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REALIZING SPACES AS CLASSIFYING SPACES

GREGORY LUPTON AND SAMUEL BRUCE SMITH

ABSTRACT. Which spaces occur as a classifying space for librations with a 
given fibre? We address this question in the context of rational homotopy 
theory. We construct an infinite family of finite complexes realized (up to 
rational homotopy) as classifying spaces. We also give several non-realization 
results, including the following: the rational homotopy types of CP2 and S4 
are not realized as the classifying space of any simply connected, rational space 
with finite-dimensional homotopy groups.

1. Introduction

The classification theory for librations with fibres equivalent to a fixed CW com
plex X was developed in a series of seminal papers [17, 2, 12]. The result of this 
work is the existence of a classifying space, written Baut(A). The space Baut(A) is 
the base of a universal fibration with fibre X setting up a one-to-one correspondence 
between fibre-homotopy types of librations X → E → B and homotopy classes of 
maps h: B → Baut(X). The exuberant notation for the classifying space is ac
counted for by its provenance: up to homotopy type, the space may be obtained by 
applying the Dold-Lashof classifying space construction [3] to the monoid aut(A) 
of all homotopy self-equivalences of X (see [6]). Restricting to the sub-monoid 
aut1(X) := map (X, X; 1) gives the universal cover Baut1(X), the classifying space 
for librations A → B → B with B simply connected.

The space Baut1(X) was among the first geometric objects described in rational 
homotopy theory. Sullivan gave a model for this simply connected classifying space 
in terms of the derivations of a Sullivan minimal model [18, Sec.11]. Schlessinger 
and Stasheff [15] constructed a second, equivalent model in terms of derivations 
of a Quillen model. The following is a long-standing, open question in rational 
homotopy theory (see [4, p.519]):

Question 1. Which simply connected rational homotopy types occur as Baut1(X) ?

Question 1 is often interpreted as a conjecture to the effect that all rational 
homotopy types occur as classifying spaces. However, such a suggestion is perhaps 
best viewed as an admission that, except in restricted cases, little is known about 
the possible rational homotopy types that may occur. The affirmed cases of the 
famous Halperin Conjecture [4, p.516] imply that Baut1 (A) is a product of even
dimensional Eilenberg-Mac Lane spaces for certain formal spaces A (see [13, 16]).



Gatsinzi [7, 8, 9, 10] obtained a variety of results showing that the L-S category 
of Baut1(X) is infinite for certain classes of spaces. Yamaguchi [20] identified the 
possible elliptic spaces X for which Baut1(X) is of the rational homotopy type of 
a (rank-one) Eilenberg-Mac Lane space.

The published results on the classifying space taken together reveal a significant 
common feature. With the exception of the odd-dimensional sphere

all rational homotopy types known to occur correspond to infinite-dimensional CW 
complexes. In this paper, we give a new family of finite complexes realized (up to 
rational homotopy type) as Baut1(X). We also prove that the rational homotopy 
types of some finite complexes cannot be realized when X is restricted to have 
finite-dimensional rational homotopy groups.

As an overriding hypothesis, we assume all spaces X appearing in this paper 
are rational spaces. That is, all spaces satisfy X = Xq. We further assume spaces 
X are nilpotent, usually simply connected, and of finite type. We introduce one 
further hypothesis that will facilitates our analysis. We say a space X is π-finite 
if X has only finitely many non-zero (rational) homotopy groups. In this case, 
Baut1(X) is also a π-finite rational space (see Proposition 2.2, below).

It is easy to prove that Baut1 (K(Qm,n — 1)) = K(Qm,n) for n ≥ 2 and m > 1. 
It is natural then to attempt to realize a product of Eilenberg Mac Lane spaces 
with nonzero homotopy groups in two distinct degrees. In Section 3, we prove the 
following:
Theorem 1. The following rational homotopy types occur as Baut1(X) for some 
simply connected, π-finite, rational space X:

(1) S2n+1 × ,S4n+1, for n >1 and n odd;
(2) K(Q, r) × K(Q, r + 4m + 1) for r > 2 and m > 1.

We may also take m = 0 in (2), if we allow X to be nilpotent (not simply connected).

In Section 4, we prove the following non-realization result:
Theorem 2. The rational homotopy types of CP2 and S4 are not realized as the 
classifying space of any simply connected, π-finite, rational space.

