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Configurational entropy and collective modes in normal and supercooled liquids

U. Zürcher* and T. Keyes†

Department of Chemistry, Boston University, Boston, Massachusetts 02215
~Received 4 February 1998; revised manuscript received 19 April 1999!

Soft vibrational modes have been used to explain anomalous thermal properties of glasses above 1 K. The
soft-potential model consists of a collection of double-well potentials that are distorted by a linear term
representing local stress in the liquid. Double-well modes contribute to the configurational entropy of the
system. Based on the Adam-Gibbs theory of entropically driven relaxation in liquids, we show that the
presence of stress drives the transition from Arrhenius to Zwanzig-Ba¨ssler temperature dependence of relax-
ation times. At some temperature below the glass transition, the energy scale is dominated by local stress, and
soft modes are described by single wells only. It follows that the configurational entropy vanishes, in agree-
ment with the ‘‘Kauzmann paradox.’’ We discuss a possible connection between soft vibrational modes and
ultrafast processes that dominate liquid dynamics near the glass transition.@S1063-651X~99!12108-1#

PACS number~s!: 64.70.Pf, 05.70.2a, 63.50.1x

I. INTRODUCTION

The glass transition remains one of the challenges of
chemical physics despite enormous advances in our under-
standing during the past two decades. The basic phenom-
enology of the transition is well established. As the tempera-
ture of a supercooled liquid is lowered even further, the
specific heat~or heat capacity! drops rapidly without appar-
ent changes in the structure~such as the nearest neighbor
distribution! @1#. This decrease indicates the lack of kinetic
accessibility of liquidlike degrees of freedom, and thus is a
consequence of the transition between ergodic and noner-
godic behavior@2#.

The ergodic behavior in supercooled liquids and glasses
has been studied in Ref.@3# using a molecular dynamics
~MD! simulation. The authors define an energy metric which
is zero for ergodic states and is nonzero when ergodicity is
broken. They point out that this behavior is not surprising
since symmetry breaking is already evident from the nonzero
value of the zero-frequency shear modulus in glasses. Ander-
son outlined a theory in which elementary excitations are a
consequence of the symmetry-broken state of the system@4#.
Palmer proposed a two-level statistical scheme for treating
broken ergodicity systems@5#. The number of such compo-
nents is exponentially large (;eaN) @6#.

Below 1 K the specific heat and the thermal conductivity
have a linear and quadratic temperature dependence, respec-
tively, i.e., C(T);T and k(T);T2. Within the Debye
model of crystal vibrations, the specific heat vanishes more
rapidly asT˜0, C(T);T3. Thus, the linear specific heat in
glasses reflects additional degrees of freedom associated with
disorder. Anderson, Halperin, and Varma@7# and Phillips@8#
independently proposed that these states can be modeled by
two-level systems~TLS! characterized by a continuous dis-
tribution of energy differencesnTLS(De/eTLS* ), whereeTLS* is
some characteristic energy for TLS. The specific heat is then

given by the variance of the energy differences,

C5E
0

`

nTLS~De/eTLS* !~De/T!2

3exp~2De/T!/@11exp~2De/T!#2 dDe.

Using x5De/T, we find

C5T*0
`nTLS~xT/eTLS* !x2e2x/~11e2x!2dx.

For low temperatures,T,eTLS* andnTLS(xT/eTLS* ) is slowly
varying. Assuming a flat distribution near the originDe
50, a linear temperature dependence follows,C;nTLS(De
.0)T.

At higher temperatures, the thermal conductivity reaches
a plateau and the specific heat rises faster thanT3 such that
C/T3 has a peak. Thermal properties of glasses over this
extended temperature range have been described by the so
called soft-potential model, which is an extension of the TLS
model for glasses. Buchenau and co-workers have shown
that two-level systems and low-energy vibrational states can
be explained by the same distribution of localized modes@9#.
Soft modes have been used to describe the excitation spec-
trum of glasses in the rangen;10 to 100 GHz that has
anharmonic contributions from relaxation and quasiharmonic
vibrational excitations~‘‘boson peak’’! @10#. It has been es-
timated that up to 100 particles participate in a low-
frequency mode,Ns;102100. A detailed comparison of the
predictions of the soft-potential model~SPM! with experi-
ments has led to conflicting conclusions. While Sokolov and
co-workers@11# found that the SPM does not explain the
temperature dependence of the specific heat of
Ca0.4K0.6~NO3!1.4 nearT.1 K, Lundqvistet al. found excel-
lent agreement for other typical glass formers such as ortho-
terphenyl~OTP! and glycerol@12#.

