Discussion 

Anthers grew more slowly than buds as apparent from slopes significantly less 

than one in pins and thrums indicative of a negative allometric relationship with bud 

elongation in both morphs. The growth rate was uniform for both morphs, but thrum 

anthers grew faster than pin anthers.  Thus, dimorphy in anther height developed from a 

significant difference in growth rates between anthers and whole buds beginning in early 

stages of bud elongation. 

This relationship for the development of differences in anther size occurs in many 

of the distylous species studied thus far (Riveros et al 1987; Richards and Barrett 1992; 

Richards and Koptur 1993; Faivre 2000; Hernandez and Ornelas 2007; Cohen et al. 

2008).  In fact, the only other variation that has been observed for anthers is that, in  

 
89 
 

 
 

 



                                                                                                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

A
nt

he
r L

en
gt

h 
(m

m
)

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

A.

F.E.

D.C.

B.
A

nt
he

r L
en

gt
h 

(m
m

)

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

A.

F.E.

D.C.

B.

 
 
Figure 5.1  Anther development in pin and thrum floral morphs across five populations 
of H. caerulea: A = population 2; B = population 4; C = population 9; D = population 10;  
E = population 13; F = all populations combined.  Data of bud lengths (mm) versus 
anther heights (mm) were plotted for each bud collected.   
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Figure 5.2  Stigma development in pin and thrum floral morphs across five populations 
of H. caerulea: A = population 2; B = population 4; C = population 9; D = population 10;  
E = population 13; F = all populations combined.  Data of bud lengths (mm) versus 
stigma heights (mm) were plotted for each bud collected.   
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Table 5.2.  Linear regression analysis of relative growth rate of anther heights against 
bud length and stigma heights against bud length for pin and thrum floral morphs across 
five populations of H. caerulea.  
 

ANTHER HEIGHT 
 

Pin 
 

        Locality            Slope       y-intercept  P           r2   N 
  2      0.39 ± 0.03       0.15 ± 0.03     < 0.0001      0.835   42 
  4      0.42 ± 0.02       0.15 ± 0.02     < 0.0001      0.875   59 
  9      0.47 ± 0.02       0.08 ± 0.02     < 0.0001      0.937   31 
10      0.47 ± 0.02       0.10 ± 0.02     < 0.0001      0.920   46 
13      0.46 ± 0.03       0.12 ± 0.03     < 0.0001      0.855   34 

       Overall      0.43 ± 0.01       0.13 ± 0.01     < 0.0001      0.877 212 
       

Thrum 
 

  2      0.69 ± 0.04       0.03 ± 0.03     < 0.0001      0.902   43 
  4      0.73 ± 0.02       0.03 ± 0.02     < 0.0001      0.962   47 
  9      0.69 ± 0.02       0.06 ± 0.02     < 0.0001      0.945   50 
10      0.68 ± 0.02       0.06 ± 0.02     < 0.0001      0.953   43 
13      0.67 ± 0.02       0.08 ± 0.01     < 0.0001      0.973   36 

       Overall      0.69 ± 0.01       0.05 ± 0.01     < 0.0001      0.950 219 
 

    STIGMA HEIGHT 
   

Pin 
   
        Locality            Slope       y-intercept  P           r2   N 

  2      1.00 ± 0.05       0.03 ± 0.04     < 0.0001      0.906   42 
  4      0.82 ± 0.04      -0.24 ± 0.03     < 0.0001      0.876   59 
  9      0.92 ± 0.04      -0.06 ± 0.04     < 0.0001      0.946   31        
10      0.88 ± 0.07      -0.003±0.06     < 0.0001      0.788   46 
13      1.02 ± 0.09      -0.22 ± 0.08     < 0.0001      0.796   34 

        Overall      0.91 ± 0.03      -0.06 ± 0.02     < 0.0001      0.836 212 
 

Thrum 
   

  2      0.64 ± 0.05       0.01  ± 0.04     < 0.0001      0.791   43 
  4      0.64 ± 0.04       0.007± 0.04     < 0.0001      0.841   47 
  9      0.54 ± 0.04      -0.08  ± 0.04     < 0.0001      0.827   50 
10      0.73 ± 0.05      -0.08  ± 0.04     < 0.0001      0.845   43 
13      0.83 ± 0.05      -0.17  ± 0.04     < 0.0001      0.873   36 

        Overall      0.67 ± 0.02      -0.04  ± 0.02     < 0.0001      0.840 219 
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Table 5.3  Two-way analysis of variance demonstrating the effect of morph and locality 
on anther heights and the effect of morph and locality on stigma heights. 
 