Theorem 2 strikes a warning note, as regards Question 1: It implies that to realize 
these simple rational types will require quite complicated spaces X, i.e., spaces with 
infinitely many non-zero homotopy groups. Also in Section 4, we deduce that any 
simply connected space of dimension five that does not satisfy a certain structural 
condition—of which there are many examples—cannot be realized as the classifying 
space of any simply connected, π-finite space. Whereas all results up to this point 
are obtained by analysis of Sullivan’s model for the classifying space Baut1(X), we 
include one further result using the Schlessinger-Stasheff model.

2. Preliminaries in Rational Homotopy Theory

In this section, we establish notation in rational homotopy theory and record 
some facts we will use about the classifying space Baut1(X). We then give two 
examples, one of a realization and the other a non-realization result. We emphasize 
again our overriding hypotheses that spaces X introduced are assumed to be ratio
nal. This assumption allows for a concise statement of results avoiding the various 
hypotheses required to rationalize classifying spaces.



A nilpotent space X of finite type admits a Sullivan minimal model (⋀(V),d), 
which is a differential graded (DG) algebra freely generated by a connected rational 
vector space V of finite dimension in each degree. The differential d satisfies the 
minimality condition d(V) ⊆ ⋀+V ∙ ⋀+V. More generally, a fibration X → E → 
B of nilpotent spaces with B simply connected corresponds to a Koszul-Sullivan 
extension (KS-extension). This is a sequence of DG algebras

in which (⋀W, δ) and (⋀V, d) are the minimal models for B and X, respectively. 
Furthermore, the DG algebra (ΛW ⊗ ⋀V, D) is a model for E but need not be 
minimal; the differential here satisfies D(w) = δ(w) for w ∈ W while P(v) — d(υ) ∈ 
Λ+W ⋅ (⋀W ⊗ ⋀V) for υ ∈ V. Our references for rational homotopy theory are 
[19, 4].

Sullivan’s model for the classifying space Baut1(X) is constructed in terms of 
derivations of the minimal model (⋀V,d) for X [18, Sec.ll]. Let (Der(⋀V),D) 
denote the graded Lie algebra of negative-degree derivations of ⋀V. That is, θ ∈ 
Dern(⋀V) reduces degrees by n and satisfies the derivation law θ(χ1χ2) = θ(x1)x2 + 
(-1)n∣x1∣χ1θ(χ2) for X1,X2 ∈ ⋀V. The bracket of two derivations is [θ1,θ2] = θ1 ° θ2—(— 1)∣θ1││θ2│θ2°θ1 and the differential D is given by D(θ) = [d, θ] for θ ∈ Der(⋀V). 
The DG Lie algebra (Der(⋀V), D) gives rise to a Quillen model for Baut1 (X) (see 
[19, Ch.6] and [7]). We will only need the following special case of this result here:

Theorem 2.1. Let X be nilpotent space of finite type with Sullivan minimal model 
(⋀V, d). There is an isomorphism of graded Lie algebras

π*(ΩBautl(X)) ≅ H*Der(⋀V))
in positive degrees where the left-hand graded space has the Samelson bracket.

Proof. A direct proof for X simply connected using the identity ΩBaut1(A^) = 
aut1(X) is given [5, Th.l]. The argument given there requires only the existence 
of a Sullivan minimal model for X and so may be extended to the case X is 
nilpotent. □

Proposition 2.2. Suppose X is nilpotent and π-finite with

Then we have

Proof. By hypothesis, X has minimal model of form ⋀V with V non-zero only in 
degrees ≤ N, and Vn of dimension r. It follows that Der(⋀V) is a graded vector 
space that is non-zero only in degrees ≤ N. Therefore, we have

πi+1(Baut1X) ≅ πi(ΩBaut1X) ≅ Hi(Der(⋀V)) = 0
for i > N.