A typical glass temperature is about 100 K, while anoma-
lous thermal properties of glasses are observed below 1 K.
Near Tg , the heat capacity of supercooled liquids drops to
crystallike values. This drop reflects the loss of configuration
space accessible to the system in the glassy phase. As a
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consequence, the configurational entropy is much lower for a
glass than for a liquid. Kauzmann observed that theextrapo-
lated values of liquid entropies vanish at some temperature
below the glass transition,TK,Tg @13#.

This behavior suggests that thermally activated processes
in the glassy phase are entropically driven@14#; the glass
transition is regarded as an equilibrium second-order phase
transition that is hidden by slow kinetics@15#. Gibbs and
co-workers argued that particles in a liquid organize inco-
operatively rearranging regionsand determined the tem-
perature dependence of the size of these regions. The relax-
ation time follows

logt;
1

ST
, ~1!

whereS is the specific entropy of the macroscopic sample
andT is the temperature~in units withkB51!. In this paper,
we use Eq.~1! to describe the temperature dependence of
relaxation times.

The temperature dependence of logt is the basis of the
classification of liquids into strong and fragile@16#. In a
strong liquid, the relaxation time shows Arrhenius behavior,
logt }1/T, all the way down toTg @defined by t(Tg)
51013P#, while a fragile liquid exhibits a transition to
stronger-than-Arrhenius dependence beforeTg is reached.
The drop in the specific heatDC5C(liquid)2C(glass) cor-
relates with the degree of fragility;DC is large for fragile
liquids, while it is small, or even negligible, for strong liq-
uids.

We show in this paper that super-Arrhenius behavior of
relaxation times is consistent with a model of supercooled
liquids in which localized, collective modes coexist with
phonons. Similar to TLS modes for glasses below 1 K, such
soft modes are intrinsic to the disordered state of the liquid.
Thus, soft modes dominate the configurational entropy of
liquids above the Kauzmann temperature, while the residual
entropy belowTK originates mainly from TLS modes.

The soft-potential model is a collection of energy profiles
along many-body coordinates,V(x)5W@D1x2D2x21x4#.
The profiles are double and single wells for small and large
values of the asymmetry,D1 , respectively. Buchenau argued
that the asymmetry describes local~shear! stress in the liquid
and proposed that its distribution is independent of tempera-
ture @17#. Since only double wells contribute to the configu-
rational entropy, we expect local stress to govern much of
low-temperature properties of liquids.

Well above the glass temperature,T@Tg , the system can
surmount large barriers, local stress is only a small perturba-
tion to the symmetric potential,V(x).V0(x)5W@2D2x2

1x4#, and soft modes do not contribute to the specific heat.
Since we haveC5T(]S/]T), the entropy does not depend
on temperature and Eq.~1! gives Arrhenius behavior. The
Adam-Gibbs theory is generally used to describe super-
Arrhenius behavior, but our interest in the Arrhenius regime
is to demonstrate the crossover from super-Arrhenius to
Arrhenius temperature dependence only, for which the
Adam-Gibbs ansatz should be applicable.

As the temperature is lowered,T*Tg , the system sur-
mounts small barriers only and the asymmetry between the
minima of the wells can no longer be neglected. As a con-

sequence, soft modes contribute to the specific heat. We in-
troduce a distribution for asymmetry energies of soft modes,
nSPM(De/eSPM* ), whereeSPM* is the characteristic energy for
soft modes. IfeSPM* is much larger than the characteristic
energy for TLS,eSPM* @eTLS* , then a system at temperatureT
can be in the high-temperature limit of the TLS model,
T/eTLS* .1, and still remain in the low-temperature limit for
soft modes,T/eSPM* ,1.

For such temperatures,T,eSPM* , we repeat our argu-
ments from above to find that the configurational entropy
vanishes linearly with temperature,S(T);nSPM(De.0)T
@18#. Inserted into Eq.~1!, we recover the Zwanzig-Ba¨ssler
temperature dependence of relaxation times@19,20#,

logt;
1

nSPM~De.0!T2 . ~2!

