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Radial motion in a central potential for singular mass densities
Ulrich Zürcher and Miron Kaufman

INTRODUCTION

The motion in the gravitational field of a sphere with uni-
form and constant mass density is discussed in introductory
and intermediate-level mechanics texts.1 The mass inside the
radius r increases as M�r��r3, the corresponding gravita-
tional potential is V�r��r2, and the radial motion is
harmonic.2 A sphere with uniform mass density and a point
mass �the Kepler problem� are the two gravitational cases
that lead to closed orbits, that is, the periods for orbital and
radial motion are degenerate.

The radial motion applies to the fictional case when a
person falls through a hole through the center of the Earth,
popularized in Carroll’s Alice in Wonderland3 and Baum’s
Dorothy and the Wizard of Oz.4 The fall through a tunnel
goes back to Bacon and Voltaire5 and was discussed by
Galilei.6 The Earth has a shell structure with a mass density
increasing toward the center,2 and hence the motion is not
strictly harmonic in this fictional case.

In this paper, we consider central potentials of the form
M�r��r� with 0���3. A point mass corresponds to
M�r��r0. The mass distribution M�r� defines a local density
��r� so that dM =4�r2��r�dr. Thus, a power law M�r��r�

with ��3 corresponds to a density that diverges near the
center, ��r�→� for r→0. The cases M�r��r and M�r�
�r2 are used to describe the mass distributions in elliptical
galaxies.7 The determination of mass distributions from mea-
sured luminosities goes back to the work by Shapley and de
Vaucouleurs.8,9 They determined the mass distribution of el-
liptical galaxies based on the observed luminosities and pro-
posed the form ��r��r−3/2 near the center of the galaxies. It
was later found that ��r��r−1 applies to M32, the small
companion of the Andromeda galaxy. Gigantic galaxies, such
as M87 in the Virgo cluster, are described by ��r��r−2.10 A
singular mass density is described by Dehnen’s law,11

��r̃� � r̃−��1 + r̃�−�4−��, �1�

where r̃2=x2 /a2+y2 /b2+z2 /c2. Equation �1� is known as
Hernquist’s law12 for �=1 and Jaffe’s law for �=2.13 Deh-
nen’s law describes the mass density of the stars and inter-
stellar gas in the elliptical galaxy. We note that mass density
has the asymptotic behavior ��r̃�� r̃−4 for r̃�1. Because
black holes do not contribute to the observed luminosity, the
density ��r̃� does not describe the �supermassive� black holes
that are believed to be at the center of elliptical galaxies.

Although we will not address any specific astrophysical
problem, we adopt astrophysical terminology throughout this

paper and use the terms “weak” and “strong cusp” for �
=1,2, respectively. The reader is referred to Ref. 7 for fur-
ther explanation of the terminology.

GRAVITATIONAL POTENTIAL

In the following, we use r for the radial coordinate along
the diameter so that �r�=r is the radial coordinate r. The
acceleration a�r� of a star at the radius r can be expressed in
terms of the mass inside r given by M�r�=4��0

rs2��s�ds,2

a�r� = −
GM�r�

r2 r̂ , �2�

where G is the gravitational constant and r̂ is a unit vector.
The potential V is given by a�r�=−dV /dr. We note that
V�r��−GM�r� /r if dM /dr�0. For a uniform sphere of ra-
dius R, we have ��r�=�0 for r�R and ��r�=0 for r�R. The
potential is given by2

V�r� =�− �GM̃/2R3��3R2 − r2� �r � R�

− GM̃/r �r � R� ,
	 �3�

where the total mass M̃ is M̃ =M�R�. The constant 3GM̃ /R is
chosen so that the potential is continuous at r=R.

We consider the case when the object moves along the
diameter so that when the object is released from rest at r0
�R, the motion is restricted to −r0�r�t��r0. Because V�r�
in Eq. �3� is quadratic, the object undergoes harmonic mo-

tion, r̈=−�GM̃ /R3�r. The period is given by

T = 2�
 R3

GM̃
. �4�

That is, T2 /R3=4�2GM̃, which is Kepler’s third law.
Although the mass density can be singular at the origin,

��r��r−� for r→0, the mass inside r must remain finite, that
is, M�r���. It follows that ��3 in Eq. �1�. We introduce a
radial scale R0 for the singular behavior, ��r� /�0��R0 /r��,
and a radial cutoff R1 such that the density follows the be-
havior for large radii, ��r� /�0�R0

�R1
4−� /r4 for r�R1. We will

see in the following that �0 depends on the total mass of the
galaxy and the two cutoff radii, �0=Mtot /R0

�R1
3−�, up to a

constant of order of unity. In the following, we use Dehnen’s
law in the form,

��r� = �0�R0

r
�� 1

�1 + r/R1�4−� �� � 3� . �5�

The density ��r� diverges as r→0 and �→0 as r→�.