Furthermore, in degree N, for each θ ∈ Hom(VN, Q), we obtain a derivation in 
Der(⋀V) of degree N by setting θ(Vn) = 0 and extending as a derivation. Any such 
derivation is a D-cycle, since the elements of Vn—as the last stage of generators— 
do not occur in the differential of any other generators. There are no non-zero



boundaries of degree N, since Der(⋀V) is zero in degree N + 1 (and higher). S∣ 
the vector space Vn persists to homology, and we have

We next describe a situation in which we can be assured of a nontrivial fibration 
X → E → B and thus an essential classifying map. We formulate the result in 
terms of derivations. The proof uses the Gottlieb group G*,(E) ⊆ π*(E). We recall 
that G* (E) is the image of the map induced on homotopy groups by the evaluation 
map ω: aut1(E) → E. For E a simply connected rational space with minimal 
model (Λ(W),d), we have an identification

Here ε: ⋀ W → Q is the augmentation and so H(ε)({θ}) is the restriction of the 
D-cycle θ to the basis W (see [11, Th.3.5]). We prove:

Proposition 2.3. Let X be simply connected with Sullivan minimal model (⋀V, d). 
Suppose given a KS-fibration (⋀(wn),0) → (⋀V ⊗ ⋀(wn),D) → (⋀V,d) with wn of 
degree n > 1. Suppose the following conditions hold:

(1) (Λ(wn) ⊗ ⋀V. D) is a minimal DG algebra and
(2) any derivation θ ∈ Dern(⋀(wn) ⊗ ⋀V) with θ(w) ≠ 0 satisfies D(θ) ≠ 0. 

Then there exists an essential map K(Q,n) → Daut1(X).

Proof. The spatial realization of the given KS-fibration is a fibration of the form 
X → E →p K(Q, n). Our hypothesis (2) implies that the dual of the basis vector wn 
is not in the Gottlieb group G*(E). Thus rank(Gn(E)) ≤ rank(Gn(X)). As regards 
the product, we have Gn(K(Q,n) × X) = Q⊕Gn(X). Thus E ≇ K(Q),n) x X and 
the classifying map K(Q,n) → Baut1(X) for p is the needed essential map. □

We conclude this section with two simple examples. We begin with a realization 
result for a rank-two H-space.

Example 2.4. Suppose X has minimal model (⋀(x3,y3, z5,w7), d). with subscripts 
denoting degrees and differential d(x) = 0, d(y) = 0, d(z) = xy, and d(w) = xz. 
Since XV is freely generated by V, any derivation in Der(⋀V) may be specified by 
its effect on generators in V. Then in positive degrees, a vector space basis for 
Der(⋀V) may be displayed as follows:

Here we are using the notation (w, x) for the derivation that sends w to x and all 
other generators to 0, we have written w* for (w, 1), and so-on. Direct computation 
shows that the differential D in Der(⋀V) is given by

D(w*)=0, D(z*) = -(w,x), D((w,x))=0, D((w,y))=0,
Dx*) = (z,y) + (w,z), D(y*) =-(z,x),



Then the homology of Der(⋀V) is of rank 1 in degrees 7 and 4, and zero otherwise. 
Thus, Baut1(X) has homotopy groups of rank 1 in degrees 8 and 5. It follows that 
we must have

Our next example shows that not all rank-two rational H-spaces can be realized 
as Baut1(X) for X simply connected and π-finite.

Example 2.5. We show K(Q, 3) × K(Q,4) cannot be so realized. For suppose 
X is a simply connected, π-finite, rational space with Baut1(X) = K(Q,3) x 
K(Q,4). Since π*(Baut1(X)) is zero above degree 4, we can conclude that π*(X) 
is concentrated in degrees 2 and 3. Further, since we have π4 (Baut1 (X)) = Q, we 
must have π3(X) = Q by Proposition 2.2. Thus the minimal model for X takes 
the form (⋀(x1, . . . , xr, y), d) with the xi in degree 2, y in degree 3 and dxi = 0 (for 
degree reasons). Proceeding as in Example 2.4, we may write a vector space basis 
for Der(⋀V) in positive degrees as follows:

We see that D{y*) = 0 and D((y, xi)) = 0. If Q = π3(Baut1(X)) ≅ H2(Der(⋀V), D) 
the map D: Der2 Λ V → Der1 ⋀ V must have kernel of dimension 1 and so im
age of dimension r — 1. Thus H1(Der(⋀V),D) ≅ Q, contradicting the fact that 
π2(Baut1(X)) ≅ H1(Der(⋀V),D) = 0.

