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Abstract: This article presents a lightweight Byzantine fault tolerance (BFT) 
framework for session-oriented multi-tiered applications. We conclude that it is 
sufficient to use a lightweight BFT algorithm instead of a traditional BFT 
algorithm, based on a comprehensive study of the threat model to, and the state 
model of, the session-oriented multi-tiered applications. The lightweight BFT 
algorithm uses source ordering, rather than total ordering, of incoming requests 
to achieve Byzantine fault tolerant state-machine replication of such type of 
applications. The performance of the lightweight BFT framework is evaluated 
using a shopping cart application prototype built on the web services platform. 
The same shopping cart application is used as a running example to illustrate 
the problem we address and our proposed solution. Performance evaluation 
results obtained from the prototype implementation show that indeed our 
lightweight BFT algorithm incurs very insignificant overhead. 
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1 Introduction 

The multi-tiered architecture has been the predominant architecture for web-based 
applications because it facilitates the separation of business logic execution and 
(persistent) state management, which is the foundation to scale a web application to the 
internet scale. In the multi-tiered architecture, as shown in Figure 1, the client tier is 
responsible for the presentation of the web services via a graphic user interface, one or 
more middle-tier servers are tasked to process the requests issued by the client tier 
according to pre-defined business logic, and the backend servers maintain persistent data 
for the application. 

Figure 1 Typical interactions in a three tier application 

Client Middle Backend

Request-1 Nested Request-1

Nested Reply-1

Nested Request-2

Nested Reply-2

Reply-1

Request-2

Reply-2
 

A user often interacts with a web service (constructed using the multi-tiered architecture) 
within the boundary of a session. The session is typically initiated when the user first logs 
in to his/her account and ends when the user explicitly terminates the session by  
logging out or when the session is timed out (when the user abandons the session). 
Session-oriented computing is pervasive in web-based applications because it fits well 
with the user interaction semantics and works nicely with the state management needs. 
Typically, the middle-tier server fetches data related to the user from the backend server 
at the initiation of a new session and such data is maintained at the middle-tier server in 
the form of session state. 

Considering the untrusted operating environment of the internet, the middle-tier 
servers are vulnerable to many forms of threats and how well the middle-tier servers are 
protected against such threats are crucial to the trustworthiness of the entire web service. 
For example: 

• Due to a crash or malicious fault, the middle-tier server may fail to respond to the 
client’s request. If the middle-tier server is offering a shopping cart service to users, 
the users would not be able to make a purchase, which would result in the loss of 
business opportunities. 

• If the middle-tier server is compromised, the integrity of the service can no longer be 
guaranteed, e.g., for a shopping cart service, the type and quantity of the product 
ordered by the client may be altered. 



   

 

   

   
 

   

      

       
 

    
 
 

   

   
 

   

   

 

   

       
 

Byzantine fault tolerance (BFT) (Castro and Liskov, 2002; Clement et al., 2009a) is a 
promising technology that could help an application achieve high availability and 
trustworthiness. A Byzantine fault (Lamport et al., 1982) refers to an arbitrary fault, 
which could be a crash or malicious fault. BFT can be achieved by using space 
redundancy and ensuring that all non-faulty replicas reach an agreement, referred to as 
Byzantine agreement, on the total ordering of requests to the replicated server despite the 
presence of Byzantine faulty replicas and clients. 

Naturally, one can use an existing BFT algorithm, such as PBFT (Castro and Liskov, 
2002), to enhance the trustworthiness of the middle-tier servers to control the example 
threats to the system described above. However, such BFT algorithms are designed for 
generic stateful applications and often incur significant runtime overhead. We recognise 
that many web-based applications are designed to be session-oriented and each session 
involves only a single client. This observation motivates us to look for a much lighter 
weight solution to the problem where maintaining the objective of high trustworthiness of 
such applications. We conclude that a lightweight BFT algorithm can be designed by 
exploiting the semantics of the applications. In this article, we present such as a study.  
A lightweight BFT algorithm is developed based on the insight obtained via a 
comprehensive analysis of the state model and the threat model on session-oriented 
multi-tiered applications. 