Anther Height vs. Bud Length 
__________________________________________________________________ 
Source                          DF            MS                 F Value________P____     
  
Morph      1                   0.04                    21.58          < 0.0001 
Locality                          4                   0.001                    0.37             0.828 
LogBL                            1        8.48            4794.66          < 0.0001 
Morph*Locality             4                   0.003                    1.72             0.144 
LogBL*Morph              1                   0.40                  228.21          < 0.0001 
LogBL*Locality            4                   0.001            0.65             0.627 
logBL*Morph*Locality          4                   0.004                    2.03              0.090 
Error                      411      0.002 
 
 

Stigma Height vs Bud Length 
__________________________________________________________________ 
Source                          DF            MS                 F Value________P____     
 
Morph      1                   0.02             2.13            0.145 
Locality                          4                   0.05             6.42         < 0.0001 
LogBL                            1                 17.00                2185.45         < 0.0001 
Morph*Locality             4                   0.02                      2.05            0.087 
LogBL*Morph              1                   0.42                    53.63         < 0.0001 
LogBL*Locality            4                   0.03                      4.09            0.003 
logBL*Morph*Locality          4                   0.02                      1.98            0.096 
Error                      411      0.008 
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Table 5.4  Linear and curvilinear regression analysis of relative growth rate of anther 
heights against bud length and stigma heights against bud length for pin and thrum floral 
morphs across five populations of H. caerulea.   A second order term is included in the 
analysis. 
 

ANTHER HEIGHT 
      

Pin 
             polynomial  
Locality          X2            X      y-intercept       P(x2)  P(x)            r2

      2     0.08    ± 0.12  0.25 ± 0.21      0.20 ± 0.08       0.507         0.230         0.837 
      4    -0.01   ± 0.08   0.43 ± 0.14      0.14 ± 0.05       0.939         0.003         0.875 
      9     -0.004 ± 0.08   0.48 ± 0.14      0.08 ± 0.06       0.960         0.001         0.937 
    10    -0.02   ± 0.07   0.50 ± 0.11      0.09 ± 0.04       0.761      < 0.0001       0.920 
    13    -0.002 ± 0.13   0.46 ± 0.23      0.12 ± 0.09       0.988         0.051         0.855 
Overall  -0.01   ± 0.04   0.45 ± 0.07       0.12 ± 0.03 0.840      < 0.0001       0.877 
         

Thrum 
     
      2     0.22  ± 0.13     0.33 ± 0.22      0.17 ± 0.09       0.102         0.149         0.908 
      4     0.08  ± 0.08     0.59 ± 0.15      0.09 ± 0.06       0.351         0.0003       0.963 
      9     0.04  ± 0.08     0.61 ± 0.16      0.10 ± 0.07       0.639         0.0003       0.945 
    10    -0.02  ± 0.08     0.71 ± 0.12      0.05 ± 0.05       0.802      < 0.0001       0.953 
    13     0.06  ± 0.08     0.57 ± 0.13      0.11 ± 0.04       0.467      < 0.0001       0.973 
Overall   0.09  ± 0.04  0.54 ± 0.06       0.11 ± 0.03       0.019      < 0.0001       0.951 

 
STIGMA HEIGHT 

       
Pin 

                            polynomial  
Locality          X2            X      y-intercept       P(x2)  P(x)            r2

      2     0.01 ± 0.23     0.98 ± 0.39    -0.14 ± 0.16       0.962         0.016         0.906 
      4    -0.37 ± 0.16     1.43 ± 0.26    -0.19 ± 0.10       0.021      < 0.0001       0.887 
      9    -0.28 ± 0.13     1.39 ± 0.22    -0.24 ± 0.09       0.040      < 0.0001       0.954 
    10     0.12 ± 0.23     0.69 ± 0.36     0.06 ± 0.13       0.598         0.064         0.789 
    13    -0.18 ± 0.36     1.31 ± 0.62    -0.33 ± 0.25        0.634         0.042         0.800 
Overall  -0.04 ± 0.10     0.97 ± 0.17    -0.08 ± 0.06       0.706      < 0.0001       0.836 
         

Thrum 
 
      2    -0.30 ± 0.19     1.13 ± 0.32     -0.20 ± 0.13        0.129         0.001         0.803 
      4    -0.38 ± 0.15     1.32 ± 0.27     -0.27 ± 0.12        0.014      < 0.0001       0.861 
      9    -0.48 ± 0.11     1.42 ± 0.20     -0.29 ± 0.09     < 0.0001   < 0.0001        0.879 
    10    -0.47 ± 0.14     1.49 ± 0.23     -0.34 ± 0.09        0.002      < 0.0001       0.878 
    13     0.06 ± 0.24     0.73 ± 0.36     -0.14 ± 0.12        0.794      < 0.053         0.874 
Overall  -0.43 ± 0.06     1.40 ± 0.11     -0.31 ± 0.04     < 0.0001    < 0.0001       0.868 
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Table 5.5   Two-way analysis of variance demonstrating the effect of morph and locality 
on anther heights and the effect of morph and locality on stigma heights with and without 
a second-order term. 
 