In fact, we may realize K(Q, 3) × K(Q, 4) as the classifying space of a nilpotent 
(non-simply connected) space—see Theorem 3.1. Examples 2.4 and 2.5, along with 
the results in the next section, indicate the challenge faced in addressing Question 1. 
Even amongst rank-two H-spaces K(Q,m) x K(Q,n), it seems difficult to predict 
simply from the degrees m and n whether or not—and if so, how—the rational 
homotopy type can be realized as the classifying space of a π-finite complex.

3. Rank-two H-spaces realized as Baut1(X)

In this section, we make constructions that realize certain rank-two H-spaces as 
classifying spaces. We first prove part (2) of Theorem 1 of the Introduction.

Theorem 3.1. For each r > 2 and m > 0, there exists a π-finite, rational space
X r,m with

If m > 1, then we may take Xr,m to be simply connected. If m = 0, then we require 
that Xr,m be nilpotent, non-simply connected.

Proof. We define the space Xr,m in terms of a minimal model (⋀(u2m+1, v2m+r, y4m+r), d) 
with subscripts indicating degrees and nonzero differential d(y) = uυ. The genera
tors of Der(⋀V) are given by the table:



Note that we may have r — 1 < 2m, as pictured, or it may fall in the range 
2m < r — 1 < 2m + r — 1; this makes no difference to our calculation. The only 
nonzero differentials are

Thus H*(Der(⋀V), D) has rank 1 in degrees r — 1 and 4m + r and is trivial in all 
other degrees. It follows that πi(aut1(Xr,m)) ≅ Q for i = r — 1 and i = 4m + r, and 
zero otherwise. Hence, we see that Baut1 (Xr,m) has the correct homotopy groups. 
When 4m + 2 is not a multiple of r, or if r is odd, this is sufficient to determine 
that the rational homotopy type of Baut1(Xr,m) is as asserted, since there is only 
one rational homotopy type with such homotopy groups.

So suppose that 4m + 2 = kr for some k ≥ 1, and that r is even. Here, we must 
distinguish Baut1 (Xr,m) from the space Z with truncated polynomial cohomology 
H*(Z) = Λ(zr)∕(Zrk+1), where zr denotes a generator of (even) degree r. We use 
Proposition 2.3 to do so. Define a KS-extension

by setting D(u) = D(z) = 0, D(v) = uz and D(y) = d(y) = uv. Notice that, since 
u2 = 0, we have D2 = 0. Clearly, the DG algebra (⋀(z) ⊗ Λ(u, υ, y),D) is minimal. 
Observe that D(z*) = ±(v, u). It follows easily that θ(z) ≠ 0 implies D(θ) ≠ 0. 
We conclude there is an essential map h: K(Q,r) → Baut1(Xr,m). Since Z admits 
no such map—as is easy to see, for example, using minimal models—we must have 
Baut , (Xr,m) = K(Q, r) × K(Q, r + 4m + 1) in this case also. □

Remark 3.2. We may describe the spaces Xr,m of Theorem 3.1 without reference to 
minimal models, as two-stage Postnikov pieces. Namely, Xr,m is the total space in 
a principal fibration K(Q, 4m + r) → Xr,m → K(Q, 2m + 1) × K(Q, 2m + r), with 
k-invariant K(Q, 2m + 1) x K(Q, 2m + r) → K(Q, 4m + r + 1) that corresponds 
to the non-zero cup-product uυ ∈ H4m+r+1 (K(Q, 2m + 1) × K(Q, 2m + r)), with 
u ∈ H2m+1 (K(Q, 2m + 1)) and υ ∈ H2m+r (K(Q, 2m + r)) generators.

Now we complete Theorem 1 of the Introduction by defining simply connected, 
π-finite spaces Xn with Baut1(Xn) of the rational homotopy type of ,S2n+1 × S4n+l, 
for each n odd and n ≥ 1. We will write the details assuming that n > 5. In the 
cases in which n = 1 or 3, the details are very similar, with some minor differences 
due to the fact that, for these low-end cases, the degrees of some of the generators, 
or the differences between the degrees of some of the terms, coincide (or become 
negative, in which case they may be set aside).

We describe the space Xn in terms of a minimal model. The model has 6 
generators, and so Xn is a π-finite space. The following table gives a vector space 
basis for XV through the degrees of the highest generator. Notice that, since n is



odd, and thus the degree of v1 and υ2 is even, we must allow for powers of these 
generators. We will use this information to identify a basis for Der(⋀V).

