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Configurational entropy and collective modes in normal and supercooled liquids

U. Zirche and T. Keyeb
Department of Chemistry, Boston University, Boston, Massachusetts 02215
(Received 4 February 1998; revised manuscript received 19 April)1999

Soft vibrational modes have been used to explain anomalous thermal properties of glasses above 1 K. The
soft-potential model consists of a collection of double-well potentials that are distorted by a linear term
representing local stress in the liquid. Double-well modes contribute to the configurational entropy of the
system. Based on the Adam-Gibbs theory of entropically driven relaxation in liquids, we show that the
presence of stress drives the transition from Arrhenius to ZwanzigiBatemperature dependence of relax-
ation times. At some temperature below the glass transition, the energy scale is dominated by local stress, and
soft modes are described by single wells only. It follows that the configurational entropy vanishes, in agree-
ment with the “Kauzmann paradox.” We discuss a possible connection between soft vibrational modes and
ultrafast processes that dominate liquid dynamics near the glass transtid/63-651X99)12108-1

PACS numbds): 64.70.Pf, 05.70-a, 63.50+x

I. INTRODUCTION given by the variance of the energy differences,
The glass transition remains one of the challenges of I * 2
chemical physics despite enormous advances in our under-  © J'O Nris(Aelerg) (AelT)

standing during the past two decades. The basic phenom-
enology of the transition is well established. As the tempera- xexp —Ae/T)/[1+exp—Ae/T)]*dAe.
ture of a supercooled liquid is lowered even further, the
specific heator heat capacitydrops rapidly without appar- Usingx=A¢€/T, we find
ent changes in the structufeuch as the nearest neighbor
distribution [1]. This decrease indicates the lack of kinetic C=T/gnms(xT/ 5 g)x%e ¥/(1+e *)?dx.
accessibility of liquidlike degrees of freedom, and thus is a
consequence of the transition between ergodic and noneFor low temperaturesy < eF, s andn s(xT/ €7, s) is slowly
godic behaviof2]. varying. Assuming a flat distribution near the origine
The ergodic behavior in supercooled liquids and glasses-0, a linear temperature dependence follo@s; ny (A€
has been studied in Ref3] using a molecular dynamics =0Q)T.
(MD) simulation. The authors define an energy metric which At higher temperatures, the thermal conductivity reaches
is zero for ergodic states and is nonzero when ergodicity i% plateau and the specific heat rises faster fieuch that
broken. They point out that this behavior is not surprisingC/T® has a peak. Thermal properties of glasses over this
since symmetry breaking is already evident from the nonzerextended temperature range have been described by the so
value of the zero-frequency shear modulus in glasses. Andetalled soft-potential model, which is an extension of the TLS
son outlined a theory in which elementary excitations are anodel for glasses. Buchenau and co-workers have shown
consequence of the symmetry-broken state of the syBtém that two-level systems and low-energy vibrational states can
Palmer proposed a two-level statistical scheme for treatinge explained by the same distribution of localized md&s
broken ergodicity system]. The number of such compo- Soft modes have been used to describe the excitation spec-
nents is exponentially large~(e*") [6]. trum of glasses in the range~10 to 100 GHz that has
Below 1 K the specific heat and the thermal conductivity anharmonic contributions from relaxation and quasiharmonic
have a linear and quadratic temperature dependence, resp&ibrational excitationg“boson peak’) [10]. It has been es-
tively, i.e., C(T)~T and «(T)~T2 Within the Debye timated that up to 100 particles participate in a low-
model of crystal vibrations, the specific heat vanishes morérequency modelN,~ 10— 100. A detailed comparison of the
rapidly asT—0, C(T)~T2. Thus, the linear specific heat in predictions of the soft-potential modéSPM) with experi-
glasses reflects additional degrees of freedom associated withents has led to conflicting conclusions. While Sokolov and
disorder. Anderson, Halperin, and Variivd and Phillips[8]  co-workers[11] found that the SPM does not explain the
independently proposed that these states can be modeled tymperature dependence of the specific heat of
two-level systemgTLS) characterized by a continuous dis- Ca, K, NO5); , nearT=1 K, Lundqvistet al.found excel-
tribution of energy differences (A e/ €7, s), whereey gis  lent agreement for other typical glass formers such as ortho-
some characteristic energy for TLS. The specific heat is theterphenyl(OTP) and glycerol[12].
A typical glass temperature is about 100 K, while anoma-
lous thermal properties of glasses are observed below 1 K.
* Author to whom correspondence should be addressed. Electronear T, the heat capacity of supercooled liquids drops to
address: zurcher@chem.bu.edu crystallike values. This drop reflects the loss of configuration
"Electronic address: keyes@chem.bu.edu space accessible to the system in the glassy phase. As a
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consequence, the configurational entropy is much lower for aequence, soft modes contribute to the specific heat. We in-
glass than for a liquid. Kauzmann observed thatekiapo- troduce a distribution for asymmetry energies of soft modes,
lated values of liquid entropies vanish at some temperaturégpy(A e/ €spy), Whereegp,, is the characteristic energy for
below the glass transitio,x <T, [13]. soft modes. Ifefp,, is much larger than the characteristic