Anther Height vs. Bud Length 
__________________________________________________________________ 
Source                          DF            MS                 F Value________P____     
 
Morph      1           0.001        0.39  0.531 
Locality                          4           0.002        0.88            0.475 
LogBL                            1                  0.16          87.01         < 0.0001 
PolyBL                            1                   0.003            1.84      0.175 
Morph*Locality             4             0.0001              0.10            0.984 
LogBL*Morph              1              0.003              1.64            0.201 
PolyBL*Morph              1        0.002              1.11            0.293 
LogBL*Locality            4               0.002              0.93            0.448 
PolyBL*Locality            4              0.001                     0.75            0.556 
logBL*Morph*Locality           4               0.0001              0.05      0.995 
PolyBL*Morph*Locality        4              0.0002             0.14      0.969 
Error                      401      0.002 
 
 
 
 

Stigma Height vs Bud Length 
__________________________________________________________________ 
Source                          DF            MS                 F Value________P____     
 
Morph      1           0.006        0.88 0.348 
Locality                          4           0.003        0.41  0.801  
LogBL                            1                   0.901        122.35         <0.0001 
PolyBL                            1                   0.091          12.34     0.0005 
Morph*Locality             4             0.01              1.78 0.1316     
LogBL*Morph              1              0.001              0.08 0.782     
PolyBL*Morph              1        0.01              1.82           0.178 
LogBL*Locality            4               0.005             0.63           0.639 
PolyBL*Locality            4              0.008                     1.06           0.376 
logBL*Morph*Locality           4               0.01              1.37     0.242 
PolyBL*Morph*Locality        4              0.01             1.36     0.248 
Error                      401      0.007 
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addition to the differences in relative growth rates of the bud, variation in the amount of 

filament elongation can also account for differences in anther heights between the morphs 

(Riveros et al 1995; Faivre 2000).   

Both patterns are found within the family Rubiaceae.  Species with anther 

development similar to H. caerulea include: Guettarda scabra (Rubiaceae) (Richards and 

Koptur 1993), Bouvardia ternifolia (Rubiaceae) (Faivre 2000), Primula vulgaris 

(Webster and Gilmartin 2006), Quinchamalium chilense (Santalaceae) (Riveros et al 

1987), and species of Lithospermum (Cohen et al. 2008).  Intermorph differences in 

filament height contribute to difference in anther height between the two morphs in 

Hedyotis salzmanii (Rubiaceae) (Riveros et al. 1995), Palicourea padifolia (Hernadez 

and Ornelas 2007) and some species of Psychotria (Rubiaceae) (Faivre 2000). Because 

Hedyotis caerulea and one of its congeners, H. salzmannii, appear to have different 

patterns of anther development, the distylous conditions that currently exist in these two 

species may have arisen independently. 

 The two Hedyotis species also differ in their patterns of stigma development 

supporting an independent evolution of distyly in Hedyotis.   In H. caerulea, a visual 

inspection of the plots for stigma heights vs. bud length in thrums showed that, as the bud 

continues to grow, elongation of the stigma slows down or possibly levels off, producing 

a curvilinear growth pattern described by the second-order equation.  In pins the stigma 

elongates at a constant rate as the bud grows, resulting in a linear pattern of development.  

In H. salzmannii (Riveros et al 1995), however, as well as in Bouvardia ternifolia (Faivre 

2000), differences in stigma height between morphs arises from uniform variation in rates 

of stylar growth during development similarly to the pattern of differences that 
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contributed to variation in pins found here.  The complex development of H. caerulea is 

not unique, however, as a similar pattern was also observed in Guettarda scabra 

(Richards and Koptur 1993) in which thrum stylar growth merely decreases, and in 

species of Lithospermum (Cohen et al 2008) where thrum stylar growth ceased.   
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CHAPTER VI 

SUMMARY AND FUTURE RESEARCH 

 
 
 In order to assess the evolutionary stability of distyly in Hedyotis caerulea, two 

questions need to be answered to a reasonable degree.  (1) Is this species truly distylous?  

