
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

2013

Byzantine Fault Tolerance for Session-Oriented Multi-Tiered Byzantine Fault Tolerance for Session-Oriented Multi-Tiered

Applications Applications

Hua Chai
Cleveland State University, h.chai@csuohio.edu

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Repository Citation Repository Citation
Chai, Hua and Zhao, Wenbing, "Byzantine Fault Tolerance for Session-Oriented Multi-Tiered Applications"
(2013). Electrical Engineering and Computer Science Faculty Publications. 266.
https://engagedscholarship.csuohio.edu/enece_facpub/266

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Byzantine fault tolerance for session-oriented
multi-tiered applications

Hua Chai and Wenbing Zhao*
Department of Electrical and Computer Engineering,
Cleveland State University,
Cleveland, OH 44115, USA
E-mail: h.chai@csuohio.edu
E-mail: w.zhao1@csuohio.edu
*Corresponding author

Abstract: This article presents a lightweight Byzantine fault tolerance (BFT)
framework for session-oriented multi-tiered applications. We conclude that it is
sufficient to use a lightweight BFT algorithm instead of a traditional BFT
algorithm, based on a comprehensive study of the threat model to, and the state
model of, the session-oriented multi-tiered applications. The lightweight BFT
algorithm uses source ordering, rather than total ordering, of incoming requests
to achieve Byzantine fault tolerant state-machine replication of such type of
applications. The performance of the lightweight BFT framework is evaluated
using a shopping cart application prototype built on the web services platform.
The same shopping cart application is used as a running example to illustrate
the problem we address and our proposed solution. Performance evaluation
results obtained from the prototype implementation show that indeed our
lightweight BFT algorithm incurs very insignificant overhead.

Keywords: Byzantine fault tolerance; BFT; multi-tiered applications; web
services; service-oriented computing; trustworthy computing.

Reference to this paper should be made as follows: Chai, H. and
Zhao, W. (2013) ‘Byzantine fault tolerance for session-oriented multi-tiered
applications’, Int. J. Web Science, Vol. 2, Nos. 1/2, pp.113–125.

Biographical notes: Hua Chai is a doctoral student in the Department of
Electrical and Computer Engineering at Cleveland State University (CSU). She
received her Master of Science in Electrical Engineering in 2009 from CSU.
Her research interests include fault tolerance computing, event streaming
processing, and service-oriented computing.

Wenbing Zhao received his PhD in Electrical and Computer Engineering from
the University of California, Santa Barbara, in 2002. He is an Associate
Professor in the Department of Electrical and Computer Engineering at
Cleveland State University. His current research interests include distributed
systems, computer networks, fault tolerance and security. He has more than
80 academic publications.

1 Introduction

The multi-tiered architecture has been the predominant architecture for web-based
applications because it facilitates the separation of business logic execution and
(persistent) state management, which is the foundation to scale a web application to the
internet scale. In the multi-tiered architecture, as shown in Figure 1, the client tier is
responsible for the presentation of the web services via a graphic user interface, one or
more middle-tier servers are tasked to process the requests issued by the client tier
according to pre-defined business logic, and the backend servers maintain persistent data
for the application.

Figure 1 Typical interactions in a three tier application

Client Middle Backend

Request-1 Nested Request-1

Nested Reply-1

Nested Request-2

Nested Reply-2

Reply-1

Request-2

Reply-2

A user often interacts with a web service (constructed using the multi-tiered architecture)
within the boundary of a session. The session is typically initiated when the user first logs
in to his/her account and ends when the user explicitly terminates the session by
logging out or when the session is timed out (when the user abandons the session).
Session-oriented computing is pervasive in web-based applications because it fits well
with the user interaction semantics and works nicely with the state management needs.
Typically, the middle-tier server fetches data related to the user from the backend server
at the initiation of a new session and such data is maintained at the middle-tier server in
the form of session state.