This behavior suggests that thermally activated processesergy for TLS €%p\> €%, s, then a system at temperattife
in the glassy phase are entropically driviEr]; the glass can be in the high-temperature limit of the TLS model,
:rans!:!on Iti rfgafg%% as t"’)‘n elq”"'if'”?c[;‘;‘]:o”ed_i)%rder Féhas?/e-’FLS> 1, and still remain in the low-temperature limit for
ransition that is hidden slow kineti . Gibbs an *
co-workers argued that pa)r/ticles in a liquid organizecin SOflt: modesT/ espy=1. x

or such temperature§,<egpy, We repeat our argu-

operatively rearranging regionaind determined the tem- ments from above to find that the configurational entropy

gﬁ(r)ar\]tl:irriéj?gforwsence of the size of these regions. The rela\)/(énishes linearly with temperatur&(T) ~Nepy(Ae=0)T

[18]. Inserted into Eq(1), we recover the Zwanzig-Baler

1 temperature dependence of relaxation tirfe3 20,
log 7~ ST (1) .
log 7~ . 2
where S is the specific entropy of the macroscopic sample NspM(Ae=0)T

andT is the temperatur@n units withkg=1). In this paper,
we use Eq.(1) to describe the temperature dependence offhe linear temperature dependence of the configurational en-
relaxation times. tropy for T<Tg is unphysical, however, and should only be
The temperature dependence of leds the basis of the considered as an extrapolation. Indeed, this behavior has
classification of liquids into strong and fragil@6]. In a  been derived assuming thatgp\(Ae/€dpy) is finite as
strong liquid, the relaxation time shows Arrhenius behavior,Ae—0. ForT<T, the energy scale is dominated by local
log 71/T, all the way down toTg [defined by 7(Ty)  stress so that the linear term in the soft-potential model is
=10"P], while a fragile liquid exhibits a transition to large, and soft modes are represented by single- and not
stronger-than-Arrhenius dependence bef@geis reached. by double-well potentials. It follows that the soft-mode con-
The drop in the specific heatC= C(liquid) — C(glass) cor- tribution to the configurational entropy drops below the lin-
relates with the degree of fragilityhAC is large for fragile ear extrapolationS(T) <ngp\(A€e=0)T, and then vanishes
liquids, while it is small, or even negligible, for strong lig- at some temperature below the glass temperafiye; Ty,
uids. in agreement with the “Kauzmann parado13]. A sche-
We show in this paper that super-Arrhenius behavior ofmatic sketch of the temperature dependencs isfdepicted
relaxation times is consistent with a model of supercooledn Fig. 1.
liquids in which localized, collective modes coexist with  In an earlier paper, we calculated the density of states
phonons. Similar to TLS modes for glasses below 1 K, suchDOS) of unstable frequencies within the soft-potential
soft modes are intrinsic to the disordered state of the liquidmodel[21]. We showed that the DOS depends on the fre-
Thus, soft modes dominate the configurational entropy ofuency and temperature via the combinati@AT only, i.e.,
liquids above the Kauzmann temperature, while the residuabg G,(1")~— /T for T>T, and logG,(+%)~—v¥T? for T
entropy belowTy originates mainly from TLS modes. =T,. A frequency cutoff for double-well modes gives
The soft-potential model is a collection of energy profiles Arrhenius- and Zwanzig-Bssler dependence of the diffusion
along many-body coordinate¥,(x) =W[D;x—D,x*+x*].  constant for high and low temperatures, respectively. How-
The profiles are double and single wells for small and largever, in Ref.[21], no connection between unstable modes
values of the asymmetrd,, respectively. Buchenau argued and thermodynamic quantities has been made.
that the asymmetry describes lo¢sheay stress in the liquid Liquid dynamics may be formulated in terms of the mo-
and proposed that its distribution is independent of temperaion of the system among the basins of fiidody potential
ture[17]. Since only double wells contribute to the configu- energy via the “reaction coordinates” connecting them. We
rational entropy, we expect local stress to govern much ofiave suggestg@2] that unstable modes are signatures of the
low-temperature properties of liquids. reaction coordinates, and thus related to barrier crossing and
Well above the glass temperatufie> T, the system can diffusion. While that association must be made carefully, and
surmount large barriers, local stress is only a small perturbahe reaction coordinates are more complex than, e.g., simple
tion to the symmetric potential(x)=Vy(x) =W[ — D,x? parabolic barriers, the diffusion constant has been predicted
+x*], and soft modes do not contribute to the specific heatvery accurately from formulas based on the unstable modes.
Since we haveC=T(dS/dT), the entropy does not depend Here we additionally propose that unstable modes reflect the
on temperature and Ed@l) gives Arrhenius behavior. The number of local minima accessible to the liquid in a neigh-
Adam-Gibbs theory is generally used to describe superborhood of a typical configuration. This is consistent with
Arrhenius behavior, but our interest in the Arrhenius regimethe association of unstable modes and reaction coordinates,
is to demonstrate the crossover from super-Arrhenius tagince a configuration “close” to many basins most likely lies
Arrhenius temperature dependence only, for which theon several reaction coordinates.

