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2. Hysteretic systems

A general class of hysteretic systems is described in this
section. The time scales for nonlinearities other than hysteresis,
such as thermal drift and voltage creep, are normally orders of
magnitude slower than that of hysteresis and are herein ignored.
The choice is made, in the spirit of singular perturbation theory
but as assumption, to address hysteresis decoupled from slower
nonlinearities.

2.1. Hysteresis nonlinearity

Hysteretic response may be at times 20% or more nonlinear.
The issues caused by this nonlinearity are exacerbated in
many applications where the normal operating environment
requires transiting the hysteretic region constantly and rapidly.
A consequence of this hysteresis is the limited bandwidth
of operation, achieving desired performance only at reduced
operating speeds.

2.2. Typical hysteretic systems

In the various investigated hysteresis models, the physical
responses of hysteretic processes are unique to each, and differ in
symmetry, saturation, and swept area, but are generally similar in
their anhysteretic small signal response and large signal saturation.
Various hysteresis operators have strengths and weaknesses in
their capabilities to accurately represent these differences, and
this is critical when one is dependent on that model for control.
However, the ability to represent the rate independent memory of
hysteresis in the actuator model is necessary to best demonstrate
the strength of any controller. The proposed controller does not
depend on the model of hysteresis. Its stability and ability to reject
disturbance depend on the bounded nature of the disturbance.

Let us consider a general class of hysteretic systems. The full
motion equation can be reformulated as:

x(n)(t) = f

x(n−1)(t), x(n−2)(t), . . . , x(t), dt(t)


+ bu (t) (1)

where dt refers to the total disturbance including linear and
nonlinear disturbances with unknown characteristics. The various
linear elastic terms and nonlinear contributions from hysteresis,
creep, drift, etc. are combined as part of the generalized nonlinear
function f (·), simply denoted as f .

This reformulation of the motion control problem in (1) leads
us to a new solution shown in the next section. The key idea is the
recognition that the control design does not have to necessarily
depend on the exact mathematical expression of f , so long as its
value can be estimated in real time from the input and output data,
i.e. x(t) and u(t). If a good estimate of f can be obtained from an
observer, say the ESO, then by canceling f , using its estimate, the
control system is reduced to a simple repeating real pole controller
design for the nominal n-dimension integral plant. Such design
strategy of actively rejecting the unknown based on its real time
estimation is known as ADRC, as described below.

3. Active disturbance rejection control

The prevailing technique for hysteresis compensation has been
model inversion, which achieves resolution and precision, but
must be calibrated for each application and is computationally
intense to operate in real time. This research proposes an entirely
different hysteresis compensation: treat the nonlinear hysteresis
as a common disturbance to the desired linear response, and
actively reject that disturbance to present a compensated system
to the controller which responds linearly, indeed as a simple
n-dimension integrator. An ESO is implemented wherein the

effect of the hysteresis nonlinearity is treated as disturbance
and canceled. The hysteresis will be compensated such that
the resulting equivalent n-dimension integrator presented to the
position controller may then be easily managed by a proportional
plus derivative (PD) control. The explanation of the ADRC/ESO
contained in this section, in the interest of clarity, will be described
for a common second order system. The ESO, ADRC, and their
convergence analyses for a general nth order system are given
in [24].

3.1. Extended state observer design

Let ξ1 = x, ξ2 = ẋ, ξ3 = f and ξ = [ξ1 ξ2 ξ3]
T . Assuming f

is differentiable, the state space form of (1) is
ξ̇ = Aξ + Bu + Eh
x = Cξ

(2)

where A =


0 1 0
0 0 1
0 0 0


, B =


0
b
0


, C =


1 0 0


, E =


0
0
1


,

ξ3 = f is the augmented state, and h = ḟ . A continuous ESO for (2)
is designed as

˙̂
ξ = Aξ̂ + Bu + L(x − x̂)
x̂ = C ξ̂

(3)

where L =

l1 l2 l3

T is the observer gain vector. The observer
gains are chosen such that the characteristic polynomial s3+ l1s2+

l2s + l3 is Hurwitz. For tuning simplicity, all the observer poles are
placed at −ωo. It results in the characteristic polynomial of (3) to
be

λo(s) = s3 + l1s2 + l2s + l3 = (s + ωo)
3 (4)

where ωo is the observer bandwidth and L =

3ωo 3ω2

o ω3
o

T
.