The power-law behavior �R0 /r�� is scale-invariant, and the
radius R1 is the only characteristic length for the mass dis-
tribution of the elliptical galaxy. We have

M�r� = 4��0R0
�R1

3−�	�r/R1� , �6�

where we have introduced the function 	�z� with the dimen-
sionless radius z=r /R1,

	�z� = 
0

z s2−�

�1 + s�4−�ds . �7�

For �=1,2, we find

M�r� = M̃��r/R1�2/�1 + r/R1�2 �� = 1�
�r/R1�/�1 + r/R1� �� = 2� ,

	 �8�

where M̃ =2���0R0
�R1

3−�. The mass M̃ and the radius R1 de-
fine the characteristic time scale analogous to Eq. �4�,

T̃ =
 R1
3

GM̃
. �9�

The magnitude of the acceleration of an object at the ra-
dius r is

a�r� = ã�1/�1 + r/R1�2 �� = 1�
1/��r/R1��1 + r/R1�� �� = 2� .

	 �10�

The characteristic scale for acceleration is given by

ã =
GM̃

R1
2 . �11�

The acceleration at the origin is finite for �=1, a�r→0�
→ ã, and diverges for �=2, a�r→0�= ãR1 /r→�.

The potential V�r� follows from Eq. �3�,

V�r� = − ṽ2�1/�1 + r/R1� �� = 1�
ln�1 + R1/r� �� = 2� ,

	 �12�

where ṽ is the characteristic speed,

ṽ =
R1

T̃
=
GM̃

R1
. �13�

The radial dependence of the potential is different for r
�R1 and r�R1. For r /R1�1, we have ln�1+R1 /r��R1 /r
so that

V�r� = −
GM̃

r
�r � R1� . �14�

We conclude that the motion of a star far from the center of
the elliptical galaxy reduces to the Kepler problem. There-
fore, we limit our subsequent discussion to the case when the
star is deep inside the galaxy and “feels” the singular mass
distribution. We choose the initial condition r0 /R1=0.2 so

that M�r0�=M̃ /36 and M�r0�=M̃ /6 in the weak- and strong-
cusp limits, respectively.

We plot the scaled potential V�r� / ṽ2 for 0�r /R1�0.2 in
Fig. 1. The potential is nearly constant for �=1 so that the
speed of the star remains finite at all times. For �=2, the
potential diverges logarithmically so that the speed diverges
as the star approaches the center of the galaxy. This diver-
gence is unphysical because the description of the stars’ dy-

namics using Newtonian mechanics must be replaced by a
formulation using general relativity or the singular mass den-
sity must be regularized.

RADIAL MOTION

Because the energy is conserved, the solution can be found
by integration. Conservation of energy yields the speed v
= �v� for �=1,

− ṽ2 1

1 + r0/R1
= − ṽ2 1

1 + r/R1
+

1

2
v2 �15�

so that

v2

2ṽ2 =
r0/R1 − r/R1

�1 + r0/R1��1 + r/R1�
. �16�

We set r=0 and find the maximum speed of the star as it
passes through the center of the galaxy,

vmax

ṽ
=
 2r0/R1

1 + r0/R1
�17�

so that vmax / ṽ�0.58 for r0 /R1=0.2. Because x / �1+x��1
for x�0, we find

vmax � 
2ṽ �18�

for arbitrary values of the ratio r0 /R1.
The equation of motion can be integrated to find the time

t=�dr /v or

t

T̃
=

1

2

R1 + r0

R1


r/R1

r0/R1 
 1 + s

�r0/R1� − s
ds . �19�

The remaining integral is elementary,

t

T̃
=

1

2

�R1 + r0

R1
�3/2�
�R1 + r��r0 − r�

R1 + r0

+ sin−1
 r0 − r

R1 + r0
� . �20�

Equation �20� can be inverted numerically to find the radius
as a function of time, r=r�t�. We set r=0 and find for the
period

Fig. 1. The gravitational potential V�r� for �=1 �dashed� and �=2 �solid�
from Eq. �15�.