Adam-Gibbs ansatz should be applicable. If slow dynamics is governed by the configurational en-
As the temperature is lowered=T,, the system sur- tropy from one point of view and by unstable modes from
mounts small barriers only and the asymmetry between thanother, there should be a connection between the two. If the
minima of the wells can no longer be neglected. As a conanomalous properties of liquids at low temperatures are due
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A e At temperatures well above the glass transition, we expect
g ’ that relaxation times obey Arrhenius behavior, tog
~constT, or S(T)=const, forT>T,. It follows that the
specific heat vanishe§ =0, and hence soft modes are de-

SPM scribed bysymmetricdouble wells,
Vo(X)=W[ — D,x2+x4]. ®)
7 Here, the parametdd, is a random variable for which we
/ assume a uniform distribution,
7/
z - 2
, -7 p»(D,)=const, for O<D2<NV' (4)
‘| 1 >
Ty T, T

The potential is symmetricVy(x) =Vo(—X), with two
FIG. 1. Configurational entrop vs temperaturd (schemati- ~Minima located aky = = D ,/2. Ihe minima are separated

cally). The extrapolation o8 vanishes at the Kauzmann tempera- by the potential barrieAVy=WD5/4. The barrier curvature

ture T and T, is the glass temperature. Also indicated are theis the negative second derivative of the potentiaf,

linear behaviors discussed in the text. =—d?V,/dx?=W[2D,— 12x?]. Sincex=0 near the top of
the barrier, barrier frequencies characterize soft modés,
to soft modes, then they also determi®eln the following =2WD,. The separation of potential minima\x,=Xg

we estimate drequencyandtemperaturedependent configu- —x,, thus followsAxy= v/ JW. We thus find that the con-
rational entropyS(»;T) from the contribution of soft modes figurational entropy depends on the barrier frequency of the
with frequency v. We then show that the unstable DOS soft mode,

Gy(v), found in our prior calculations and in simulations,

follows from av-dependent extension of E€L) if G,(v) is 2

identified asr(v). Thus, the connection between the unstable S(v)~ 02,2 T>T,. ®)
modes and slow relaxation, and our prior calculation of the
crossover from Arrhenius to Zwanzig-8sler behavior, is At low temperatures, the supercooled liquid supports

greatly extended and clarified. In addition, the soft-potentialong-range stress field23]. Long-range stress fields induce
model gives a complete description of the characteristic befrustration so that the supercooled liquid is the high-entropy
havior of the configurational entropy in glass-forming lig- phase of the systef24]. In this phase, the energy landscape
uids, cf. Fig. 1, in which the temperature dependence is govhas high density of local mimina. The characteristic energy
erned by local stress. scale of collective modes is now proportional to the displace-
ment,6®=WD;AR’. Settingéd®=W, the typical deviation
follows (AR’)2~1/D?2). In the presence of stress, the ma-
jority of two-level systems are asymmetric double wells. Be-