Generally, the larger the observer bandwidth, themore accurate
the estimation. However, a large observer bandwidth will increase
noise sensitivity. Therefore a proper observer bandwidth should
be selected in a compromise between the estimation performance
and the noise tolerance.

3.2. Control algorithm

Once the observer is designed and well tuned, its outputs will
track ξ1, ξ2, and ξ3 respectively. By canceling the effect of f using
ξ̂3, ADRC actively compensates for f in real time. The ADRC control
law is given by

ud =

k1

r − ξ̂1


+ k2


ṙ − ξ̂2


− ξ̂3 + r̈

b
(5)

where r is the desired trajectory, k1 and k2 are the controller gain
parameters selected to make s2 + k2s+ k1 Hurwitz. For simplicity,
let k1 = ω2

c , k2 = 2ωc , where ωc is the controller bandwidth. The
closed-loop system for the system (1) becomes

ẍ =


f − ξ̂3


+ k1


r − ξ̂1


+ k2


ṙ − ξ̂2


+ r̈. (6)

Note that with awell-designed ESO, the first term in the right hand
side (RHS) of (6) is negligible and the rest of the terms in the RHS
of (6) constitute a PD controller with a feedforward gain.

In practice, the controller bandwidth ωc is tuned based on how
fast we want the output to track the set point. A large controller
bandwidth generally increases the response speed but it may push
the system to its limit, leading to oscillations or even instability.
Thus the controller bandwidth should be adjusted based on the



competing requirements of performance and stability margin,
together with noise sensitivity. In addition, a large controller
bandwidth usually increases the magnitude and rate of change in
control signal, and therefore the operation cost.

The convergence for the estimation error of the ESO and the
closed-loop tracking error of ADRC is shown below.

3.3. Stability

(1) Convergence of the ESO
Let ξ̃i (t) = ξi (t) − ξ̂i (t), i = 1, 2, 3. From (2) and (3), the

observer estimation error dynamics can be shown as

˙̃
ξ 1 = ξ̃2 − l1ξ̃1
˙̃
ξ 2 = ξ̃3 − l2ξ̃1 (7)
˙̃
ξ 3 = h − l3ξ̃1.

Now let us scale the observer estimation error ξ̃i (t) byωi−1
o , i.e., let

εi (t) =
ξ̃i(t)
ωi−1
o

, i = 1, 2, 3. Then (7) can be rewritten as

ε̇ = ωoAεε + Bε

h (ξ , dt)
ω2

o
(8)

where Aε =


−3 1 0
−3 0 1
−1 0 0


, Bε =


0
0
1


,and dt refers to the total

disturbance.

Theorem 1. Assuming h (ξ , dt) is bounded, then there exist a con-
stant σi > 0 and a finite time T1 > 0 such that

ξ̃i (t) ≤ σi,

i = 1, 2, 3, ∀t ≥ T1 > 0 and ωo > 0. Furthermore, σi = O


1
ωk
o


,

for some positive integer k.

Proof. Solving (8), we can obtain

ε (t) = eωoAε tε (0) +

 t

0
eωoAε(t−τ)Bε

h (ξ (τ ) , dt)
ω2

o
dτ . (9)

Let

p (t) =

 t

0
eωoAε(t−τ)Bε

h (ξ (τ ) , dt)
ω2

o
dτ . (10)

Since h (ξ (τ ) , dt) is bounded, that is, |h (ξ (τ ) , dt)| ≤ δ, where δ
is a positive constant, it follows that

|pi (t)| ≤
δ

ω3
o

A−1
ε Bε


i

+ A−1
ε eωoAε tBε


i

 (11)

for i = 1, 2, 3. Since A−1
ε =


0 0 −1
1 0 −3
0 1 −3


, One has

A−1
ε B


i

 =


1|i=1
3|i=2,3.