We have implemented a BFT framework running our lightweight BFT algorithm. A 
shopping cart application is used both as a running example to illustrate our approach and 
for performance evaluation of our framework. First, we analyse the threats to the  
multi-tiered architecture shown in Figure 1, using the shopping cart application as an 
example, and explore strategies to mitigate such threads. Second, we analyse the state 
model of the application. The analysis reveals that a source ordering (instead of total 
ordering) of application requests is sufficient, which is the basis for our lightweight BFT 
algorithm. The description of the lightweight algorithm as well as its proof of correctness 
are presented. The performance of the algorithm is carefully evaluated and compared 
against the performance of non-replicated application. The results show that our 
lightweight BFT algorithm incurs a very modest runtime overhead. 

2 The shopping cart application 

Throughout this article, a shopping cart application shown in Figure 2 is used  
as an example to illustrate the problem we address and our proposed solution for  
session-oriented multi-tiered web services applications. 

When a client first invokes the shopping cart web service, the service instance at the 
middle-tier creates a session and a shopping cart object for this client. All messages 
exchanged within this session will carry a unique session identifier. With the session 
identifier as a reference, the client can operate on its shopping cart with a sequence of 
operations through the shopping cart web service. To process an invocation from the 
client, the shopping cart web service may issue nested invocations on the backend 
database server. When the session is over, the shopping cart web service closes the 
session for the client and removes the data stored for the session. 

The creation of a session is triggered by the client’s first invocation to the shopping 
cart web service (step 1). After a session gets created, the shopping cart web service 
returns a session identifier to the client (step 2). With the session identifier as a reference, 



   

 

   

   
 

   

      

     

    
 
 

   

   
 

   

   

 

   

       
 

the client can carry out a sequence of operations to manage its shopping cart. As shown 
in Figure 2, the client requests to browse items (step 3) and then the web service issues a 
nested invocation to the backend database server to obtain item information (step 4). 
After getting a reply back from the database, the web service composes a list of items and 
sends the information to the client (step 5 and step 6). Once receiving the list of items, the 
client requests to add one of the items to its shopping cart and receives a reply (step 7 and 
step 8). If it successfully adds the item, the client checks its shopping cart and reviews the 
added item in its cart (step 9 and step 10). The client then places an order (step 11), and 
the web service initiates a transaction with three updates to the backend database server 
(steps 12–17). After the transaction is committed, the web service returns the order 
confirmation to the client (step 18). The client requests to close the session after it 
receives the order confirmation (step 19) and the web service notifies the client that the 
session is closed and purges the session state for the client (step 20). 

Figure 2 Web service shopping cart example 

WS-Client Shopping Cart
Web Service

DataBase

1. Create a session

2. Session ID

3. Browse items

6. Item list

7. Add an item to shopping cart

8. Added

12. Update inventory table

10. Items in shopping cart

11. Place order

16. Update shipping table

18. Order confirmation

19. Close session

20. Closed

9. View shopping cart

13. Updated

15. Updated

14. Update credit card

17. Updated

4. Query inventory table

5. Return item list

 
 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

2.1 Threat analysis 

In this section, we analyse the threats that can potentially compromise the integrity of the 
middle-tier service. 

2.1.1 Threats from a faulty middle-tier server 

A faulty middle-tier server could: 

1 Refuse to respond to the client’s request. 

2 Lie about its execution status and send replies that are inconsistent with the state 
stored at the backend database server to the clients. For example, the middle-tier 
server for the shopping cart service could report that the order is successfully placed 
when in fact it failed. 

3 Lie about its execution status and insert spurious data into or modify correct data 
maintained at the backend database server. For example, the middle-tier server could 
modify the client’s order by adding product into the order that the client did not 
order. 