Since the configurational entropy reflects the topology ofcause the number of particles participating in a soft mode
the potential energy surfacg,can be computed in the limit does not change in the presence of stress, the potential dif-
T—. In particular, we use a definition &that is closely —ferenceA®’~QO?(AR')? gives an estimate of the ratio of
related to the density of local minima. This density plays arthe number of asymmetric TLS to the number of symmetric
important role in the “energy landscape” picture of glass TLS, k~(A®")/W~Q2/W(D?).

Il. SOFT VIBRATIONAL MODES IN LIQUIDS

formation[16]. For an arbitrary liquid configuratioR,, we Thus, forT=T,, soft vibrational modes are represented
find the nearest local minimum of the potential energy surby both double- and single-well potentials,
face,Rnyn, by displacing the coordinates of the particles par- V(X) =W[Dyx— D2+ x%]. 6)

ticipating in a low-frequency vibrational modé]. We ex-

pand the potential energy arou, Ad=>d(R)—P(Ry) Here, the parametd, is a random variable characterized by
~—F-(R—Rp) +:(R—Rp)-K-(R—Ry). SinceN does not  the probability distributiorp;(D,). Because two soft modes
scale with the total number of particles, the potential differ-that differ only in the sign oD, are equivalent, the distri-
ence is given by A®)~W, whereW is an energy scale for bution is symmetricp,(D;)=p;(—D;). Assuming Gauss-
particle interactions. Hence, the average distance to the neaan statistics forD,, the distribution is characterized by the
est minimum AR=(|Ry—Ryyl) follows (AR)2~W/Q2, ~ second momentpy(D;)=2/m(D3)"*exp(-D/(D). In
where Q is an upper frequency cutoff for soft vibrational the limit T,—0, the variance vanishe&?)—0, and soft
modes,(K)~Q?l. We denote by\x, the separation of the modes are represented by symmetric double wells only,
minima of two-level systems. Because the configurationaP1(D1)=&(D;).

entropy is the statistical quantity related to the number of Since the parametdD,; describes thermal stress in the
microscopicstates corresponding to the samcroscopic  liquid, (D?) follows from thermodynamic considerations. At
state, we have in harmonic approximatiga- (AR/AXg)?. temperaturel, soft modes withAV,<T are in either state
We show below that the entropy is well defined in the limit with equal probability and thus contribute to the entropy,
W—0. while contributions from modes withVy>T are much re-
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duced. Kauzmann argued that the entropy of a glass vanishesle of stress in liquids is supported by findings from a mo-
below some temperaturg¢ [13]. In the two-level descrip- lecular dynamics study of a model glagz3]. The authors
tion of supercooled liquids, a thermodynamic state with zerdound that stress fields are disrupted by thermal excitations in
entropy is represented by a collection of soft modes, all ohormal liquids above some temperatdig(Ts>T,). As the
which are single wells. It follows that the asymmetry is largetemperature is lowered, the local structure becomes more

for modes withAVy,<Tg. In linear order inD 4, the asym-
metry is given byA e=WD;Axo=v2WD;D¥?. The asym-
metry is large forAe~AV,, or

D,~D3? (single/double wells 7)
FromAV,~Tg, we haveD,~ (T /W)¥? and thus arrive at
the estimate(D3)~ (T /W)%2 Buchenau identified the
glass transition temperatuflg with Kauzmann temperature
Tk, and arrived at an explicit expression foy(D,) using a
different approach17]. Here, we do not use this identifica-

tion and have
3/4 W 3/2 5
exp —0.16 D1

Tk
w Tc

x ®

p1(D1) =o.231(

This distribution guarantees that the specific entropy is ex

ponentially small for temperatures<Ty, in agreement
with the “Kauzmann paradox.”