(12)

Since Aε is Hurwitz, there exists a finite time T1 > 0 such thateωoAε t

ij

 ≤
1
ω3

o
(13)

for all t ≥ T1, i, j = 1, 2, 3. HenceeωoAε tB

i

 ≤
1
ω3

o
(14)

for all t ≥ T1, i = 1, 2, 3. Note that T1 depends on ωoAε.

Let A−1
ε =


s11 s12 s13
s21 s22 s23
s31 s32 s33


and eωoAε t =


d11 d12 d13
d21 d22 d23
d31 d32 d33


. One hasA−1

ε eωoAε tBε


i

 = |si1d13 + si2d23 + si3d33|

≤


1
ω3

o


i=1

4
ω3

o


i=2,3

(15)

for all t ≥ T1. From (11), (12) and (15), we obtain

|pi (t)| ≤
3δ
ω3

o
+

4δ
ω6

o
(16)

for all t ≥ T1, i = 1, 2, 3. Let εsum (0) = |ε1 (0)|+|ε2 (0)|+|ε3 (0)|.
It follows thateωoAε tε (0)


i

 ≤
εsum (0)

ω3
o

(17)

for all t ≥ T1, i = 1, 2, 3. From (9), one has

|εi (t)| ≤
eωoAε tε (0)


i

+ |pi (t)| . (18)

Let ξ̃sum (0) =

ξ̃1 (0)
 + ξ̃2 (0)

 + ξ̃3 (0)
. According to εi (t) =

ξ̃i(t)
ωi−1
o

and (16)–(18), we have

ξ̃i (t) ≤

 ξ̃sum (0)
ω3

o

+ 3δ

ω4−i
o

+
4δ

ω7−i
o

= σi (19)

for all t ≥ T1, i = 1, 2, 3. �

It is shown above that in the absence of the plant model,
the estimation error of the ESO (3) is bounded and its upper
boundmonotonously decreases with the observer bandwidth. The
meaning of the assumption that h (ξ , dt) is bounded is: there is a
limit to the rate of change in the physical world, or no change is
instantaneous. When f is a composite variable that changes very
rapidly, the magnitude of ḟ can be quite large, though bounded. In
this case, the observer bandwidth needs to be sufficiently large for
an accurate estimate of f .

The convergence of ADRC, where ESO is employed, is analyzed
next.

(2) Convergence of the ADRC
Let [r1, r2, r3]T = [r, ṙ, r̈]T and ei (t) = ri (t) − ξi (t), i = 1, 2.

Theorem 2. Assuming that h is bounded, there exist a constant ρi >
0 and a finite time T3 > 0 such that |ei (t)| ≤ ρi, i = 1, 2, ∀t ≥

T3 > 0, ωo > 0 and ωc > 0.

Furthermore, ρi = O


1
ω
q
c


for some positive integer q.

Proof. From (5), one has

u =

k1

e1 + ξ̃1


+ k2


e2 + ξ̃2


−


ξ3 − ξ̃3


+ r3

b
. (20)

It follows that

ė1 = ṙ1 − ξ̇1 = r2 − ξ2 = e2

ė2 = −k1

e1 + ξ̃1


− k2


e2 + ξ̃2


− ξ̃3.

(21)

Let e (t) = [e1 (t) , e2 (t)]T , ξ̃ (t) =


ξ̃1 (t) , ξ̃2 (t) , ξ̃3 (t)

T
, then

ė (t) = Aee (t) + Aξ̃ ξ̃ (t) (22)



where Ae =


0 1

−k1 −k2


and Aξ̃ =


0 0 0

−k1 −k2 −1


.