In other words, does the species display the entire suite of traits, both structural and 

functional, that are characteristic of distyly?  And, (2) is it still possible for natural 

selection to act upon the genetic variation that exists in populations of H. caerulea, thus 

allowing further evolution to occur? 

 Concerning the first question, a distylous species has three signature 

characteristics: stigma/anther dimorphism with reciprocal herkogamy, a physiologically 

enforced self-incompatibility system, and ancillary floral polymorphisms (Ganders 1979).  

Population sampling, measurement of stigmas and anthers of flowers collected, and 

morphometric analysis of the data indicate the presence of two distinct floral morphs in 

which the average stigma height of one morph is roughly equal to the anther height of the 

other, and the average anther height of the first morph is equal to the stigma height of the 

second (i.e., they show reciprocal herkogamy).  The classical interpretation of the 

adaptive significance of reciprocal herkogamy is that it allows the placement of pollen on 
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the body of insect pollinators in the positions that promote outcrossing and minimize 

pollen waste to illegitimate crosses.  Quantitative analysis of floral measurements 

suggests that the heights of stigmas and anthers in H. caerulea afford a degree of 

reciprocal herkogamy within a range displayed by other distylous species.    

While attempts in this study to directly measure the degree of self-incompatibility 

in this species failed, nearly all populations surveyed were isoplethic.  This observation is 

consistent with populations in which mating is disassociative and individuals are highly 

self-incompatible.  Thus, it appears that the pin and thrum floral morphs comprise distinct 

mating types.  Further, it suggests that both self- and intramorph fertilization are largely 

prevented, in favor of cross-fertilization.   Since no significant differences were found 

between the morphs in paternal fitness (as measured by production of pollen) and 

maternal fitness (as measured by production of seed), no further gender specialization is 

expected. 

As is characteristic of distylous species, H. caerulea displayed several distinct 

ancillary floral polymorphisms, including shape of corolla tube, papilla size, and pollen 

size.  Morphometric analysis indicated that these differences were highly significant.  

Thus, H. caerulea possesses the third defining trait of distyly, which confirms that distyly 

in H. caerulea is complete with no existing proclivity towards selfing or dioecy. 

However, is this mating system stable from an evolutionary perspective?  Since 

natural selection can only act on genetically variable traits, this species must have a 

degree of variation in its fitness traits, such as size and position of its reproductive 

organs.  Statistical analysis of the measurements of each of the floral characters 

investigated revealed a significant, and often considerable, degree of variation among 
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populations.  Because of the relatively homogenous environmental conditions of the 

localities sampled, a major source of that variation is most likely genetic.  

Characterization of the patterns of early floral development in this species indicated that 

it differs from at least one of its congeners in this regard, indicating independent 

evolutionary events led to distyly in H. caerulea. Therefore, as shown in H. caerulea, 

distyly appears to be a highly stable mating system, capable of being modified by natural 

selection as the need arises.   

While bluets are delicate plants that live above ground only seven or eight weeks 

per year, two characteristics of this species help explain its apparent success.  When 

environmental conditions are conducive to growth, bluets display a significant amount of 

clonal growth through rhizomes which very quickly increases the number of flowers 

capable of sexual reproduction.  Secondly, bluets are perennials.  When environmental 

conditions are unfavorable, many of the plants remain dormant until the next favorable 

growing season.  Light appears to be a significant environmental factor regulating the 

number of plants flowering each year.  As ephemeral flowers, they tend to bloom in the 

spring before other plants have grown enough foliage to compete with the bluets for 

sunlight.  Once they can no longer successfully compete for sufficient light, the flowers 

completely die back until the following spring. 

Even after conducting this dissertation research, H. caerulea should still be 

considered an understudied species.  Its range includes most of eastern North America.  

Expansion of this study could simply involve broadening the geographic range.  The 

focus could also be broadened from a single species to the entire genus.  Several 

congeners are endemic to North America, some of which are not distylous.  Comparisons 
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among other Hedyotis species would allow the testing of hypotheses concerning the 

evolution of distyly and correlated changes in floral morphology.  If greenhouse 

populations could be established, controlled pollination programs could be conducted to 

further characterize the degree of self-incompatibility with this species.  Molecular 

studies of the genetic basis of distyly and its mechanism of self-incompatibility are in 

their infancy.  H. caerulea could be explored as a potential model for such approaches.    
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