The non-zero differentials in ⋀V are defined to be

Theorem 3.3. With Xn as above, we have

for η > 1 and n odd.

Proof. We write a linear basis for Der(⋀V). The following table groups the basis 
elements for Der(⋀V) according as they contribute to the homology of Der(⋀V). 
We shall see that the elements under group 0 are those that persist to homology, 
whereas all the remaining groups of terms form short exact sequences that do not 
contribute to homology. The result will follow.

The lower-right portion of the table is as follows:



And the lower-right portion of this table is as follows:

Group 0: It is clear that y* and (y, w) are both non-bounding D-cycles. 
Group 1: We have

Hence D: Der3n(⋀V) → Der3n-1(⋀V) is a linear isomorphism.
Group 2: We have D(w*) = d o w* — w* o d = —w* o d. When this is evaluated on 
u1 and u2, which are the only elements whose differentials involve w, we find that

Furthermore, we have

It follows that

in which the maps are D, is a short exact sequence. Hence the group 2 terms 
contribute no homology.
Group 3: We have

Hence D gives a linear isomorphism

and the group 3 terms contribute no homology.
Groups 4, 5, 6 and 7: These are shown to contribute no homology in the same way 
as for the group 2 terms: we have a short exact sequence in each case.
Group 8: This is shown to contribute no homology in the same way as for the group 
3 terms: D gives a linear isomorphism.

Thus far, we have shown that πi(aut1(Xn)) ≅ Hi(Der(⋀V)) = Q for i = 2n, 4n, 
and is zero otherwise. This gives ∕Baut1 (Xn) the correct rational homotopy groups, 
but in fact this is sufficient to determine the rational homotopy type, since there is 
a unique rational homotopy type with the desired rational homotopy groups. This 
completes the argument for n > 5. We briefly indicate how things proceed in the 
low-end cases.
n = 3: Referring to the minimal model, we have 4n = 3n + 3 = 12, and so the 
highest-degree generator y is in the same degree as the cubic terms in the vi. In 
the groups that appear in Der(⋀V), groups 1-5 are unchanged. The only point 
to bear in mind for the remaining three groups is that n — 3 = 0. However, the 
outcome, as regards homology in positive degrees—which is what we are concerned 
with here—is unchanged. Namely, these zero-degree terms still play the role of 
being in the image of the differential D from degree 1, meaning that we still have 
no non-zero (positive-degree) homology from these groups of terms.



η = 1: Here there is more coalescing of degrees of the various terms. Referring to 
the minimal model, we have 2n = n+1 = 2, and so the generators w, v1, v2 are now 
all in the same degree of 2. Furthermore, 3n + 3 = 6, whereas 4n = 4, so the cubic 
terms in the now appear above the highest-degree generator y, and so may be 
set aside. Also, the quadratic terms in the vi as well as the products wυi appear 
in the same degree as y. In the groups of terms that appear in Der(⋀V), groups 
1-5 are unchanged. As in the previous case, although here we have n — 1 = 0, the 
terms that appear in this degree still play their same role, as boundaries of elements 
from degree 1, which means that the positive-degree homology contributed by those 
terms is still zero. Here, groups 6-8 may be set aside, as they occur completely in 
non-positive degrees (their homology is still zero, though). □

4. Non-Realization Results

In this section, we prove that several simple rational homotopy types cannot 
be realized as Baut1(X) for X simply connected and π-finite. We begin with the 
following:

Theorem 4.1. There is no simply connected, π-finite, rational space X for which 
Baut1(X) has the rational homotopy type of CP2.

Proof. In fact we show a more general statement. We will assume only that 
Baut1(X) has rational homotopy groups of the form

and conclude that, at least if X is assumed π-finite and simply connected, Baut1(X) 
must have infinite rational category. This rules out the possibility of Baut1(X) 
being the rationalization of CP2 or of any other finite complex.

To this end, we first show that, without loss of generality, we may assume that 
X has minimal model of the form

for some r ≥ 2, and furthermore that the differential on the top-degree generator is

There may be non-zero differentials d: V3 → ⋀2(V2) as well, but these do not play 
a role in our argument.