The linear temperature dependence of the configurational en-
tropy for T,Tg is unphysical, however, and should only be
considered as an extrapolation. Indeed, this behavior has
been derived assuming thatnSPM(De/eSPM* ) is finite as
De˜0. For T,Tg , the energy scale is dominated by local
stress so that the linear term in the soft-potential model is
large, and soft modes are represented by single- and not
by double-well potentials. It follows that the soft-mode con-
tribution to the configurational entropy drops below the lin-
ear extrapolation,S(T),nSPM(De.0)T, and then vanishes
at some temperature below the glass temperature,TK,Tg ,
in agreement with the ‘‘Kauzmann paradox’’@13#. A sche-
matic sketch of the temperature dependence ofS is depicted
in Fig. 1.

In an earlier paper, we calculated the density of states
~DOS! of unstable frequencies within the soft-potential
model @21#. We showed that the DOS depends on the fre-
quency and temperature via the combinationn2/T only, i.e.,
logGu(n

2);2n2/T for T@Tg and logGu(n
2);2n4/T2 for T

*Tg . A frequency cutoff for double-well modes gives
Arrhenius- and Zwanzig-Ba¨ssler dependence of the diffusion
constant for high and low temperatures, respectively. How-
ever, in Ref.@21#, no connection between unstable modes
and thermodynamic quantities has been made.

Liquid dynamics may be formulated in terms of the mo-
tion of the system among the basins of theN-body potential
energy via the ‘‘reaction coordinates’’ connecting them. We
have suggested@22# that unstable modes are signatures of the
reaction coordinates, and thus related to barrier crossing and
diffusion. While that association must be made carefully, and
the reaction coordinates are more complex than, e.g., simple
parabolic barriers, the diffusion constant has been predicted
very accurately from formulas based on the unstable modes.
Here we additionally propose that unstable modes reflect the
number of local minima accessible to the liquid in a neigh-
borhood of a typical configuration. This is consistent with
the association of unstable modes and reaction coordinates,
since a configuration ‘‘close’’ to many basins most likely lies
on several reaction coordinates.

If slow dynamics is governed by the configurational en-
tropy from one point of view and by unstable modes from
another, there should be a connection between the two. If the
anomalous properties of liquids at low temperatures are due

2066 PRE 60U. ZÜRCHER AND T. KEYES



to soft modes, then they also determineS. In the following
we estimate afrequencyandtemperaturedependent configu-
rational entropyS(n;T) from the contribution of soft modes
with frequencyn. We then show that the unstable DOS
Gu(n), found in our prior calculations and in simulations,
follows from an-dependent extension of Eq.~1! if Gu(n) is
identified ast~n!. Thus, the connection between the unstable
modes and slow relaxation, and our prior calculation of the
crossover from Arrhenius to Zwanzig-Ba¨ssler behavior, is
greatly extended and clarified. In addition, the soft-potential
model gives a complete description of the characteristic be-
havior of the configurational entropy in glass-forming liq-
uids, cf. Fig. 1, in which the temperature dependence is gov-
erned by local stress.

II. SOFT VIBRATIONAL MODES IN LIQUIDS

Since the configurational entropy reflects the topology of
the potential energy surface,S can be computed in the limit
T˜`. In particular, we use a definition ofS that is closely
related to the density of local minima. This density plays an
important role in the ‘‘energy landscape’’ picture of glass
formation @16#. For an arbitrary liquid configurationRW 0 , we
find the nearest local minimum of the potential energy sur-
face,RW min , by displacing the coordinates of the particles par-
ticipating in a low-frequency vibrational mode@6#. We ex-
pand the potential energy aroundRW 0 , DF5F(RW )2F(RW 0)
.2FW •(RW 2RW 0)1 1

2 (RW 2RW 0)•K•(RW 2RW 0). SinceNs does not
scale with the total number of particles, the potential differ-
ence is given bŷDF&;W, whereW is an energy scale for
particle interactions. Hence, the average distance to the near-
est minimum DR5^uRW 02RW minu& follows (DR)2;W/V2,
where V is an upper frequency cutoff for soft vibrational
modes,̂ K &;V2I . We denote byDx0 the separation of the
minima of two-level systems. Because the configurational
entropy is the statistical quantity related to the number of
microscopicstates corresponding to the samemacroscopic
state, we have in harmonic approximationS;(DR/Dx0)2.
We show below that the entropy is well defined in the limit
W˜0.