T

T̃
= 2
2�R1 + r0

R1
�3/2� 
R1r0

R1 + r0
+ sin−1
 r0

R1 + r0
� . �21�

For small amplitudes, r0 /R1�1, and we have in leading or-
der,

T

T̃
� 4
2
 r0

R1
. �22�

We now consider the case when the star goes through the
center of the galaxy, t→T /4. We introduce the small time
difference 
t as


t =
T

4
− t � 0. �23�

We find from Eq. �20� that

r = ṽ
 2r0/R1

1 + r0/R1

t = vmax
t , �24�

where we have substituted the expression for the maximum
speed of the star �Eq. �17��.

We use MATHCAD �Ref. 14� to compute the time-
dependent radius, velocity, and acceleration of the star. In
Fig. 2, we plot r /r0, v / ṽ, and a / ã versus t /T. Although the
time-dependent radius approximately corresponds to har-
monic motion, the velocity and acceleration do not; the ve-
locity is similar to a sawtooth function rather than a sine
function, and the acceleration is approximately piecewise
constant.

We plot the phase portrait of the motion in Fig. 3. The
phase diagram is roughly similar to the elliptical shape of the
phase portrait for a harmonic oscillator. We observe a cusp
when the star passes through the center �r=0,vmax�, which
reflects the discontinuity of the star’s acceleration, a�0+�r�
=−a�0−�r�=−ã for �r→0. There is no cusplike behavior
for the harmonic oscillator because the acceleration is zero at
r=0.

We now consider �=2. We have for the conservation of
energy,

− ṽ2 ln�1 +
R1

r0
� = − ṽ2 ln�1 +

R1

r
� +

1

2
v2. �25�

We find for the speed v,

v = 
2ṽ
u�r/R1� − u�r0/R1� , �26�

where we have introduced the function u�x� for x�0,

u�x� = ln�1 +
1

x
� � 0. �27�

We write u0=u�r0 /R1��1. Note that u� ln�R1 /r�→� for
r→0. It follows that the speed diverges as the star ap-
proaches the center of the elliptical galaxy. This behavior is
unphysical because the speed cannot exceed the speed of
light. The Schwarzschild radius is obtained by setting c2 /2

=GM̃ /Rs,
15

Rs =
2GM̃

c2 . �28�

An object smaller than its Schwarzschild radius collapses
and becomes a black hole. We set v=c in Eq. �25� and find
the radius rc,

rc = R1 exp�−
R1

Rs
� . �29�

The Schwarzschild radius is the smallest length scale in the
problem so that R1�Rs. It follows that the ratio rc /R1 is
exponentially small.

Because r�r0, we have u�r /R1��u0, and the time t can
be written as

t

T̃
=

1

2


r/R1

r0/R1 1

u�s� − u0

ds . �30�

We use u�x��−ln�x� for small arguments and find

t

T̃
= 2−1/2

0


u−u0

�cosh�w2 + u0� − 1�−1dw . �31�

We use a series expansion for the hyperbolic cosine
function and retain the first two terms, �cosh�w2+u0�−1�−1

�2 exp�−w2−u0�+4 exp�−2w2−2u0�. The remaining inte-
grals yield error functions,16

Fig. 2. The scaled radial coordinate ���, velocity ���, and acceleration ���
in the weak-cusp limit �=1.

Fig. 3. The phase portrait for the weak-cusp limit.



t

T̃
=
�

2
�e−u0 erf�
u − u0� + 2e−2u0 erf�
2�u − u0��� .

�32�

The period follows in the limit u→�, T / T̃=4
� /2
�exp�−u0�+2 exp�−2u0��. Because exp�−u0�=1 / �1+R1 /r0�,
we find T / T̃=2
2��3+R1 /r0� / �1+R1 /r0�2, or in leading or-
der of r0 /R1,

T

T̃
� 2
2�

r0

R1
. �33�

We now consider the case where the star passes through
the center of the galaxy, that is, t→T /4, and write and define

t as in Eq. �23�. We use the asymptotic approximation for
the error function,16 erfc�z�=�−1/2z−1 exp�−z2�, and find in
leading order

ṽ
t =
1


2ln1/2�r0/r�
r �34�

or, alternatively, r=veff
t with the r-dependent speed, veff

=
2ṽ ln1/2�r0 /r�. We set r equal to the cutoff radius in Eq.

�29� and find the corresponding cutoff time, 
tc / T̃

= 1
2

R1 /Rsexp�−R1 /Rs�. It follows that 
tc / T̃→0 for

R1 /Rs�1. Equation �26� gives the velocity as a function of
r, v2 /2ṽ2� ln�r0 /r�. If we substitute Eq. �26� into Eq. �34�,
we obtain 
t / T̃= �ṽ /v�exp�−v2 /2ṽ2�, indicating that the
rapid increase in the star’s speed occurs over a very short
time as it passes through the center of the elliptical galaxy.
Equations �26� and �32� can be inverted numerically to find
the radius and velocity as a function of time, r=r�
t� and
v=v�
t�, respectively.