Considering the untrusted operating environment of the internet, the middle-tier
servers are vulnerable to many forms of threats and how well the middle-tier servers are
protected against such threats are crucial to the trustworthiness of the entire web service.
For example:

• Due to a crash or malicious fault, the middle-tier server may fail to respond to the
client’s request. If the middle-tier server is offering a shopping cart service to users,
the users would not be able to make a purchase, which would result in the loss of
business opportunities.

• If the middle-tier server is compromised, the integrity of the service can no longer be
guaranteed, e.g., for a shopping cart service, the type and quantity of the product
ordered by the client may be altered.

Byzantine fault tolerance (BFT) (Castro and Liskov, 2002; Clement et al., 2009a) is a
promising technology that could help an application achieve high availability and
trustworthiness. A Byzantine fault (Lamport et al., 1982) refers to an arbitrary fault,
which could be a crash or malicious fault. BFT can be achieved by using space
redundancy and ensuring that all non-faulty replicas reach an agreement, referred to as
Byzantine agreement, on the total ordering of requests to the replicated server despite the
presence of Byzantine faulty replicas and clients.

Naturally, one can use an existing BFT algorithm, such as PBFT (Castro and Liskov,
2002), to enhance the trustworthiness of the middle-tier servers to control the example
threats to the system described above. However, such BFT algorithms are designed for
generic stateful applications and often incur significant runtime overhead. We recognise
that many web-based applications are designed to be session-oriented and each session
involves only a single client. This observation motivates us to look for a much lighter
weight solution to the problem where maintaining the objective of high trustworthiness of
such applications. We conclude that a lightweight BFT algorithm can be designed by
exploiting the semantics of the applications. In this article, we present such as a study.
A lightweight BFT algorithm is developed based on the insight obtained via a
comprehensive analysis of the state model and the threat model on session-oriented
multi-tiered applications.

We have implemented a BFT framework running our lightweight BFT algorithm. A
shopping cart application is used both as a running example to illustrate our approach and
for performance evaluation of our framework. First, we analyse the threats to the
multi-tiered architecture shown in Figure 1, using the shopping cart application as an
example, and explore strategies to mitigate such threads. Second, we analyse the state
model of the application. The analysis reveals that a source ordering (instead of total
ordering) of application requests is sufficient, which is the basis for our lightweight BFT
algorithm. The description of the lightweight algorithm as well as its proof of correctness
are presented. The performance of the algorithm is carefully evaluated and compared
against the performance of non-replicated application. The results show that our
lightweight BFT algorithm incurs a very modest runtime overhead.

2 The shopping cart application

Throughout this article, a shopping cart application shown in Figure 2 is used
as an example to illustrate the problem we address and our proposed solution for
session-oriented multi-tiered web services applications.

When a client first invokes the shopping cart web service, the service instance at the
middle-tier creates a session and a shopping cart object for this client. All messages
exchanged within this session will carry a unique session identifier. With the session
identifier as a reference, the client can operate on its shopping cart with a sequence of
operations through the shopping cart web service. To process an invocation from the
client, the shopping cart web service may issue nested invocations on the backend
database server. When the session is over, the shopping cart web service closes the
session for the client and removes the data stored for the session.

The creation of a session is triggered by the client’s first invocation to the shopping
cart web service (step 1). After a session gets created, the shopping cart web service
returns a session identifier to the client (step 2). With the session identifier as a reference,

the client can carry out a sequence of operations to manage its shopping cart. As shown
in Figure 2, the client requests to browse items (step 3) and then the web service issues a
nested invocation to the backend database server to obtain item information (step 4).
After getting a reply back from the database, the web service composes a list of items and
sends the information to the client (step 5 and step 6). Once receiving the list of items, the
client requests to add one of the items to its shopping cart and receives a reply (step 7 and
step 8). If it successfully adds the item, the client checks its shopping cart and reviews the
added item in its cart (step 9 and step 10). The client then places an order (step 11), and
the web service initiates a transaction with three updates to the backend database server
(steps 12–17). After the transaction is committed, the web service returns the order
confirmation to the client (step 18). The client requests to close the session after it
receives the order confirmation (step 19) and the web service notifies the client that the
session is closed and purges the session state for the client (step 20).