At temperatures well above the glass transition, we expect
that relaxation times obey Arrhenius behavior, logt
;const/T, or S(T)5const, for T@Tg . It follows that the
specific heat vanishes,C50, and hence soft modes are de-
scribed bysymmetricdouble wells,

V0~x!5W@2D2x21x4#. ~3!

Here, the parameterD2 is a random variable for which we
assume a uniform distribution,

p2~D2!5const, for 0,D2,
V2

4W
. ~4!

The potential is symmetricV0(x)5V0(2x), with two
minima located atx0

656AD2/2. The minima are separated
by the potential barrierDV05WD2

2/4. The barrier curvature
is the negative second derivative of the potential,n2

52d2V0 /dx25W@2D2212x2#. Sincex.0 near the top of
the barrier, barrier frequencies characterize soft modes,n2

.2WD2 . The separation of potential minima,Dx05x0
1

2x0
2 , thus followsDx05n/AW. We thus find that the con-

figurational entropy depends on the barrier frequency of the
soft mode,

S~n!;
W2

V2n2 , T@Tg . ~5!

At low temperatures, the supercooled liquid supports
long-range stress fields@23#. Long-range stress fields induce
frustration so that the supercooled liquid is the high-entropy
phase of the system@24#. In this phase, the energy landscape
has high density of local mimina. The characteristic energy
scale of collective modes is now proportional to the displace-
ment,dF.WD1DR8. SettingdF.W, the typical deviation
follows (DR8)2;1/̂ D1

2&. In the presence of stress, the ma-
jority of two-level systems are asymmetric double wells. Be-
cause the number of particles participating in a soft mode
does not change in the presence of stress, the potential dif-
ferenceDF8;V2(DR8)2 gives an estimate of the ratio of
the number of asymmetric TLS to the number of symmetric
TLS, k;^DF8&/W;V2/W^D1

2&.
Thus, forT*Tg , soft vibrational modes are represented

by both double- and single-well potentials,

V~x!5W@D1x2D2x21x4#. ~6!

Here, the parameterD1 is a random variable characterized by
the probability distributionp1(D1). Because two soft modes
that differ only in the sign ofD1 are equivalent, the distri-
bution is symmetric,p1(D1)5p1(2D1). Assuming Gauss-
ian statistics forD1 , the distribution is characterized by the
second moment,p1(D1)5A2/p^D1

2&1/2exp(2D1
2/^D1

2&). In
the limit Tg˜0, the variance vanisheŝD1

2&˜0, and soft
modes are represented by symmetric double wells only,
p1(D1)5d(D1).

Since the parameterD1 describes thermal stress in the
liquid, ^D1

2& follows from thermodynamic considerations. At
temperatureT, soft modes withDV0,T are in either state
with equal probability and thus contribute to the entropy,
while contributions from modes withDV0.T are much re-

FIG. 1. Configurational entropyS vs temperatureT ~schemati-
cally!. The extrapolation ofS vanishes at the Kauzmann tempera-
ture TK and Tg is the glass temperature. Also indicated are the
linear behaviors discussed in the text.
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duced. Kauzmann argued that the entropy of a glass vanishes
below some temperatureTK @13#. In the two-level descrip-
tion of supercooled liquids, a thermodynamic state with zero
entropy is represented by a collection of soft modes, all of
which are single wells. It follows that the asymmetry is large
for modes withDV0,TK . In linear order inD1 , the asym-
metry is given byDe.WD1Dx05&WD1D2

1/2. The asym-
metry is large forDe;DV0 , or

D1;D2
3/2 ~single/double wells!. ~7!

FromDV0;TK , we haveD2;(TK /W)1/2 and thus arrive at
the estimate^D1

2&;(TK /W)3/2. Buchenau identified the
glass transition temperatureTg with Kauzmann temperature
TK , and arrived at an explicit expression forp1(D1) using a
different approach@17#. Here, we do not use this identifica-
tion and have

p1~D1!50.231S TK

W D 3/4

expF20.169S W

TK
D 3/2

D1
2G . ~8!

This distribution guarantees that the specific entropy is ex-
ponentially small for temperaturesT,TK , in agreement
with the ‘‘Kauzmann paradox.’’