To see this, start by applying Lemma 2.2 to obtain that the minimal model for 
X must have a single generator in degree 4, and no higher-degree generators. Then 
write V3 = {u1, . . . ,ur} and V2 = {v1, . . . ,vs}, for some r,s> 0. Now we must 
have r > 1, otherwise there would be no possibility for having π2(Baut1(X)) ≠ 0. 
For degree reasons, we may write



for some βi ∈ V2 (possibly zero, at this point in the argument). Then the deriva
tions ui* have boundary D(ui*) = (y, βi) for each i. So, if {β1, . . . , βr} were linearly 
dependent, we would have a cycle of degree 3, of the form Σui*∙ that could not 
be a boundary, and so would contribute a non-zero element to π4(Baut1(X)) ⊗ Q∙ 
This contradicts our assumption on the rational homotopy of Baut1(X), and so 
we must have s > r, with {βi}i=1,. . . ,r linearly independent in V2. Next, consider 
the derivations (y,υj of degree 2. Each of these is a cycle and, since we assume 
π3(Baut1 (X)) = 0, the image of the differential D must span {(y,v1), . . . , (y,υs)}. 
However, the only boundaries we have available here are given by the D(ui*), since 
the only degree-3 derivations are the u*i. Therefore, we must have r > s, and hence 
r = s. Then the {βi}i=1,...,r are a basis for V2, and we re-label them as βi = for 
each i.

Next we eliminate the case in which r = 1. This case consists of the minimal 
model (⋀(y,u,y),d) with single non-differential d(y) = uυ (it is not possible for 
d(u) to be non-zero here). A direct calculation shows that, for this X, we have 
Baut1(X) = S5, and in particular π2(Baut1(X)) = 0.

Now suppose X has minimal model (⋀(υ1, . . . ,vr,u1, . . . ,ur,y), d), with the de
grees as above, with r ≥ 2, and with the differential on y of the form

We construct a KS-extension

by setting D(u1) = zv2+d(u1) and D(u2) = zv1+d(u2), and D = d on all generators 
other than u1,u2∙ We see directly that (⋀(z) ⊗ ⋀(v1, . . . ,υr,u1, . . . ,ur,y),D) is 
minimal. Using the fact that D(z*) = ±(u1,v2) ± (u2,v1) is non-zero it is easy 
to see that θ(z) ≠ 0 implies D(θ) ≠ 0. Proposition 2.3 gives an essential map 
h: K(Q,2) → Baut1(X). Since we assume Baut1(X) only has non-zero rational 
homotopy groups in degrees 2 and 5, the only possibility for such a map is one 
that is injective in rational homotopy groups in degree 2. This implies, using the 
mapping theorem of Felix-Halperin [4, Th.28.6], that cat0(Baut1(X)) = ∞. In fact, 
it is easy to see that H2 (Baut1 , (X)) must contain an element a such that an ≠ 0 
for all n > 1, so that Baut1(X) actually has infinite rational cup-length. □

We apply similar arguments to prove:

Theorem 4.2. There is no simply connected, π-finite, rational space X for which 
Baut1(X) has the rational homotopy type of S4.

Proof. Let i4 ∈ π4(S4) denote the fundamental class with nontrivial Whitehead 
product [i4,i4] ∈ π7(S4). Suppose given X with Baut1(X) = S4 and minimal model ⋀(V, d). Then we have V6 = {y6} by Proposition 2.2. Further, the derivation cycle 
y* must decompose as y* = [θ, θ] for θ a degree 3 derivation cycle. In particular, 
dimV3 > 0. Let x∈V3.

Suppose V2 = 0. Then V5 = 0 for otherwise, if u ∈ V5, the degree 5 derivation 
cycle u* cannot bound. Also, dx = 0 and so (y, x) is a degree 3 cycle that does not 
bound. We cannot then have that x* is a cycle, since x* cannot bound as this would 
produce too many homology elements in degree 3. We conclude there is an element 
w4 ∈ V4 and dy = wx + other terms. For degree reasons dw = 0. We construct 
a KS-extension (Λ(z2),0) → (Λ(z) ⊗ ⋀V, D) → (⋀(V),d) where Dw = zx and



Dy = dy. Applying Proposition 2.3 gives an essential map h: K(Q, 2) → Baut1(X) 
which contradicts the assumption that Baut1(X) = S4. We conclude dimV2 > 0.