Solving (22), we have

e (t) = eAete (0) +

 t

0
eAe(t−τ)Aξ̃ ξ̃ (τ ) dτ . (23)

According to (22) and Theorem 1, one has
Aξ̃ ξ̃ (τ )


i=1

= 0Aξ̃ ξ̃ (τ )

2

 ≤ ksumσ = γ for all t ≥ T1
(24)

where ksum = 1+ k1 + k2. Let ϕ (t) =
 t
0 eAe(t−τ)Aξ̃ ξ̃ (τ ) dτ . Define

Ψ = [0 γ ]T . It follows that

|ϕi (t)| ≤
A−1

e Ψ

i

+ A−1
e eAetΨ


i

 . (25)

Since A−1
e =


−

k2
k1

−
1
k1

1 0


=


−

2
ωc

−
1

ω2
c

1 0


,we have

A−1
e Ψ


1

 =
γ

ω2
cA−1

e Ψ

2

 = 0.
(26)

Since Ae is Hurwitz, there exists a finite time T2 > 0 such thateAetij ≤
1
ω3

c
(27)

for all t ≥ T2, i, j = 1, 2. Note that T2 depends on Ae. Let eAet =
o11 o12
o21 o22


and esum (0) = |e1 (0)| + |e2 (0)|. It follows that

eAete (0)

i

 ≤
esum (0)

ω3
c

(28)

for all t ≥ T2, i = 1, 2. Let T3 = max {T1, T2}. We haveeAetΨ i ≤
γ

ω3
c

(29)

for all t ≥ T3, i = 1, 2, and

A−1
e eAetΨ


i

 ≤


1 + 2ωc

ω2
c

γ

ω3
c


i=1

γ

ω3
c


i=2

(30)

for all t ≥ T3. From (25), (26) and (30), we obtain

|ϕi (t)| ≤


γ

ω2
c

+
1 + 2ωc

ω2
c

γ

ω3
c


i=1

γ

ω3
c


i=2

(31)

for all t ≥ T3. From (23), one has

|ei (t)| ≤
eAete (0)


i

+ |ϕi (t)| . (32)

According to (28), (31)–(32), we have the equations given in
Box I). �

It has been shown above that, with plant dynamics largely
unknown, the tracking error and its derivative are bounded and
their upper bounds monotonously decrease with the observer and
controller bandwidths. With the convergence of ESO and ADRC
established, the simulation test results are presented below.

Fig. 1. Semi linear hysteretic system of (34).

4. Simulation tests

In this section, a typical hysteretic system is investigated to test
the effectiveness of ADRC. Consider the following system:

anx(n)
+ an−1x(n−1)

+ · · · + a0x = Φ(u + d1) + d2 (34)

where d1 and d2 are unknown disturbances. The system is shown
in Fig. 1, representing the semi linear system (34).

The proposed ADRC is applied to the above semi linear system
to demonstrate the capability to compensate for hysteresis. The
hysteresis operator Φ(u + d1) in the model is a unit normalized
(α0 = 1, β0 = −1) Preisach operator constructed from system
response data. The operator is pre scaled and post scaled according
to the u(t) input measure dimension in the model. The simulation
is normalized within a range of reference xr = ±1 ref unit.

Fig. 2 represents the response of output versus input for
the hysteresis data used for this simulation. The figure vividly
illustrates major and minor hysteretic trajectories for increasing
and decreasing input. One can readily see the response is not
symmetric about the linear unit gain slope and introduces
a very significant (>50%) offset delay during both positive
and negative input transitions. This hysteresis response is not
only asymmetric about the unit slope, it is observed not
even complementary in positive versus negative transitions. The
example is purposefully extreme to best compare the commonly
applied ‘‘inverse hysteresis model’’ compensation with the model
independent ADRC/ESO compensation.

The hysteresis response plot is not continuous (readily observ-
able) as it is interpolated from discrete data points (21 by 21). Finer
resolution can be established at the expense of response speed
when using the inverse model as part of the control in real time.
This latter fact illustrates a major advantage of the ADRC/ESO, as
it does not require the use of an inverse model of the hysteresis
in order to compensate, thus avoiding this significant computation
time penalty.