For T.TK , the supercooled liquid probes soft modes rep-
resented by both single- and double-well potentials. Since
D2.n2/2W, Eq. ~7! gives an upper bound forD1 that de-
pends on the barrier frequency,D1,n3/16W3/2. Conse-
quently, the asymmetry as well has an upper bound that de-
pends onn, De,Demax;n4 /W. Following Ref.@7#, the level
density is assumed to be flat, i.e.,nSPM(De).nSPM(De
.0) for De,Demax andnSPM(De).0 for De.Demax. The
ratio of the number of asymmetric TLS to the number of
symmetric TLS can be writtenk;nSPM(De.0)Demax. We
readily find the level density nSPM(De.0)
;W3/2V2/TK

3/2n4. SinceS;nSPM(De.0)T, we now have,
for the specific entropy,

S~n;T!;
W3/2V2

TK
3/2n4 T, T*Tg . ~9!

In Ref. @21#, we used the soft-potential model to calculate
the density of barrier frequencies,Gu(n2;T)5^d(d2V/dx2

1n2)&, where the average is taken with respect to the coor-
dinate,x, and the parameters of the soft potential,D1 and
D2 . The temperature dependence arises by assuming the
thermal equilibrium distribution for local coordinates,p(x)
;exp@2V(x)/T#. We introduced scaled frequencies and tem-
peratures,n85n/AW, V85V/AW, andT85T/W, and then
derived exact expressions for the density in the limitW
˜0. We found that the onset of stress in the liquid governs
the frequency and temperature dependence of the density.
For high temperatures,T@TK , we found that thermal stress
is negligible and the density obeys Arrhenius temperature
dependence, logGu(n

2;T);2V2n2/T. For low temperatures,
T*TK , on the other hand, thermal stress is large and density
follows Zwanzig-Bässler temperature dependence,
logGu(n

2;T);2TK
3/2n4/V2T. A comparison with Eqs.~5! and

~9! shows that Gu(n2;T) depends on the frequency-
dependent configurational entropy via an extension of the
Adam-Gibbs relation,Gu(n2;T);exp@21/S(n;T)T#. This

role of stress in liquids is supported by findings from a mo-
lecular dynamics study of a model glass@23#. The authors
found that stress fields are disrupted by thermal excitations in
normal liquids above some temperatureTs (Ts.Tg). As the
temperature is lowered, the local structure becomes more
correlated so that long-range stress fields can be supported
by the disordered state of supercooled liquids belowTs . The
authors propose that thepercolation of such correlated re-
gions then leads to the glass transition.

Equation ~7! defines a frequency cutoff for double-
well potentials, nc;TK

1/4. For n.nc soft modes are
double-well potentials, while single wells dominate for
n,nc . Since single wells do not contribute to the con-
figurational entropy, the structural relaxation time follows
t21;*nc

` exp@21/S(n;T)T#dn, or in leading order,

logt;
1

S~nc ;T!T
. ~10!

From Eqs.~5! and ~9! we thus find that the appearance of
long-range stress fields in the liquid drives the crossover
from Arrhenius behavior for temperatures well above the
transition,T@Tg , to Zwanzig-Ba¨ssler behavior in the vicin-
ity of the glass temperature,T*Tg . We emphasize that we
have not derived this result from first principles, however,
since we have used this temperature dependence to identify
the parts of the soft-potential model and derive their distri-
butions.

Elementary excitations are a consequence of the
symmetry-broken state of the system@4# and can be identi-
fied by diagonalizing the force matrixK of the many-body
system. For a liquid, a unique reference configuration does
not exist, and the average over many configuration is taken
to find the~normalized! spectrum of the liquid state. Liquid
dynamics is solidlike for times much shorter than the ‘‘Max-
well time’’ @25,26#. Instantaneous normal modes~INM ! have
been used in recent years to describe liquid dynamics on
picosecond time scales@27,28#. The success of theories
based on dynamic properties on~ultra-! short time scales is a
consequence of the elastic resistance to shear stress for short
times, which itself stems from the nonzero value of the zero-
frequency shear modulus.

The INM spectrum extends to both real and imaginary
frequencies. The high-frequency tail of the real lobe origi-
nates from two-particle collisions. The frequency and tem-
perature dependence of the unstable lobe is consistent with
Eqs.~5! and~9! for high and low temperatures, respectively,
with a crossover above the melting temperature@29#. Fur-
thermore, the contribution of double-well modes to the un-
stable lobe vanishes at some finite imaginary frequency,nc

2

,0. While the unstable lobe of the INM density contains
‘‘false barrier’’ modes@30#, the barrier density in the soft-
potential model does not. Thus, the striking similarity of the
two densities suggests that instantaneous normal modes are
effective in probing ‘‘channels’’ for diffusion.