Now suppose dimV2 = 1. Then dimV5 = 1 also and dy = V2u5+ other terms. 
Suppose V4 ≠ 0. Then the degree 2 cycle (y,w4) must be a boundary which forces 
dy to take the form dy = vu + wx + other terms. Now w cannot appear in dv or 
else d2y ≠ 0. We can thus construct the same KS-extension as above to derive a 
contradiction. We conclude that V4 = 0. The minimal model for X must then be 
of the form (⋀(v2, x3, u5, y6),d). There are two cases to check here. If dx = v2 then 
x cannot appear in dy and so we may write dy = uv + qv3 for q ∈ Q, possibly zero. 
In this case, x* and (v, u) — (y, x) are cycles of degree 3. There are no boundaries in 
degree 3 and so this is a contradiction. The other possibility is that dx = 0. Then 
x must appear in the differential dy to ensure x* and (y, x) do not give too many 
degree 3 derivation cycles. So dy = uv+ v2x +qv3 is the only non-trivial differential. 
It is now easy to compute that Baut1(X) ≅q K(Q,2) × K(Q,4) × K(Q,7).

It remains to handle the cases where dimV2 > 1. Write V2 = Q(v1, . . . , vr) for 
r > 2. Then the derivations cycles (y, vi must each bound. This forces V5 = 
Q(u1, . . . , ur) and

We now apply the same argument used in the proof of Theorem 4.1. Specifically, we 
obtain a KS-extension (⋀(z4),0) → (⋀(z) ⊗ ⋀V, D) → (⋀(y),d) satisfying the con
ditions in Proposition 2.3 and so giving an essential map h: K(Q,4) → Baut1(X). 
Since S4 admits no such map, the proof is complete. □

Our last result uses the notion of positive weights on a minimal model. This 
notion has its origins in work of Body-Douglas [1] and Mimura-O’Neill-Toda [14] 
on p-universal spaces.

Definition 4.3. We say that a DG algebra (A, d) has a positive weight decom
position if it admits a direct sum decomposition A+ = ⊕i≥1A+(i) that satisfies 
A(i) ∙ A(j) ⊆ A(i + j) and d(A(i)) ⊆ A(i).

We say that a space X has positive weights, or is p-universal, if some model for it 
admits a positive weight decomposition. Notice that the property is independent of 
any particular type of model. If either a DG algebra (Sullivan) model, or a DG Lie 
algebra (Quilllen) model for X admits a positive weight decomposition, then this 
may be translated into the existence of a family of self-maps of X, corresponding 
to grading automorphisms of the model that admits the weight decomposition. In 
this way, the condition may actually be phrased purely in terms of self-maps of the 
space X, independently of any choice of model. Indeed, the notion of ρ-universality 
actually pre-dates rational homotopy theory and minimal models.

We begin with the following observation.

Lemma 4.4. Suppose X is a simply connected, π-finite, rational space with πi(X) = 
0 unless i = 2,3, 4. Then the DG Lie algebra Der(⋀V) admits a positive weight de
composition. Consequently, Baut1(A) is a p-universal space.

Proof. Suppose X has minimal model of form ΛV = Λ(V2,V3,V4), with Vi the 
vector spec of generators of degree i. The differential d in ⋀V satisfies d(V2) = 0, 
d(V3) ⊆ Λ2V2, and d(V4) ⊆ V2 ⋅ V3 In the stye of the above examples, we may write 
a basis for Der(⋀V) as follows.



Here, notation such as (V4,V3) denotes Hom(V4,V3), with typical basis element 
(x,y), where x and y are basis elements of V4 and V3 respectively. Translating 
the differential from ΛV into that on Der(⋀V), we see that the differential D in 
Der(⋀V) satisfies D(V4) = 0, and

Furthermore, the only possible non-zero brackets in Der(⋀V) satisfy

It follows that, if we assign positive weights of 1 to V2* ⊕ (V3,V2) ⊕ (V4,V3), 2 
to V3* ⊕ (V4,V2), and 3 to V4*, then we have a positive weight decomposition on 
Der(⋀V), which is a DG Lie algebra model for Baut1(X). □

Next, we give an example of a space that is not p-universal, whose rational 
homotopy groups are concentrated in degree 2, 3,4, 5.