Figure 2 Web service shopping cart example

WS-Client Shopping Cart
Web Service

DataBase

1. Create a session

2. Session ID

3. Browse items

6. Item list

7. Add an item to shopping cart

8. Added

12. Update inventory table

10. Items in shopping cart

11. Place order

16. Update shipping table

18. Order confirmation

19. Close session

20. Closed

9. View shopping cart

13. Updated

15. Updated

14. Update credit card

17. Updated

4. Query inventory table

5. Return item list

2.1 Threat analysis

In this section, we analyse the threats that can potentially compromise the integrity of the
middle-tier service.

2.1.1 Threats from a faulty middle-tier server

A faulty middle-tier server could:

1 Refuse to respond to the client’s request.

2 Lie about its execution status and send replies that are inconsistent with the state
stored at the backend database server to the clients. For example, the middle-tier
server for the shopping cart service could report that the order is successfully placed
when in fact it failed.

3 Lie about its execution status and insert spurious data into or modify correct data
maintained at the backend database server. For example, the middle-tier server could
modify the client’s order by adding product into the order that the client did not
order.

In case 1, the service is rendered unavailable to the client. This threat can be controlled
by replicating the middle-tier server, which is automatically addressed by our lightweight
BFT algorithm. In cases 2 and 3, the integrity of the service is compromised, e.g., the
web service could have the credit card of the client charged without inserting a shipping
record to the backend database. The web service could fail to execute the request to place
an order but still report to the client that the request has been successfully executed. The
web service could also insert shipping records for items that none of the clients has
purchased. To control the threats in 2 and 3, in addition to replicating the middle-tier
server, a Byzantine agreement is necessary on requests sent to server replicas and their
relative ordering, and furthermore, the replies received at the client and the nested
requests at the backend database server must also be voted on, which can be
accomplished by using any of the well-known BFT algorithms. As to be discussed later,
we aim to derive a much lighter weight solution to achieve the same objective.

2.1.2 Threats from a faulty client

A faulty client could

1 Send malformed requests to the middle-tier server.

2 Send conflicting requests to different replicas of the middle-tier server. For example,
the faulty client in the shopping cart application could request different products to
be added into the shopping cart at different replicas, or placing an order at some
replicas while clearing the shopping cart at other replicas.

The threats in case 1 cannot be addressed by any BFT algorithm because such algorithms
only ensure the consistency of the replicas and not the validity of the requests. How to
address the validity of the requests is out of the scope of this article.

The threat in case 2 can be controlled by replicating the middle-tier server and by
ensuring a Byzantine agreement on the requests and their relative ordering to the server
replicas. However, because a faulty client could corrupt the state associated with the

session anyway (as in case 1), and other sessions will not be directly impacted, we do not
see any benefit of controlling this threat.

2.2 State model analysis

The state model for session-oriented applications has the following characteristics:

1 The states for different sessions at the middle-tier server are disjoint.

2 Different sessions may indeed share state, but only through the backend server. The
execution order of requests (to the middle tier) with conflicting nested invocations is
naturally synchronised at the backend server.

The above observation implies that:

1 operations belonging to different sessions can be processed in parallel and their
relative ordering does not matter

2 it is sufficient to ensure that the requests within the same session are delivered to
different replicas of the middle-tier server in the same order.

Because each session is involved with a single client, such as the shopping cart
application, source ordering, instead of total ordering, of the requests within each session
is adequate to ensure replica consistency.

3 The lightweight BFT algorithm

In this section, we present the lightweight BFT algorithm and the proof of its correctness.

