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Scaling Behavior of Fluctuations in Systems with Continuous Symmetry

Ulrich Zurcher

Department of Chemistry, Massachusetts institute of Technology C. ambridge, Massachusetts 02139
(Received 22 December 1993)

In nematic liquid crystals, director fluctuations correspond to the dynamical mode that is critical for

all temperatures in zero external fields. The Hurst exponent characterizes the temporal behavior of the

mean square displacement of director fluctuations, ([bn(r, t) —Bn(r, O)I2)-t 2n. We find H = f in finite

fields and H = —,
'

in zero field. This result differs from that of Zhang et ai [Phys. . Rev. Lett. 7(), 1834

(1993)] who find a Hurst exponent that varies continuously from H= 1 in zero field to H= —,
'

in

moderate fields.

PACS numbers: 64.70.Md, 05.40.+j, 61.30.—v, 64.60.Cn

In situations where the dynamic produces its own or-

dering, the term "self-organized criticality" has been pro-
posed by Bak, Tang, and Wiesenfeld [I]. Such behavior
has been studied extensively in sandpile models [2], where

the total number of particles is conserved and the average
density of particles per site is the associated "order pa-
rameter. " The role of symmetries and their related con-
servation laws to scale invariance is a topic of consider-
able current interest [3]. In particular, Obukhov argued
that scale invariance is a natural property for systems in

which infinitesimal symmetries lead to Goldstone modes
in many body degenerate states [4].

The connection between conservation laws and scale in-

variance has been tested both experimentally and numeri-

cally for nematic liquid crystals (NLC). Fluctuations in

NLC are unique in that they vary from microscopic to
macroscopic length scales. The slow, long wavelength
modes are limited by the size of the sample.

N LC are arrangements of approximately parallel mole-

cules whose centers of mass have no long-range order,
similar to ordinary liquids [5]. Interactions between the
molecules are invariant under simultaneous rotation of
the axis of the molecules and of their center of mass. The
total angular momentum is conserved and the com-
ponents of their molecular quadrupole moment, the direc-
tor, are the "symmetry breaking" and the "symmetry re-
storing" variables [6]. Therefore, director fluctuations
correspond to the dynamical mode which is critical for all

temperatures in the nematic phase [7].
I n zero external field, the ordered state has uniform

director throughout the sample, n =no =const. The
molecular quadrupole moments couple to external mag-
netic fields. In strong fields, this coupling leads to a tran-
sition from the state with uniform director to a state in

which the director varies in space (Freedericksz transi-
tion) [5]. However, in this paper, we are concerned with

the behavior of director fluctuations in zero and moderate
fields only.

In a recent Letter, Zhang et al. [8] have reported re-
sults from neutron scattering experiments on a deuterated
NLC (d-PAA). The intensity of the neutron signal is

given by the coherent cross section for neutrons scattered

by a single molecule which depends on the angle between

the director of the molecule and the scattering wave vec-

tor. Hence, fluctuations in the recorded neutron signal

represent long wavelength orientational fluctuations.
From equilibrium time series, the range R and the

standard deviation S of the stochastic variable are ob-
tained. Averaged over the time range r, the ratio R/S
scales with r as R/Six r, where H is the Hurst ex-
ponent with 0& H ~ 1. In the case where successive in-

crements of the stochastic variable are independent of
each other, ordinary Brownian motion follows with H

For H & 2, which is the case for fractional Browni-

an motion [9], power-law correlations exist. For
0 & H & 2, the stochastic process spreads more slowly

than diffusively, while for 2 & H &1 it spreads more

rapidly than diffusively.
Zhang et al. [8] find that the Hurst exponent for direc-

tor fluctuations changes continuously from H =1 in zero
field to H =

2 in moderate fields. Such behavior implies

long-lived correlations of director fluctuations [10] that
persist even in the presence of weak external magnetic
fields.

In this paper, we describe director fluctuations in

nematic liquid crystals. We calculate their mean square
displacements and find that director fluctuations are frac-
tional Brownian processes with a Hurst exponent H =

4

in zero field. Rotational invariance is destroyed by arbi-
trarily weak magnetic fields, and we find H =

2 for
nonzero fields. We emphasize that although we use the
language applicable to NLC, our results apply to more
general situations.