The linear subsystem used for this demonstration is a well
understood 3rd order system comprised of a single integrator
pole at the origin and two repeated negative real poles at ωn =

1000 rad/s and with DC gain b = ωn
2. This linear system

was chosen as it is unstable, but may easily be made stable and
well controlled using several strategies. The strategy chosen here
assumes a full state feedback controller setting dominant closed
loop negative complex poles at 10 k rad/swith damping at 0.9, plus
one negative real pole at 100 k rad/s. The choice is arbitrary and
illustrative rather than optimized to any cost function, showing a
preference for transient response speed and accuracy over control
energy cost.

Fig. 3 is a plot of the test reference signal used for this demon-
stration, having a peak value of 1 unit, not including any of the
disturbances, offsets, noise, etc. The test reference signal is con-
stituted of a trapezoid with 2 ms rise and fall times approximating
the natural frequency, ωn, of the linear subsystem and an 8 ms ex-
tended quiescent period during which the disturbances and feed-
back noise will be introduced. The trapezoid is followed by 1 1/2
sinusoid cycles at the natural frequency, ωn = 1000 rad/s, of the
linear subsystem. It is necessary here to note the test reference and
disturbances are chosen near the natural dynamic limits of the sys-
tem, many authors cite results of tests much lower in the system’s
dynamic spectrum, which may be easier to control accurately.



|ei (t)| ≤


esum (0)

ω3
c

+


1 + 2ωc + ω2

c


σi

ω2
c

+


1 + 2ωc + ω2

c


(1 + 2ωc) σi

ω5
c


i=1

esum (0) +

1 + 2ωc + ω2

c


σi

ω3
c


i=2

≤ ρi (33)

for t ≥ T3, i = 1, 2, where

ρi = max


esum (0)

ω3
c

+


1 + 2ωc + ω2

c


σi

ω2
c

+


1 + 2ωc + ω2

c


(1 + 2ωc) σi

ω5
c

,
esum (0) +


1 + 2ωc + ω2

c


σi

ω3
c


.

Box I.

Fig. 2. Normalized hysteresis operator response.

Fig. 3. The reference signal.

Fig. 4 shows the timing and magnitude of the control and load
disturbances, d1 and d2 along with the measurement feedback
noise, nf . Disturbance d1 is 0.5 unit pulse which multiplies the
value of the control and then subtracts from the control signal
between 4.7 and 6.3 ms. Disturbance d2 is 0.5 unit pulse which
multiplies the value of the hysteresis output and then adds to
the hysteresis signal between 7.8–9.4 ms. Measurement feedback
noise nf is 0.1 unit peak 0.4 ms duration sinusoid repeated every
4 ms which is added to the measured output feedback signal.
The noise sinusoid frequency varies randomly between 10 and
100 k rad/s.

Fig. 5 indicates the location where disturbance and noise are
introduced into the system during simulation.

4.1. Comparison of four scenarios

Scenario #1: The linear subsystem without hysteresis, con-
trolled using a full state feedback controller designed as described

Fig. 4. The control output, d1 , and hysteresis output, d2 disturbance signals, along
with measurement feedback noise, nf , signal.

previously in this section, and including control disturbance, d1,
and feedback noise, nf , injected as described.

Scenario #2: The linear subsystem with the hysteresis defined
and illustrated in Fig. 2 placed in series as in the semi linear system
of (34) and shown in Fig. 5 including both disturbances and noise as
described. The controller is the same full state feedback controller
as used in scenario #1, without hysteresis compensation.

Scenario #3: The linear subsystem and series hysteresis as in
scenario #2 including both disturbances and noise as described.
The controller is the same full state feedback controller as used
in scenario #1 and #2, however, with the addition of inverse
hysteresis operator compensation, Φ−1(u(t)). The addition of this
inverse operator, Φ−1(u(t)), as part of the controller follows the
most common practice for hysteresis control.