3.1 Assumptions

We assume that the messages can be reliably exchanged between different entities in a
session-oriented multi-tiered application, which can be trivially satisfied by using TCP
(in the transport level) and web services reliable messaging [i.e., WS-ReliableMessaging
(Davis et al., 2008)] (in the application level). In particular, if a client or the database
server sends a message to a non-faulty replica, the replica will eventually receive the
message. We also assume that there are 2f + 1 replicas for the middle-tier server, of
which at most f are faulty. Each replica has a unique identifier number k, where k ranges
from 0 to 2f. All replicas play an equal role (i.e., no one is designated as the primary). We
assume that the backend database server is trusted (e.g., can be achieved by using BFT
replication).

We further assume that

1 All messages exchanged are uniquely identified (i.e., each message carries a unique
identifier), which can be achieved by using web services facilities [such as Apache
Axis2 (http://ws.apache.org/axis2/)].

2 All messages sent from replicas are all digitally signed (or protected with message
authentication code as an optimisation), which can be satisfied by using WS-security
[such as Apache WSS4J (http://ws.apache.org/wss4j/)] or Java security.

3.2 Properties

Our lightweight BFT algorithm for the trustworthy session-oriented middle-tier service
satisfies the following two properties:

P1 The faulty replicas (of the middle-tier server) cannot effect unauthorised changes at
the backend server.

P2 Concurrent processing for different sessions at the middle-tier server will not cause
inconsistent views of persistent data at different non-faulty replicas.

P3 If a non-faulty client sends a request to the middle-tier server, it will receive a
correct reply and any state changes will be effected correctly at the backend server.

3.3 The lightweight BFT algorithm

The operation of the algorithm for a multi-tier application (such as the shopping cart
application) with f = 1 is shown in Figure 3.

Figure 3 The lightweight BFT algorithm

Client
Request

Replica 0

Replica 1

Replica 2

Nested
Request

Reply

Backend

Nested
Reply

A client sends the request to all replicas (of the middle-tier server). The request has the
form < CLIENT-REQUEST t, m, c ,cσ> where t is the timestamp, m is the message
context, which consists of the operation requested together with all the necessary
parameters, c is the client identifier, and σc is the digital signature of the request message
m signed by the client c (as an optimisation, the message authentication code can be used
in lieu of digital signature). The tuple < t, c > forms the message identifier of the request.

On receiving a request, a middle-tier replica validates the signature σc. If the request
can be verified for m, and no other request that carries the same message identifier has
been accepted, the request is accepted and executed. The execution may involve nested
invocations on the backend server and in this case, the replica composes a database
request < DB-REQUEST s, n, sql, r rσ> to send to the backend server, where s is the
session identifier, n is the sequence number (indicates the number of nested invocations
issued within a session), sql is the SQL statement, r is the replica identifier, and σr is the
digital signature of the replica.

If the backend server receives at lease f + 1 verifiable consistent nested requests from
different replicas and it has not accepted a request with the same s and n, the backend
server accepts the request, executes the SQL statement sql and returns a reply to all

replicas. The reply from the backend server has the following form < DB-REPLY s, n, sr
,dbσ> where sr consists of the response to the SQL query or update, and σdb is the digital

signature of the backend server. A replica accepts a nested reply when it contains the
same s and n. It is possible for a replica to receive such a nested reply before it has issued
the corresponding nested request, in which case, the nested reply is queued at the replica
until the corresponding nested request is issued.

When a replica finishes processing and completes all nested invocations, it replies
to the client < REPLICA-REPLY t, m, c .rσ> If the client can collect f + 1 verifiable
replies, with the same message identifier and the same message context as the request it
has sent earlier, from different replicas, it accepts the reply and delivers it to the
application.

It is worth noting that to avoid generating the session identifier non-deterministically,
we use the message identifier of the first invocation of a client to determine the session
identifier.

3.4 Proof of correctness

We provide an informal proof of correctness of the lightweight BFT algorithm in terms of
the properties given in Section 3.1.