In nematic liquid crystals, the (average) molecular
axis, the director, has the same orientation throughout
the sample. For such a uniaxial system, the order param-
eter is a second rank tensor S,p=n, np

—
3 B,p. The direc-

tor may vary in space, n =n(r), due to boundary condi-
tions or external fields. The free energy of the NLC has
contributions due to elastic distortions and external mag-
netic fields which may be found, e.g., in Ref. [5]. The dy-
namic of the director is overdamped, rI&n/r)t = —i59/Bn,
where g is an effective viscosity.

It is generally assumed that director fluctuations are
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small compared to the equilibrium value, n =no+Bn with

~no~ && ~8n~, so that fluctuations are orthogonal to the
equilibrium director orientation, no&6'n. Hence, in a
Cartesian coordinate system whose z axis is aligned with

na, the director follows n =(0,0, 1)+(bn„bn~, 0)
We introduce the Fourier transformation of director

fluctuations,

bn(r) = V ' gbn(q)e

where V is the volume of the sample. The free energy is

given in Fourier representation by 2 =
& P [Kq +tch ]

2
2 q

x ~8n(q) ~, where K is an elastic constant, h is the mag-
netic field in the plane orthogonal to the average director

no, and K is the magnetic susceptibility. The equations of
motion of the Fourier modes follow as

ti bn;(q, t) = —[Kq +trh ]bn;(q, t), i =x,y.

Thus, the correlation functions decay exponentially,

G(f) =const so that g(t) and g(s) are independent of
each other for t&s. Indeed, it has been shown that a

Gaussian process is Markovian only when the correlation
functions decay exponentially [11]. We thus have

The mean square displacement then follows as

&[bn(r, t) —bn(r, O)] ) =2„ds& du&((s)g(u))

so that

&[bn(r, t) —bn(r, 0)]')-( . (7)

In the absence of external magnetic fields, h =0, the

relaxation time ~p diverges, and slow hydrodynamic

modes are responsible for the decay of correlation func-

tions,

r q tl/Kq

We find that slow modes have large variance,

&8n;(q, t)bnt(q', 0)) =bqqb~t&~bn;(q, O)
~

)e ', (2)
& Ibn (q) I

'),
q
=ka TlKq '. (9)

where the relaxation time is given by r q
=

rt [Kq ~

+borh ] '. In thermal equilibrium, at temperature
director fluctuations obey the canonical distribution,
exp( —7/kttT), and the mean square amplitude of
Fourier modes follows as & ~bn;(q) ~ ),q =ktt T(Kq
+ trh ) ', for i =x,y. Since n„and n~ are equivalent, we

set n„=n in the remainder of this paper.
We consider first the behavior of director fluctuations

in nonzero external fields, hWO. Inserting Eq. (2) into

Eq. (I ), we find for the correlation function

&bn(r, t)bn(r, O)) =e ' '"P&~bn(q, 0)~ )e
q

with the relaxation time

rg = rt/K'h (3)

We neglect slow relaxation processes so that

g&~bn(q, O)~ )exp( —
rt 'Kq t)=&[bn(r, 0)] ).

q

Thus, bn(r, t) is uncorrelated to its initial value bn(r, 0)
for times t & rp..

Equations (8) and (9) together with Eq. (I) suggest a

hierarchical picture of changes in bn(r, t). Modes with

large wave vector produce fast changes which are small in

magnitude, while modes with smaller wave vector pro-

duce larger changes which are more infrequent.
The elastic approximation breaks down for length

scales that are comparable to the (average) distance be-

tween neighboring molecules I. This length scale intro-

duces a short time scale rt =(4tr K) 'rtl . We consider

times that are longer than rI, t & rI. The size of the

sample introduces the length scale L=V' which, in

turn, defines a long time scale rL =(4tr K) 'tIL . For
times t & r L, surface contributions to the free energy can

be neglected.
For finite times, iI & t & rL, the correlation function is

given in the continuum limit by

& bn (r, t )bn (r,0) ) = 4tr ktt TK

r 2~/I

x„, exp( —Krt 'q't)dq.