In Fig. 4, we plot r /r0, v /�0, and �a /100ã� versus the
scaled time t /T. We plot a /100ã to better capture the diver-
gence of the acceleration as r→0. As for �=1, the time-
dependent radius is approximately a cosine function, r�t�
�r0 cos�2�t /T�. The time-dependent velocity and accelera-
tion do not correspond to harmonic motion. We find that the
velocity v�t� is a concave function for 0� t�T /4, whereas
the velocity for harmonic motion is convex for the same time

interval. The star’s acceleration is markedly faster than that
for harmonic motion, and the acceleration is very small ex-
cept very close to the center of the elliptical galaxy.

We plot the phase portrait of the motion in Fig. 5. In the
upper half, v�0, the phase portrait is concave only near the
turning points, r= r0. Because the acceleration diverges as
r→0, the plot is strongly convex near the center. The convex
behavior for �=2 is the continuation of the cusplike behavior
for �=1.

The solution of the equation of motion for �=3 /2 cannot
be expressed in terms of elementary functions. We used the
Runge–Kutta differential equation solvers in MATHCAD. As
expected, the behavior for �=3 /2 interpolates between that
for �=1 and �=2. We find vmax�3.26ṽ for r0 /R1=0.2. We
plot the radius, velocity, and acceleration in Fig. 6 as a func-
tion of time; the phase portrait is shown in Fig. 7. The curve
is not closed due to our use of the fourth-order Runge–Kutta
algorithm. This inaccuracy could be addressed by using an
adaptive step size algorithm or working with the inverse ra-
dius r−1.

DISCUSSION

We have discussed radial motion in a central potential pro-
duced by a singular mass distribution such that M�r��r� for
the mass inside the radius r. For 0���3, this mass density

Fig. 4. The scaled radial coordinate ���, velocity ���, and acceleration ���
in the strong-cusp limit �=2.

Fig. 5. The phase portrait for the strong-cusp limit.

Fig. 6. The scaled radial coordinate ���, velocity ���, and acceleration ���
in the limit �=1.5.



extrapolates between the two cases for which bound orbits
are closed, the Kepler problem for �=0 and the isotropic
oscillator for �=3.

Because the acceleration is nonzero at r=0, the phase por-
trait does not have the elliptical shape found for harmonic
motion. The speed is finite in the weak-cusp limit, �=1, and
diverges in the strong-cusp limit, �=2. We found closed-
form expressions for r�t� for �=1. For �=2, closed-form
expressions were found only in the limit as the star is passing
through the center of galaxy. The divergence of the velocity
occurs for a very short time interval compared to the period
of motion.

The dependence of the period on the amplitude equal to
the initial radius r0 is given for radial motion by

T

T̃
� � r0

R1
��/2

�� = 1,2� . �35�

For r0 /R1=0.2, we find T / T̃�2.53 and T / T̃�1.00 for �=1
and �=2, respectively. For comparison, we also plot the pe-

riod for harmonic motion, T / T̃=2�. We find that a singular
mass distribution shortens the periodicity of radial motion.
This behavior is shown in Fig. 8. The period for orbital mo-
tion Torb is calculated from �2� /Torb�2r=a�r� and we find

Torb

T̃
= 2�� r0

R1
��/2�1 +

r0

R1
�1/�

�� = 1,2� . �36�

We thus find that for arbitrary values of �, the periods for
radial and orbital motion are incommensurate, T /Torb
�n1 /n2 for �positive� integers n1 and n2 for arbitrary values
of the initial radius r0 /R1. This behavior suggests that bound
orbits of stars inside elliptical galaxies do not close on them-
selves.

A star moves along the radius of a galaxy if the galaxy’s
mass distribution is isotropic. Our calculations are relevant to
this situation. We discussed the trajectories of stars for a
given galaxy mass distribution. The structure and dynamics
of galaxies are related to each other, and the trajectories of
all the stars in the galaxy determine its mass distribution. It
was discovered in the mid-1970s that elliptical galaxies ex-
hibit a rich variety of shapes and internal dynamics.17 For
this case, Schwarzschild18 showed that self-consistent mass
densities of galaxies can be obtained from the orbital dynam-
ics of stars. Similar conclusions were reached by Vander-
voort based on many-body simulation studies.19
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