Theorem 1: The faulty replicas (of the middle-tier server) cannot effect unauthorised
changes at the backend server.

Proof: Because the backend server does not accept a nested request unless it has collected
f + 1 consistent requests, and there are at most f faulty replicas, it is obvious that they
cannot effect any authorised changes at the backend server.

Theorem 2: Concurrent processing for different sessions at the middle-tier server will not
cause inconsistent views of persistent data at different non-faulty replicas within the same
session.

Proof: Persistent data is managed by the backend server. Concurrent processing for
different sessions at the middle-tier server will naturally be serialised by the backend
server if such processing involves conflicting operations on shared persistent data. Hence,
no two non-faulty replicas within the same session could possibly see different values of
the same shared persistent data.

Theorem 3: If a non-faulty client sends a request to the middle-tier server, it will receive
a correct reply and any state changes will be effected correctly at the backend server.

Proof: We first prove by contradiction on the claim that any state changes will be
effected correctly at the backend server. If the state changes are not effected correctly at
the backend server, we consider the following three possible scenarios:

1 it is due to a malformed request that is inconsistent with the client’s intention and/or
business logic, for example, an order submission with altered quantity or product in a
shopping cart application

2 it is due to the acceptance (and processing) of duplicate requests, such as duplicate
order submission in a shopping cart application

3 it is due to the absence of a nested request that should have been accepted at the
backend server.

In scenario 1, it implies that such a malformed nested request has been accepted at the
backend server, which means at least f + 1 replicas have issued such a request. This is
impossible because there are only up to f faulty replicas. (By definition, a non-faulty
replica does not issue malformed nested requests.)

In scenario 2, each of the duplicate nested requests must have been accepted at the
backend server, which means that at least f + 1 replicas have issued each of them and
each of them carries a different message identifier. This implies that at least one
non-faulty replica has issued duplicate message with different message identifiers, which
is impossible.

In scenario 3, the absence of a nested request implies that no more than f replicas
have issued the nested request, which is impossible because the request issued by a
non-faulty client will reach all non-faulty replicas and there are at least f + 1 of them.

The correct state changes at the backend server, together with correct processing at
the f + 1 non-faulty replicas, ensure that the request is properly handled and a correct
reply is sent to the client. Because there are f + 1 or more non-faulty replicas, it is
guaranteed that the client can receive at least f + 1 consistent replies, which ensures the
delivery of the reply.

4 Performance evaluation

The implementation of the lightweight BFT framework and the shopping cart example
application is based on a set of Apache web services facilities, including Apache Axis2
(http://ws.apache.org/axis2/) and Apache WSS4J (http://ws.apache.org/wss4j/), and
Apache Derby (http://db.apache.org/derby/), a Java-based open-source database system.
WSS4J is an implementation of the WS-Security standard (Nadalin et al., 2006). Most of
the mechanisms are implemented as Axis2 handlers or modules which can be easily
plugged into the framework without affecting other components. We use HMAC
supported by WSS4J for message protection.

The performance of our lightweight BFT algorithm is evaluated in a local-area
network (LAN) testbed that consists of 14 HP BL460c blade servers connected by a
Cisco 3020 Gigabit switch. Each blade server is equipped with two Xeon E5405 (2 GHz)
processors and 5 GB RAM, and runs the 64-bit Ubuntu Linux operating system.

These performance evaluation results are obtained for the following three different
configurations:

1 the test application is not modified (labelled ‘unmodified application’ in the figure)

2 the test application is modified to contain HMAC message signing (labelled ‘with
HMAC’ in the figure)

3 the test application is protected with our lightweight BFT framework (labelled ‘with
lightweight BFT’ in the figure).

The end-to-end latency of each operation is measured at the client side. The throughput
of the middle tier is measured at one of the shopping cart web service replicas. In each
run, we obtained around 1,000 samples and calculated the median latency and the

median throughput. In all experiments, we assume that at most one replica can be faulty
(i.e., f = 1).