ForT>Ty, the supercooled liquid probes soft modes rep
resented by both single- and double-well potentials. Sinc
D,=1v?/2W, Eq. (7) gives an upper bound fdp, that de-
pends on the barrier frequencyd;<»%/16W%2 Conse-
qguently, the asymmetry as well has an upper bound that d
pends orv, A e<A ema v /W. Following Ref.[7], the level
density is assumed to be flat, i.eigp\(A€)=ngp\ (A€
=0) for Ae<Ae€maxandngpy(Ae)=0 for Ae>Aenay. The
ratio of the number of asymmetric TLS to the number of
symmetric TLS can be writteR~ngp\(A e=0)A €15 We
readily find the level density ngpy(Ae=0)
~W?202/ T4, Since S~ngpp(Ae=0)T, we now have,
for the specific entropy,

W3/29 2

ST~ T T, T=T,. ©
KV

In Ref.[21], we used the soft-potential model to calculate
the density of barrier frequencie§,(v%T)=(8(d?V/dx?

correlated so that long-range stress fields can be supported
by the disordered state of supercooled liquids belqwThe
authors propose that thgercolation of such correlated re-
gions then leads to the glass transition.

Equation (7) defines a frequency cutoff for double-
well potentials, v.~TF*. For »>p, soft modes are
double-well potentials, while single wells dominate for
v<v.. Since single wells do not contribute to the con-
figurational entropy, the structural relaxation time follows
7-‘1~ij exd —1/S(v;T)T]dv, or in leading order,

1

ST (10

log 7~

From Egs.(5) and (9) we thus find that the appearance of
ong-range stress fields in the liquid drives the crossover
from Arrhenius behavior for temperatures well above the
transition,T>T, to Zwanzig-Basler behavior in the vicin-
ity of the glass temperaturd=T,. We emphasize that we
ave not derived this result from first principles, however,
since we have used this temperature dependence to identify
the parts of the soft-potential model and derive their distri-

%utions.

Elementary excitations are a consequence of the
symmetry-broken state of the systéd] and can be identi-
fied by diagonalizing the force matrik of the many-body
system. For a liquid, a unique reference configuration does
not exist, and the average over many configuration is taken
to find the(normalized spectrum of the liquid state. Liquid
dynamics is solidlike for times much shorter than the “Max-
well time” [25,26. Instantaneous normal mod@gkiM ) have
been used in recent years to describe liquid dynamics on
picosecond time scalef27,28. The success of theories
based on dynamic properties @ultra-) short time scales is a
consequence of the elastic resistance to shear stress for short
times, which itself stems from the nonzero value of the zero-
frequency shear modulus.

+17)), where the average is taken with respect to the coor- The INM spectrum extends to both real and imaginary

dinate,x, and the parameters of the soft potential, and

frequencies. The high-frequency tail of the real lobe origi-

D,. The temperature dependence arises by assuming thgtes from two-particle collisions. The frequency and tem-

thermal equilibrium distribution for local coordinategs(x)

~exd —V(X)/T]. We introduced scaled frequencies and tem-|

peraturesy’ = v/\\W, Q' =Q/\W, andT’=T/W, and then
derived exact expressions for the density in the liit

perature dependence of the unstable lobe is consistent with
Egs.(5) and(9) for high and low temperatures, respectively,
with a crossover above the melting temperati2€]. Fur-
thermore, the contribution of double-well modes to the un-

—0. We found that the onset of stress in the liquid governsstable lobe vanishes at some finite imaginary frequenéy,
the frequency and temperature dependence of the density.0. While the unstable lobe of the INM density contains
For high temperatured;>Ty , we found that thermal stress “false barrier” modes[30], the barrier density in the soft-

is negligible and the density obeys Arrhenius temperaturgotential model does not. Thus, the striking similarity of the
dependence, 10§,(+*;T)~—Q%7/T. For low temperatures, two densities suggests that instantaneous normal modes are
T=Tg, on the other hand, thermal stress is large and densitgffective in probing “channels” for diffusion.

follows  Zwanzig-Basler  temperature  dependence, Since soft vibrational modes describe the mesoscopic dy-
log G (A4 T)~—T?* Q2T. A comparison with Eqg5) and  namics that is exhibited, e.g., in the boson p¢a@], Eq.