In case 1, the service is rendered unavailable to the client. This threat can be controlled 
by replicating the middle-tier server, which is automatically addressed by our lightweight 
BFT algorithm. In cases 2 and 3, the integrity of the service is compromised, e.g., the 
web service could have the credit card of the client charged without inserting a shipping 
record to the backend database. The web service could fail to execute the request to place 
an order but still report to the client that the request has been successfully executed. The 
web service could also insert shipping records for items that none of the clients has 
purchased. To control the threats in 2 and 3, in addition to replicating the middle-tier 
server, a Byzantine agreement is necessary on requests sent to server replicas and their 
relative ordering, and furthermore, the replies received at the client and the nested 
requests at the backend database server must also be voted on, which can be 
accomplished by using any of the well-known BFT algorithms. As to be discussed later, 
we aim to derive a much lighter weight solution to achieve the same objective. 

2.1.2 Threats from a faulty client 

A faulty client could 

1 Send malformed requests to the middle-tier server. 

2 Send conflicting requests to different replicas of the middle-tier server. For example, 
the faulty client in the shopping cart application could request different products to 
be added into the shopping cart at different replicas, or placing an order at some 
replicas while clearing the shopping cart at other replicas. 

The threats in case 1 cannot be addressed by any BFT algorithm because such algorithms 
only ensure the consistency of the replicas and not the validity of the requests. How to 
address the validity of the requests is out of the scope of this article. 

The threat in case 2 can be controlled by replicating the middle-tier server and by 
ensuring a Byzantine agreement on the requests and their relative ordering to the server 
replicas. However, because a faulty client could corrupt the state associated with the 



   

 

   

   
 

   

      

     

    
 
 

   

   
 

   

   

 

   

       
 

session anyway (as in case 1), and other sessions will not be directly impacted, we do not 
see any benefit of controlling this threat. 

2.2 State model analysis 

The state model for session-oriented applications has the following characteristics: 

1 The states for different sessions at the middle-tier server are disjoint. 

2 Different sessions may indeed share state, but only through the backend server. The 
execution order of requests (to the middle tier) with conflicting nested invocations is 
naturally synchronised at the backend server. 

The above observation implies that: 

1 operations belonging to different sessions can be processed in parallel and their 
relative ordering does not matter 

2 it is sufficient to ensure that the requests within the same session are delivered to 
different replicas of the middle-tier server in the same order. 

Because each session is involved with a single client, such as the shopping cart 
application, source ordering, instead of total ordering, of the requests within each session 
is adequate to ensure replica consistency. 

3 The lightweight BFT algorithm 

In this section, we present the lightweight BFT algorithm and the proof of its correctness. 

3.1 Assumptions 

We assume that the messages can be reliably exchanged between different entities in a 
session-oriented multi-tiered application, which can be trivially satisfied by using TCP 
(in the transport level) and web services reliable messaging [i.e., WS-ReliableMessaging 
(Davis et al., 2008)] (in the application level). In particular, if a client or the database 
server sends a message to a non-faulty replica, the replica will eventually receive the 
message. We also assume that there are 2f + 1 replicas for the middle-tier server, of 
which at most f are faulty. Each replica has a unique identifier number k, where k ranges 
from 0 to 2f. All replicas play an equal role (i.e., no one is designated as the primary). We 
assume that the backend database server is trusted (e.g., can be achieved by using BFT 
replication). 

We further assume that 

1 All messages exchanged are uniquely identified (i.e., each message carries a unique 
identifier), which can be achieved by using web services facilities [such as Apache 
Axis2 (http://ws.apache.org/axis2/)]. 

2 All messages sent from replicas are all digitally signed (or protected with message 
authentication code as an optimisation), which can be satisfied by using WS-security 
[such as Apache WSS4J (http://ws.apache.org/wss4j/)] or Java security. 



   

 

   

   
 

   

      

       
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2 Properties 

Our lightweight BFT algorithm for the trustworthy session-oriented middle-tier service 
satisfies the following two properties: 

P1 The faulty replicas (of the middle-tier server) cannot effect unauthorised changes at 
the backend server. 