Theorem 4.5. Suppose Y is the space with Sullivan minimal model

where subscripts denote degrees, and the differential, where non-zero, is given by

Then Y cannot be of the rational homotopy type of Baut1(X), for any X a simply 
connected, π-finite, rational space.

Proof. We claim Y is not p-universal. For suppose the above model admits a 
positive weight decomposition. Write the weight of an element χ ∈ ⋀V as wt(χ). 
Since the boundary a2 +ac must be of homogeneous weight, it follows that wt(a) = 
wt(c). Likewise, since the boundary φa + xy + ψa + c3 + b3 must be of homogeneous 
weight, it follows that wt(b) = wt(c). Thus we have wt(a) = wt(b) = wt(c) = r ≥ 1, 
say. From the formulas for their differentials, then, we have wt(y) = wt(z) = 2r. 
and wt(ϕ) = wt(ψ) = 3r. Finally, the boundary φa + xy + ψa + c3 + b3 is not of 
homogeneous weight, since the first three terms have weight 4, whilst the last two 
have weight 3. This is a contradiction.

Now suppose Y = Baut1(X) for some π-finite, simply connected space X. Then, 
by Proposition 2.2, X would have generators concentrated in degrees 2,3,4. Indeed, 
X would have to have π4(X) of rank-one. In Lemma 4.4, we showed that Baut1(X) 
for such a space is p-universal. Since Y is not such, it cannot be obtained as 
Baut1(X). □

We conclude by adding the following related observation:



Theorem 4.6. Suppose X is a formal space. Then Baut1 (X) has positive weights 
(is p-universal).

Proof. For this argument, we need the alternative DG Lie algebra model for the 
classifying space Baut1 (X) expressed in terms of derivations of the Quillen model 
L = L(V; d) for X. This is a DG Lie algebra of the form (sL⊕DerL, D) where sL is 
the graded suspension of L and DerL the Lie algebra of degree lowering derivations 
of L. We refer the reader to [19, Ch.6] for the details of this construction. We here 
observe that (sL ⊕ DerL, D) may be given a positive weight decomposition.

Start with a standard positive weight decomposition of L = L(V;d). Namely, 
for an element x ∈ L of homogeneous length and degree, assign x a weight equal 
to the sum of its degree and length, thus

Since X is formal, we may assume that the differential d in L is quadratic, so 
increases length by 1. On the other hand, d decreases degree by 1, and hence this 
choice of weighting is preserved by d. Evidently, this choice of weighting respects 
brackets of elements, too, and so it gives a positive weight decomposition to the 
Quillen minimal model L.

Then, assign weights to elements of (sL ⊕ DerL,D) as follows. Suppose that 
{vi} is a basis of V, and {χj} is a basis for L = L(V) that is homogeneous with 
respect to degree and length (e.g. a standard Hall basis). Then the derivations 
{(vi,xj)} give a basis for DerL. Now set wt(sx) = wt(x) for any homogeneous 
weight element x ∈ L, and wt((υi, χj)) = wt(χj) — wt(vi) for each i,j. Since we 
are restricting to positive-degree derivations in DerL, we have

since ∣χj∣ — ∣vi∣ > 0 for any positive-degree derivation, and l(χj) — 1 ≥ 0. It 
remains to check that brackets and the differential D behave well with respect to 
this weighting.

Recall that brackets (sL ⊕ DerL, D) are given by the usual bracket of derivations 
amongst elements of DerL, whilst brackets amongst elements of sL are trivial, and 
brackets “across” sL and DerL are given by [θ,sx] = (—l)∣θ∣sθ(x). It is straight
forward to check that weights as we have assigned them add under these brackets. 
The differential in (sL ⊕ DerL,D) is the usual D = ad(d) on derivations in DerL. 
Since d preserves weight (of elements in L), it is easy to see that D preserves 
weight (of derivations). Finally, for elements sx ∈ sL, the differential is defined 
as d(sx) = —sdx + ad(x). For a homogenous weight x, we have assigned sx the 
weight of x, which is the same as the weight of dx, and also the weight of ad (a;) (as 
a derivation). It follows that D preserves the weight of elements sx also. □
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