Scenario #4: The linear subsystem and series hysteresis as
in scenario #2 and #3 including both disturbances and noise as
described. The design and tuning of the ADRC/ESO are described
next.

4.2. Design and tuning of the ADRC/ESO

The primary design parameter for the ADRC is the control
signal coefficient b. In the scenario #4, it is known from the linear
subsystemDC gain b = ω2

n . The complete implementation requires
tuning of the observer and controller bandwidth ωo and ωc . One
may optimize tuning by choosing a cost function and utilizing
some iterative search algorithm, or one may quickly arrive at a
usable solution via heuristic. A tuning heuristic is applied in this
simulation whereby the ESO bandwidth, ωo, is set to 100X the
linear system usable bandwidth ωo = 100ωn and the controller
bandwidth ωc = ωo/3. The controller is tuned incrementally by
first doubling or halving the observer bandwidth to approach the
design goals, once near to the desired response one can reduce
the increments. In this simulation scenario the tuning process was
terminated arbitrarily with ωo = 300ωn and ωc = ωo/3 =

100ωn, again showing the same preference for response speed and



Fig. 5. Insertion points for control output, d1 , and hysteresis output, d2 disturbance signals, along with measurement feedback noise, nf , in the simulation.

accuracy over control energy cost as was done for the linear full
state feedback control.

No inverse hysteresis operator is required for this ADRC/ESO
control scenario, the hysteresis is treated as part of the estimated
nonlinear function f (·), as are other unknown disturbance to the
desired response, and compensated directly. The ADRC/ESO design
thus requires minutes versus the hours/days/weeks required to
experimentally measure the hysteresis inverse response data.

4.3. Performance of the ADRC/ESO versus inverse hysteresis compen-
sation using Φ−1(u(t))

The comparison of the four different scenario’s response to
the test reference signal including disturbances and noise are
remarkable.

Fig. 6a illustrates the response of the scenario #1 linear
subsystem with linear full state feedback controller. The phase lag
for the closed loop system measured at 22 ms is 0.2 ms = 11.5°
contributing to a tracking error of ∼9%. One can observe the full
state feedback control responds to the disturbance d1 quite well,
without error. However, the control does not well compensate the
measurement feedback noise, nf , which results in ∼8% error at
10 k rad/s noise frequency, rolling off to ∼2%, as expected, as the
noise frequency rises toward 100 k rad/s. The average absolute
value of error over the 25 ms duration of the simulation is 0.0494
with a corresponding average absolute value of control effort of
3.2623 × 104 (n = 250, 001 samples in 25 ms).

Avg · Abs · Error =


n

m=1

|errorm|


n. (35)

Fig. 6b illustrates the response of the scenario #2 semi linear
system with hysteresis, without compensation. The controller
is the same linear full state feedback controller as scenario
#1. The lack of hysteresis compensation renders the standard
linear full state feedback controller unacceptable. The phase lag
for the closed loop system measured at 22 ms is unchanged,
0.2 ms = 11.5° contributing to a tracking error of ∼9%, so
that the remaining hysteresis offset error is approximately 40%.
It must be noted the recovery response from the disturbance,
d1, at 6.3 ms is coincidental, in that the hysteresis offset and
disturbance offset almost cancel each other, this would not be
true had the disturbance been more or less. The linear controller
does compensate for disturbance, d2, which is not affected by
the hysteresis. The control reacts to measurement feedback noise,
nf , similar to scenario #1, rolling off as expected as the noise
frequency rises toward 100 k rad/s. The uncompensated hysteresis
has increased the average absolute value of error over the 25 ms
duration of the simulation five-fold, to 0.1906, while also requiring
an additional 50 fold increase in average absolute value of control
effort to 1.8246 × 106.

Fig. 6c illustrates scenario #3, the semi linear system with hys-
teresis, now with inverse hysteresis compensation incorporated
in the controller. The positive effect of the compensation is as
expected from the results reported by many authors who have
adopted this now standard linearization methodology. The closed
loop response is very nearly the same as the scenario #1 linear sys-
tem without hysteresis. The phase lag for the closed loop system

Fig. 6a. Scenario #1 result: phase lag error ∼9%, Avg · Abs · Error = 0.0494,
Avg · Abs · Control = 3.2623 × 104 .