P2 Concurrent processing for different sessions at the middle-tier server will not cause 
inconsistent views of persistent data at different non-faulty replicas. 

P3 If a non-faulty client sends a request to the middle-tier server, it will receive a 
correct reply and any state changes will be effected correctly at the backend server. 

3.3 The lightweight BFT algorithm 

The operation of the algorithm for a multi-tier application (such as the shopping cart 
application) with f = 1 is shown in Figure 3. 

Figure 3 The lightweight BFT algorithm 

Client
Request

Replica 0

Replica 1

Replica 2

Nested
Request

Reply

Backend

Nested
Reply

 

A client sends the request to all replicas (of the middle-tier server). The request has the 
form < CLIENT-REQUEST t, m, c ,cσ>  where t is the timestamp, m is the message 
context, which consists of the operation requested together with all the necessary 
parameters, c is the client identifier, and σc is the digital signature of the request message 
m signed by the client c (as an optimisation, the message authentication code can be used 
in lieu of digital signature). The tuple < t, c > forms the message identifier of the request. 

On receiving a request, a middle-tier replica validates the signature σc. If the request 
can be verified for m, and no other request that carries the same message identifier has 
been accepted, the request is accepted and executed. The execution may involve nested 
invocations on the backend server and in this case, the replica composes a database 
request < DB-REQUEST s, n, sql, r rσ>  to send to the backend server, where s is the 
session identifier, n is the sequence number (indicates the number of nested invocations 
issued within a session), sql is the SQL statement, r is the replica identifier, and σr is the 
digital signature of the replica. 

If the backend server receives at lease f + 1 verifiable consistent nested requests from 
different replicas and it has not accepted a request with the same s and n, the backend 
server accepts the request, executes the SQL statement sql and returns a reply to all 



   

 

   

   
 

   

      

     
 

    
 
 

   

   
 

   

   

 

   

       
 

replicas. The reply from the backend server has the following form < DB-REPLY s, n, sr 
,dbσ>  where sr consists of the response to the SQL query or update, and σdb is the digital 

signature of the backend server. A replica accepts a nested reply when it contains the 
same s and n. It is possible for a replica to receive such a nested reply before it has issued 
the corresponding nested request, in which case, the nested reply is queued at the replica 
until the corresponding nested request is issued. 

When a replica finishes processing and completes all nested invocations, it replies  
to the client < REPLICA-REPLY t, m, c .rσ>  If the client can collect f + 1 verifiable 
replies, with the same message identifier and the same message context as the request it 
has sent earlier, from different replicas, it accepts the reply and delivers it to the 
application. 

It is worth noting that to avoid generating the session identifier non-deterministically, 
we use the message identifier of the first invocation of a client to determine the session 
identifier. 

3.4 Proof of correctness 

We provide an informal proof of correctness of the lightweight BFT algorithm in terms of 
the properties given in Section 3.1. 

Theorem 1: The faulty replicas (of the middle-tier server) cannot effect unauthorised 
changes at the backend server. 

Proof: Because the backend server does not accept a nested request unless it has collected 
f + 1 consistent requests, and there are at most f faulty replicas, it is obvious that they 
cannot effect any authorised changes at the backend server. 

Theorem 2: Concurrent processing for different sessions at the middle-tier server will not 
cause inconsistent views of persistent data at different non-faulty replicas within the same 
session. 

Proof: Persistent data is managed by the backend server. Concurrent processing for 
different sessions at the middle-tier server will naturally be serialised by the backend 
server if such processing involves conflicting operations on shared persistent data. Hence, 
no two non-faulty replicas within the same session could possibly see different values of 
the same shared persistent data. 

Theorem 3: If a non-faulty client sends a request to the middle-tier server, it will receive 
a correct reply and any state changes will be effected correctly at the backend server. 