The end-to-end latency results are shown in Figure 4. As can be seen in Figure 4, the
end-to-end latency for each session (which consists of 20 steps, as shown in Figure 2)
with our lightweight BFT framework is significantly larger than that of the unmodified
application. However, this increase is due mainly to the use of HMACs for message
protection, as revealed by the similarly high end-to-end latency when only HMACs are
used. The additional overhead incurred by our BFT framework (which is less than 15%
over the second configuration) is primarily due to the voting steps taking place at the
client and the backend server. The cost of securing messages varies by the message size.
The cost of signing the ‘browse’ reply message in step 6 of Figure 2 is about 6 ms and
verifying this message takes about 12 ms (a list of 50 item objects are contained in the
‘browse’ reply). The cost of securing other messages is similar. The signing takes about
1 to 2 ms and the verifying of each message takes about 1 ms. The cost of securing all the
messages inevitably increases the end-to-end latency. However, it is essential to use
HMAC (or RSA digital signature) for secure communication in practice. Thus, we use
this configuration as the baseline for comparison.

Figure 4 End-to-end latency measured at a client with different number of concurrent clients
(see online version for colours)

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

500

550

Number of Concurrent Clients

E
nd

−t
o−

E
nd

 L
at

en
cy

 (m
ill

is
ec

on
ds

)

Unmodified Application
With HMAC
With Lightweight BFT

The throughput results (in terms of the number of sessions processed per minute) are
shown in Figure 5. As can be seen in Figure 5, compared to the baseline configuration
(with HMAC), the average throughput reduction with our lightweight BFT algorithm is
less than 15%.

Figure 5 Throughput of the middle-tier server with different number of concurrent clients
(see online version for colours)

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Number of Concurrent Clients

Th
ro

ug
hp

ut
 (S

es
si

on
s/

se
co

nd
)

Unmodified Application
With HMAC
With Lightweight BFT

5 Related work

There are a large body of work on modern BFT algorithms, such as (Castro and Liskov,
2002; Clement et al., 2009a, 2009b; Singh et al., 2009). These algorithms are designed to
protect generic stateful servers against Byzantine faults in a client-server environment. It
is not our goal to develop a competing BFT algorithm for generic stateful servers.
Instead, this work is a continuation of our line of work on developing more efficient BFT
solutions by exploiting application semantics.

In our previous work (Chai et al., to appear; Zhang et al., 2012), we argued that there
is no need to apply expensive traditional BFT algorithms to web services business
activity (WSBA) and web services atomic transaction (WSAT) applications, and we
described a set of BFT mechanisms that can be used to enhance the trustworthiness of
such applications. In this article, we focus on developing a lightweight BFT solution for
building trustworthy session-oriented multi-tiered applications. The target applications of
this paper involve a single user for each session, whereas multiple participants are
involved in the WSBA and WSAT applications. Hence, in a way the target applications
of this paper are simpler than the WSBA and WSAT applications.

We have also seen other related work that aimed to improve the performance of BFT
systems by exploiting application semantics. In Kotlan and Dahlin (2004), the semantics
of the networked file system is utilised to parallelise the execution of non-conflicting
requests. However, to ensure correct partial ordering of conflicting requests, all requests
have to be totally ordered in the first place, which may incur additional latency. In Distler

and Kapitza (2011), a further improvement is proposed by executing at a subset of the
replicas, for networked file systems or similar applications. Again, all requests must be
totally ordered in the first place. In sharp contrast, we observed that for (single-client)
session-oriented multi-tiered applications, it is unnecessary to totally order the requests.
As shown in our performance evaluation study, the runtime overhead of our approach is
significantly less than that of the total-ordering approach. Furthermore, avoiding total
ordering of requests also eliminates the uncertainty of potentially extensive unavailability
of the BFT system due to view changes, which can be a serious concerns in the
approaches that rely on the total ordering of requests.