Scaling behavior follows in the limit as I — 0 and L --- ~,

&bn(r, t)bn(r, O)) =e ' '"&~bn(r, O)~ ). (4) &bn (r, t )bn (r, o))—I lJi .

The decay of correlation function is caused by equilib-

rium fluctuations which can be described by the stochas-

tic "force" g(t),

(s)bn (r, t ) —bn (r, O) ((s)ds .
&0

The stochastic forces g(t) and ((s) are uncorrelated for

t s) rt, . It —follows that the spectral density G(f)
= 2 f — cos(2trfr )&g (t +s )((s) )dt is constant except for

very high frequencies f) rt, '. We neglect correlations

that decay on time scales of the order of iI„and thus set

That is, in zero field, correlations persist on all time

scales.
Equilibrium fluctuations are described by the stochas-

tic "force" j(t),

bn(r, t) —bn(r, 0) =„((s)ds.
Because the system is linear, the stochastic force is a

linear superposition g(t) =gqgq(t), where the stochastic
forces gq(t) and gq(t) are independent of each other for
q&q', &Pq(t)gq(s)) =bqq&(q(t)(q(s)). Correlation of the
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stochastic force gz decay on time scales of the order of rq,
i.e., ((n(t)(n(s)) =0 for t —s & ra, and the corresponding
spectral density is a constant for small frequencies f

Since ra ' 0 for ~q~ 0, the spectral density

of the fluctuating force g(t) is not a constant even for
small frequencies, and thus long time tailed correlations
exist. It follows that a Markovian assumption for the sto-
chastic force is no longer valid.

We invoke Onsagers regression hypothesis [12] to find

the correlation function of the stochastic force ((t) It.
states that the correlation of the fluctuating variable at
times t and 0 in an equilibrium system, i.e., (((t)('(0)), is

the same as the average of the fluctuating variable at
time t given that a certain fluctuation occurred at time 0,
i.e., (bn(r, t)bn(r, 0)). We thus find

reported in Ref. [8], the chosen time range r is not long
enough to record the asymptotic behavior of director fluc-
tuations in nonzero fields.

We summarize our results. In nematic liquid crystals,
equilibrium director fluctuations are ordinary Brownian
processes only in the presence of external magnetic fields.
In zero field, long-lived correlations exist, and the mean
square displacement increases in time faster than linearly.
Such superdiffusive behavior is realized in random walks
with long excursions ("Levy walks" ) [14].

I would like to thank Professor R. Silbey for his hospi-
tality at MIT which made the completion of this work
possible.

(12)

The mean square displacement is given by ([iJn(r, t)
—bn(r, 0)] ) =2 Jt'Ids fodu(((s)((u)). Inserting Eq.
(12), we find superdiffusive behavior,

(13)

The Hurst exponent H is related to the asymptotic be-
havior of the mean square displacement by ([ bn(r, t)
—Bn(r, 0)] )-t [9]. From Eqs. (7) and (13), we thus

find H =
2 for director fluctuations in the presence of

external magnetic fields and H= —,
'

in zero field. Any
nonzero external field introduces a time scale rt, over
which correlations decay, and ordinary Brownian motion
follows for long times. Thus, director fluctuations in zero
and nonzero external magnetic fields belong to two
different universality classes.

The Hurst exponent of director fluctuations has been
reported for moderate magnetic fields in Ref. [8]. The
study is based on analysis of time series with resolution of
20 sec that is recorded over a time range r —11 h (2000
channels). The Hurst exponent is found to vary continu-
ously from H=l in zero field to H= 2 in fields of
moderate strength (-200 Oe). This interpretation con-
tradicts our theoretical prediction. However, earlier neu-

tron scattering experiments on d-PAA have found H =
4

in zero field [13]. For weak fields, the relaxation time rs
is of the order of minutes or longer, and ordinary Browni-
an motion sets in only for long times. In the time series
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