Since soft vibrational modes describe the mesoscopic dy-
namics that is exhibited, e.g., in the boson peak@10#, Eq.
~10! suggests a connection between structural relaxation and
vibrational properties of glass-forming liquids on~ultra-!
short time scales. In Ref.@21#, we identified oscillations
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around the potential minima of soft modes with fastb pro-
cesses in liquids. Equation~10! then gives the relation@31#

logt;
1

^x2&b
, ~11!

which is the basis of much of the work on glass transition on
short time scales, particularly in proteins@16#. In proteins,
the minima of soft modes correspond toconformational sub-
states, which were first used to interpret the nonexponential
time dependence of the CO rebinding on myoglobin after
photodissociation@32#.

Excellent candidates for exploring soft modes and the
role of fast processes in glassy dynamics are ‘‘bottleneck’’
and saturation experiments and nonlinear phenomena associ-
ated with two-level systems@1#. In fact, pure dephasing
has recently been measured in picosecond vibrational echo
experiments of myoglobin CO@33#. It shows a power-
law behavior and then becomes thermally activated, 1/T2*
5aTa1b exp(2DE/T). A detailed study of such temperature
dependence will greatly enhance our understanding of relax-
ation and the nature of low-frequency vibrational excitations
in glasses.

III. DISCUSSION

Near the glass transition, the heat capacity of a super-
cooled liquid drops to crystallike values. This observation
connects the dramatic increase of relaxation times nearTg to
an underlying equilibrium second-order phase transition.
Adam and Gibbs proposed that thermally activated processes
are entropically driven, logt }1/ST, whereS is the configu-
rational entropy of the liquid. The fraction of configuration
space accessible to the system, and thus the configurational
entropy, decreases as the temperature is lowered.

The configurational entropy reflects the disordered struc-
ture of the liquid. It is solidlike at short distances only, while
translational invariance is destroyed at long distances. As a
consequence, the vibrational spectrum is dominated by
phonons and soft modes at high and low frequencies, respec-
tively. Collective modes are characterized by potential ener-
gies along their many-body coordinates, and the softening of
vibrational modes is described by symmetric double wells.
The presence of long-range stress in the liquid enters this
description via the asymmetry between the local minima of

double-well modes, i.e., the linear term in the soft-potential
model.

We have shown that local stress governs the temperature
dependence of the configurational entropy. At high tempera-
tures,T@Tg , local stress is negligibly small and a distribu-
tion of symmetric double-well modes gives a temperature
independent entropy,S(n);W2/V2n2. Local stress becomes
large as the temperature is lowered,T*Tg . A distribution of
asymmetric double-well modes then gives an entropy that is
linear in temperature,S(n;T);(W3/2V2/TK

3/2n4)T. The lin-
ear term in the soft-potential model introduces a frequency
cutoff for double-well modes,nc;TK

1/4. At temperatures be-
low the glass transition, local stress dominates the energy
scale and soft modes are described by single-well potentials.
As a consequence, the configurational entropy vanishes at
the Kauzmann temperature,S(n;T5TK)50. Generalizing
the Adam-Gibbs ansatz, we have for the relaxation time
logt;1/S(nc ;T), and find Arrhenius and Zwanzig-Ba¨ssler
temperature behavior of relaxation times at high and low
temperatures, respectively.

We note that the vibrational spectrum reflects solidlike
properties of supercooled liquids, while the Adam-Gibbs ex-
pression emphasizes liquidlike aspects of the glass transition
@16#. We are not first trying to relate liquid- and solidlike
properties of glass-forming liquids. Indeed, the relation be-
tween relaxation times in liquids and the mean-square dis-
placements on picosecond time scales, cf. Eq.~11!, had pre-
viously been proposed without reference to the liquid state
@34#. From the heuristic arguments presented in this paper,
we speculate that liquidlike and solidlike ‘‘views’’ of the
glass transition are not in conflict with each other, but are
rather related on a fundamental level.

In future papers, we plan to explore in greater detail the
ideas outlined here. Of particular interest is the nature and
characterization of soft modes and how they are related to
TLS. Furthermore, our approach to the glass transition bears
some resemblance to the solidlike treatment of supercooled
liquids and glasses in a recent report by Alexander@35#. The
role of stresses is different in the two approaches, however,
and the underlying physical assumptions must be carefully
reexamined.
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