6 Conclusions and future work

In this article, we have presented a lightweight BFT solution for session-oriented
multi-tiered applications. The insight was obtained by carefully analysing the state model
of such applications and potential threats to the system. We argue that it is unnecessary to
perform total ordering of all incoming messages to the middle-tier server replicas, to
achieve BFT. Rather, it suffices to ensure that the messages are delivered in source order,
i.e., the order in which the sender sends them. Performance evaluation of the research
prototype using a shopping cart application has shown that our lightweight BFT
algorithm incurs very moderate (less than 15%) runtime overhead.

We plan to conduct future work in two fronts:

1 study other types of distributed systems, such as BPEL (Alves et al., 2007)
applications, and identify new mechanisms based on the application semantics that
be used to significantly lower the end-to-end latency and increase the system
throughput

2 explore ways to automate or semi-automate the process of extracting ordering rules
and execution rules based on the source code, and/or high level specifications (such
as WSDL documents) of the applications, which could reduce the development cost
of lightweight BFT solutions.

Acknowledgements

This work was supported in part by NSF grant CNS 08-21319, and by a CSUSI grant
from Cleveland State University.

References
Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y.,

Guizar, A., Kartha, N., Liu, C., Khalaf, R., Konig, D., Martin, M., Mehta, V., Thatte, S.,
Rijin, D., Yendluri, P. and Yiu, A. (Eds.) (2007) Web Services Business Process Execution
Language, Version 2.0, OASIS Standard.

Apache Axis2 [online] http://ws.apache.org/axis2/ (accessed January 2012).
Apache Derby [online] http://db.apache.org/derby/.
Apache WSS4J [online] http://ws.apache.org/wss4j/ (accessed January 2012).

Castro, M. and Liskov, B. (2002) ‘Practical Byzantine fault tolerance and proactive recovery’,
ACM Transactions on Computer Systems, Vol. 20, No. 4, pp.398–461.

Chai, H., Zhang, H., Zhao, W., Melliar-Smith, P.M. and Moser, L.E. (to appear) ‘Toward
trustworthy coordination for web service business activities’, IEEE Transactions on Services
Computing.

Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M. and Riche, T. (2009a)
‘UpRight cluster services’, Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, Big Sky, MT.

Clement, A., Wong, E., Alvisi, L. and Dahlin, M. (2009b) ‘Making Byzantine fault-tolerant
systems tolerate Byzantine faults’, Proceedings of the 6th Symposium on Networked Systems
Design and Implementation, Boston, MA.

Davis, D., Karmarkar, A., Pilz, G., Winkler, S. and Yalcinalp, U. (2008) Web Services Reliable
Messaging, Version 1.1, OASIS Standard.’

Distler, T. and Kapitza, R. (2011) ‘Increasing performance in Byzantine fault-tolerant systems with
on-demand replica consistency’, Proceedings of the 6th Eurosys Conference.

Kotlan, R. and Dahlin, M. (2004) ‘High throughput Byzantine fault tolerance’, Proceedings of the
International Conference on Dependable Systems and Networks.

Lamport, L., Shostak, R. and Pease, M. (1982) ‘The Byzantine generals problem’, ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 3, pp.382–401.

Nadalin, A., Kaler, C., Monzillo, R. and Hallam-Baker, P. (2006) Web Services Security: SOAP
Message Security 1.1, OASIS Standard.

Singh, A., Fonseca, P., Kuznetsov, P., Rodrigues, R. and Maniatis, P. (2009) ‘Zeno: eventually
consistent Byzantine-fault tolerance’, Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation.

Zhang, H., Chai, H., Zhao, W., Melliar-Smith, P.M. and Moser, L.E. (2012) ‘Trustworthy
coordination for web service atomic transactions’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 23, No. 8, pp.1551–1565.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

	Byzantine Fault Tolerance for Session-Oriented Multi-Tiered Applications
	Repository Citation

	Microsoft Word - IJWS0201-0206 ZHAO_eps.doc