Fig. 6b. Scenario #2 result: hysteresis error ∼40%, Avg · Abs · Error = 0.1906,
Avg · Abs · Control = 1.8246 × 106 .

measured at 22ms is unchanged, 0.2ms = 11.5° contributing to a
tracking error of ∼9%, so that the remaining hysteresis offset error



Fig. 6c. Scenario #3 result: phase + hysteresis error ∼10%, Avg · Abs · Error =

0.0491, Avg · Abs · Control = 1.5392 × 108 .

is only ∼1%, similar to the results reported by many authors. The
hysteresis compensated full state feedback controller performs the
job of controlling disturbance d1 and d2 without error. The control
reacts to measurement feedback noise, nf , almost exactly as sce-
nario #1 without hysteresis, rolling off as expected as the noise
frequency rises toward 100 k rad/s. The hysteresis compensated
controller has matched the scenario #1 ‘‘no hysteresis’’ linear sys-
tem average absolute value of error over the 25 ms duration of the
simulation, at 0.0491, however requiring a significant 5000 fold in-
crease in average absolute value of control effort to 1.5392 × 108.
This then sets the standard to which the ADRC/ESO must be com-
pared.

Fig. 6d illustrates the response of the ADRC/ESO design scenario
#4. The reader is reminded the ADRC/ESO has no separate inverse
hysteresis compensator, the hysteresis error is estimated as part
of the unknown disturbance. The character of the ADRC/ESO
response is different in almost every way. The most obvious
difference is the response to disturbance, d1, which is then further
influenced by the hysteresis. The common linear controller with
inverse hysteresis compensation, scenario #3, rendered the closed
loop system response error free when disturbed, conversely, the
faster responding ADRC/ESO controller continually overshoots
the reference, leading to an oscillatory error ±3.4% while this
disturbance, d1, is present. The reaction to disturbance d2, not
affected by hysteresis, is much less pronounced. The ADRC/ESO
response to measurement feedback noise, nf , is also more
pronounced at exactly±10% and not diminished by the frequency,
the ADRC/ESO responding instantaneously to the perceived change
in reference input command. This active response, normally a
strength, but in this regard a limitation even when bounded, must
be addressed proactively when applying the ADRC/ESO.

The ability of ADRC/ESO to cancel the effect of linear system
phase lag and nonlinear hysteresis is remarkable. The closed loop
phase lag measured at 22 ms is now only 2.3° and the total error
due to phase lag and hysteresis offset is reduced to ∼1.5%, about
1/6 that of the inverse compensated controller. The ADRC/ESO
controller average absolute value of error over the 25 ms duration
of the simulation, at 0.0143, is 70% less than the linear systemwith

Fig. 6d. Scenario #4 result: phase + hysteresis error ∼1.5%, Avg · Abs · Error =

0.0143, Avg · Abs · Control = 1.6570 × 107 .

no hysteresis, while requiring an average absolute value of control
effort of 1.6570 × 107, only 11% of the control energy required by
the common inverse hysteresis compensated control.

5. Concluding remarks

In this paper, the novel concept ADRC is successfully applied
for hysteresis compensationwhereby hysteresis is treated as a dis-
turbance to the desired linear behavior and rejected. Simulation
test comparisons on hysteresis dominated systems, which have
immediate and significant research interest, demonstrate the ef-
fectiveness of this new method. This disturbance rejection strat-
egy achieves superior results and requires minimal computational
resource compared to model based inverse hysteresis controllers,
thus it may be implemented at less cost and/or higher response
speed. The achievement of this performance without resorting to
the complexity of mathematic modeling is a significant advance.
The stability analyses solidify the theoretical foundation of the pro-
posed approach and provide much insight for the users, and the
rationale for the success of simulation tests.
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