(9) shows that G,(»?T) depends on the frequency- (10) suggests a connection between structural relaxation and
dependent configurational entropy via an extension of theibrational properties of glass-forming liquids dultra-)
Adam-Gibbs relation,G,(v?; T)~exd —1/S(v;T)T]. This  short time scales. In Ref21], we identified oscillations
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around the potential minima of soft modes with f@spro-  double-well modes, i.e., the linear term in the soft-potential

cesses in liquids. Equatioii0) then gives the relatiof31] model.
We have shown that local stress governs the temperature

1 dependence of the configurational entropy. At high tempera-
log 7~ —5—, (11) tures, T>Tg, local stress is negligibly small and a distribu-
(X7)p tion of symmetric double-well modes gives a temperature

o _ N independent entrop(») ~W?/Q?v?. Local stress becomes
which is the basis of much of the work on glass transition ongrge as the temperature is lowerdd: T, . A distribution of
short time scales, particularly in proteifi6]. In proteins,  asymmetric double-well modes then gives an entropy that is
the minima of soft modes corresponddonformational sub-  |inear in temperatureS(v'T)~(W3’2(22/T§’2v4)T. The lin-
states which were first used to interpret the nonexponential, term in the soft-potential model introduces a frequency
time dependence of the CO rebinding on myoglobin aﬂercutoff for double-well modes:gC~T§’4. At temperatures be-

phEOd'Tlsoi'at'orggj]'t f lori f mod d th low the glass transition, local stress dominates the energy
| X(;;ef er: candidates olr exp (cjmng SO mouﬁstt?n kfscale and soft modes are described by single-well potentials.
role of Tast processes In glassy dynamics are "botleneck ag o consequence, the configurational entropy vanishes at
and saturation experiments and nonlinear phenomena assofls «auzmann temperatur&(y: T=T,)=0. Generalizing
y I — 1K) — V.

ated with two-level systemgl]. In fact, pure dephasing the Adam-Gibbs ansatz, we have for the relaxation time
has recently been measured in picosecond vibrational ecr]8g ~1/S(v,:T), and fin(’j Arthenius and Zwanzig-Bsler
c» 1

expenmen?s of myoglobin CQ33]. It shows a powsr- temperature behavior of relaxation times at high and low
law behavior and then becomes thermally activatedy; 1/ temperatures, respectively

=aT"+bexp(—AE/T). A detailed study of such temperature \ye npote that the vibrational spectrum reflects solidlike
dependence will greatly enhance our understanding of relaxs.qherties of supercooled liquids, while the Adam-Gibbs ex-
ation and the nature of low-frequency vibrational excitationsyessjon emphasizes liquidlike aspects of the glass transition
in glasses. [16]. We are not first trying to relate liquid- and solidlike
properties of glass-forming liquids. Indeed, the relation be-
Ill. DISCUSSION tween relaxation times in liquids and the mean-square dis-
Near the glass transition, the heat capacity of a supe/acements on picosecond time scales, cf. (), had pre-
viously been proposed without reference to the liquid state

cooled liquid drops to crystallike values. This observation o ) .
connects the dramatic increase of relaxation times fgo [34]. From the heur!stlg arguments pre_sente(_j in this paper,
we speculate that liquidlike and solidlike “views” of the

an underlying equilibrium second-order phase transition. " ) X .
Adam and Gibbs proposed that thermally activated process@éass transition are not in conflict with each other, but are
are entropically driven, log>1/ST, whereSis the configu- rather related on a fundamental level. . .

rational entropy of the liquid. The fraction of configuration . In future papers, we plan 1o explore in greater detail the

space accessible to the system, and thus the configuratiorf%flas (:ut_llnet_d herfe : ?tf pargcular (ljntheres';hls the natlljrte gntd
entropy, decreases as the temperature is lowered. characterization of Soit modes and how (hey are related o

The configurational entropy reflects the disordered strucTLS' Furthermore, our approach to the glass transition bears

ture of the liquid. It is solidlike at short distances only, while some resemblance to the solidlike treatment of supercooled

translational invariance is destroyed at long distances. As Iéqwds and glass_es In a recent report by Alexari8&j. The
consequence, the vibrational spectrum is dominated b le of stresses is d|ﬁere_nt in the two_approaches, however,
phonons and soft modes at high and low frequencies, respe nd the_ underlying physical assumptions must be carefully
tively. Collective modes are characterized by potential ener[eexamlned.
gies along their many-body coordinates, and the softening of ACKNOWLEDGMENT

vibrational modes is described by symmetric double wells.
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