Proof: We first prove by contradiction on the claim that any state changes will be 
effected correctly at the backend server. If the state changes are not effected correctly at 
the backend server, we consider the following three possible scenarios: 

1 it is due to a malformed request that is inconsistent with the client’s intention and/or 
business logic, for example, an order submission with altered quantity or product in a 
shopping cart application 

2 it is due to the acceptance (and processing) of duplicate requests, such as duplicate 
order submission in a shopping cart application 



   

 

   

   
 

   

      

       
 

    
 
 

   

   
 

   

   

 

   

       
 

3 it is due to the absence of a nested request that should have been accepted at the 
backend server. 

In scenario 1, it implies that such a malformed nested request has been accepted at the 
backend server, which means at least f + 1 replicas have issued such a request. This is 
impossible because there are only up to f faulty replicas. (By definition, a non-faulty 
replica does not issue malformed nested requests.) 

In scenario 2, each of the duplicate nested requests must have been accepted at the 
backend server, which means that at least f + 1 replicas have issued each of them and 
each of them carries a different message identifier. This implies that at least one  
non-faulty replica has issued duplicate message with different message identifiers, which 
is impossible. 

In scenario 3, the absence of a nested request implies that no more than f replicas 
have issued the nested request, which is impossible because the request issued by a  
non-faulty client will reach all non-faulty replicas and there are at least f + 1 of them. 

The correct state changes at the backend server, together with correct processing at 
the f + 1 non-faulty replicas, ensure that the request is properly handled and a correct 
reply is sent to the client. Because there are f + 1 or more non-faulty replicas, it is 
guaranteed that the client can receive at least f + 1 consistent replies, which ensures the 
delivery of the reply. 

4 Performance evaluation 

The implementation of the lightweight BFT framework and the shopping cart example 
application is based on a set of Apache web services facilities, including Apache Axis2 
(http://ws.apache.org/axis2/) and Apache WSS4J (http://ws.apache.org/wss4j/), and 
Apache Derby (http://db.apache.org/derby/), a Java-based open-source database system. 
WSS4J is an implementation of the WS-Security standard (Nadalin et al., 2006). Most of 
the mechanisms are implemented as Axis2 handlers or modules which can be easily 
plugged into the framework without affecting other components. We use HMAC 
supported by WSS4J for message protection. 

The performance of our lightweight BFT algorithm is evaluated in a local-area 
network (LAN) testbed that consists of 14 HP BL460c blade servers connected by a 
Cisco 3020 Gigabit switch. Each blade server is equipped with two Xeon E5405 (2 GHz) 
processors and 5 GB RAM, and runs the 64-bit Ubuntu Linux operating system. 

These performance evaluation results are obtained for the following three different 
configurations: 

1 the test application is not modified (labelled ‘unmodified application’ in the figure) 

2 the test application is modified to contain HMAC message signing (labelled ‘with 
HMAC’ in the figure) 

3 the test application is protected with our lightweight BFT framework (labelled ‘with 
lightweight BFT’ in the figure). 

The end-to-end latency of each operation is measured at the client side. The throughput 
of the middle tier is measured at one of the shopping cart web service replicas. In each 
run, we obtained around 1,000 samples and calculated the median latency and the  



   

 

   

   
 

   

      

     

    
 
 

   

   
 

   

   

 

   

       
 

median throughput. In all experiments, we assume that at most one replica can be faulty 
(i.e., f = 1). 

The end-to-end latency results are shown in Figure 4. As can be seen in Figure 4, the 
end-to-end latency for each session (which consists of 20 steps, as shown in Figure 2) 
with our lightweight BFT framework is significantly larger than that of the unmodified 
application. However, this increase is due mainly to the use of HMACs for message 
protection, as revealed by the similarly high end-to-end latency when only HMACs are 
used. The additional overhead incurred by our BFT framework (which is less than 15% 
over the second configuration) is primarily due to the voting steps taking place at the 
client and the backend server. The cost of securing messages varies by the message size. 
The cost of signing the ‘browse’ reply message in step 6 of Figure 2 is about 6 ms and 
verifying this message takes about 12 ms (a list of 50 item objects are contained in the 
‘browse’ reply). The cost of securing other messages is similar. The signing takes about  
1 to 2 ms and the verifying of each message takes about 1 ms. The cost of securing all the 
messages inevitably increases the end-to-end latency. However, it is essential to use 
HMAC (or RSA digital signature) for secure communication in practice. Thus, we use 
this configuration as the baseline for comparison. 

Figure 4 End-to-end latency measured at a client with different number of concurrent clients  
(see online version for colours) 
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The throughput results (in terms of the number of sessions processed per minute) are 
shown in Figure 5. As can be seen in Figure 5, compared to the baseline configuration 
(with HMAC), the average throughput reduction with our lightweight BFT algorithm is 
less than 15%. 



   

 

   

   
 

   

      

      

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Throughput of the middle-tier server with different number of concurrent clients  
(see online version for colours) 
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5 Related work 

There are a large body of work on modern BFT algorithms, such as (Castro and Liskov, 
2002; Clement et al., 2009a, 2009b; Singh et al., 2009). These algorithms are designed to 
protect generic stateful servers against Byzantine faults in a client-server environment. It 
is not our goal to develop a competing BFT algorithm for generic stateful servers. 
Instead, this work is a continuation of our line of work on developing more efficient BFT 
solutions by exploiting application semantics. 

In our previous work (Chai et al., to appear; Zhang et al., 2012), we argued that there 
is no need to apply expensive traditional BFT algorithms to web services business 
activity (WSBA) and web services atomic transaction (WSAT) applications, and we 
described a set of BFT mechanisms that can be used to enhance the trustworthiness of 
such applications. In this article, we focus on developing a lightweight BFT solution for 
building trustworthy session-oriented multi-tiered applications. The target applications of 
this paper involve a single user for each session, whereas multiple participants are 
involved in the WSBA and WSAT applications. Hence, in a way the target applications 
of this paper are simpler than the WSBA and WSAT applications. 

We have also seen other related work that aimed to improve the performance of BFT 
systems by exploiting application semantics. In Kotlan and Dahlin (2004), the semantics 
of the networked file system is utilised to parallelise the execution of non-conflicting 
requests. However, to ensure correct partial ordering of conflicting requests, all requests 
have to be totally ordered in the first place, which may incur additional latency. In Distler 



   

 

   

   
 

   

      

    

    
 
 

   

   
 

   

   

 

   

       
 

and Kapitza (2011), a further improvement is proposed by executing at a subset of the 
replicas, for networked file systems or similar applications. Again, all requests must be 
totally ordered in the first place. In sharp contrast, we observed that for (single-client) 
session-oriented multi-tiered applications, it is unnecessary to totally order the requests. 
As shown in our performance evaluation study, the runtime overhead of our approach is 
significantly less than that of the total-ordering approach. Furthermore, avoiding total 
ordering of requests also eliminates the uncertainty of potentially extensive unavailability 
of the BFT system due to view changes, which can be a serious concerns in the 
approaches that rely on the total ordering of requests. 

6 Conclusions and future work 

In this article, we have presented a lightweight BFT solution for session-oriented  
multi-tiered applications. The insight was obtained by carefully analysing the state model 
of such applications and potential threats to the system. We argue that it is unnecessary to 
perform total ordering of all incoming messages to the middle-tier server replicas, to 
achieve BFT. Rather, it suffices to ensure that the messages are delivered in source order, 
i.e., the order in which the sender sends them. Performance evaluation of the research 
prototype using a shopping cart application has shown that our lightweight BFT 
algorithm incurs very moderate (less than 15%) runtime overhead. 

We plan to conduct future work in two fronts: 

1 study other types of distributed systems, such as BPEL (Alves et al., 2007) 
applications, and identify new mechanisms based on the application semantics that 
be used to significantly lower the end-to-end latency and increase the system 
throughput 

2 explore ways to automate or semi-automate the process of extracting ordering rules 
and execution rules based on the source code, and/or high level specifications (such 
as WSDL documents) of the applications, which could reduce the development cost 
of lightweight BFT solutions. 
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