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Residues and tame symbols on toroidal varieties

Ivan Soprounov

Abstract

We introduce a new approach to the study of a system of algebraic equations in (Cx)n 
whose Newton polytopes have sufficiently general relative positions. Our method is based 
on the theory of Parshin’s residues and tame symbols on toroidal varieties. It provides 
a uniform algebraic explanation of the recent result of Khovanskii on the product of the 
roots of such systems and the Gel’fond-Khovanskii result on the sum of the values of a 
Laurent polynomial over the roots of such systems, and extends them to the case of an 
algebraically closed field of arbitrary characteristic.

1. Introduction

1.1 The classical residue formula says that the sum of the residues of a rational 1-form ω over all 
points of a complex projective curve X is zero:

The standard proof of this formula uses Stokes’ theorem. In ‘Algebraic groups and class fields’ 
J.-P. Serre gives a purely algebraic proof of the residue formula which works over any algebraically 
closed field even of positive characteristic [Ser88].

In class field theory the residue formula has a multiplicative cousin, Weil’s reciprocity law, which 
states that the product of the tame symbols of any two rational functions f0 and f1 over all points 
of a projective curve X is one [Ser88]:

In the 1970s A. Parshin constructed higher-dimensional class field theory where he generalized 
the residue and the tame symbol [Par75]. Given an n-dimensional algebraic variety X and a rational 
form ω on X, Parshin defines the residue resF ω at each complete flag F: X0⊂X1⊂ ∙ ∙ ∙ ⊂ Xn-1 ⊂ X 
of irreducible subvarieties of X. Similarly, given any n + 1 rational functions f0, . . . ,fn on X, he 
defines the tame symbol {f0,..., fn}F at each such flag F. Parshin’s residue and symbol satisfy not 
one but many reciprocity laws: Fix all subvarieties in the flag F except one, say Xi. Then the sum 
of the residues (product of the symbols) over all possible irreducible subvarieties Xi that can appear 
in the ith slot of F is zero (one) (Theorem A.4 in the Appendix).

The aim of the present paper is to look at some recent results of the theory of Newton polytopes 
from the point of view of this general theory of Parshin. More specifically, consider a system of 
Laurent polynomial equations in the n-torus:



Suppose the Newton polytopes ∆1,..., ∆n of the fi have sufficiently general relative positions (see 
Definition 5.1). Then the system has a finite number of roots. O. Gel'fond and A. Khovanskii proved 
the following result [GK96].
Theorem A. The sum of the values of a Laurent polynomial f0 over the roots of (1) counting 
multiplicities is equal to

where the sum is over the vertices A of Δ = Δ1 +∙ ∙ ∙+∆n, resA (f0 df1/f1∧∙ ∙ ∙∧dfn ∕fn) is the residue
at a vertex (an explicit rational function in the coefficients of the fi), and c(A) is the combinatorial 
coefficient (an integer that reflects the combinatorial structure of the polytope Δ near the vertex A).

This is, in fact, a particular case of their residue formula [GK02] for the sum of the Grothendieck 
residues of a rational n-form which is regular in (Cx)n ∖ {f1 ∙ ∙ ∙ fn = 0}, over the roots of the 
system (1). The proof of the residue formula is topological and uses toric compactifications.

The following generalized Vieta formula for the product of roots of (1) has been obtained by 
Khovanskii [Kho99].
Theorem B. The product of the values of a Laurent monomial f0 over the roots of (1) counting 
multiplicities is equal to

where the product is over the vertices A of Δ = ∆1 + ∙ ∙ ∙ + ∆n, [f0, . . . , fn]A is the symbol at a 
vertex (an explicit Laurent monomial in the coefficients of the fi), and c(A) is the combinatorial 
coefficient.

The proof of this theorem uses the polyhedral homotopy method and regular subdivisions of 
polytopes.

The relation between Theorems A and B appears to be the same as the one between the one
dimensional residue formula and Weil’s reciprocity. Moreover, the number [f0, . . . ,fn]A is defined 
similarly to Parshin’s tame symbol. This gives a motivation to search for a uniform explanation of 
these results in terms of the theory of residues and tame symbols.

The main obstruction to this is the notion of combinatorial coefficients c(A) since they are de
fined as the local degrees of certain real non-algebraic maps. In the present paper we give an explicit 
algebraic description for the combinatorial coefficients as a signed number of certain complete flags 
of faces of Δ, thus putting them in the framework of Parshin’s theory. (A similar description of 
the combinatorial coefficient was obtained by O. Gel'fond [Gel96] for some special collections 
of polytopes.) We provide a uniform algebraic proof of Theorems A and B based on Parshin’s 
theory for toroidal varieties. We also extend them to the case of an arbitrary algebraically closed 
field.

1.2 The material of the paper is organized as follows. In § 2 we give an explicit formula for the 
degree of a map of polyhedral sets defined by some combinatorial data. As an application we obtain 
a new formula for the combinatorial coefficient.

In §§ 3 and 4 we consider Parshin’s theory for toroidal pairs. A toroidal pair (X, D) consists 
of a normal variety X and a codimension-1 subvariety D such that, locally at each point, X is 
analytically isomorphic to an affine toric variety Xσ where the branches of D correspond to the 
invariant divisors of Xσ. We define residue and tame symbol at each point x ∈ X for which 
the corresponding affine variety Xσ has a zero-dimensional orbit. This generalizes the notions 
of residue and symbol at a vertex from Theorems A and B. Our definition is similar to the one



of Parshin, but does not involve any particular choice of a complete flag. Using the algebraic 
description of the combinatorial coefficients we prove general results about symbol and residue 
on toroidal pairs (Theorems 3.15 and 4.8). In § 5 we show how these results imply Theorems A 
and B for arbitrary algebraically closed fields.

Finally, in the Appendix we include the definition of Parshin’s residue and tame symbol and 
formulate the higher-dimensional reciprocity laws.

1.3 Remarks
There is a topological construction for the tame symbol based on Deligne’s proof of Weil’s reciprocity 
(see [BM96]). This construction provides a uniform topological explanation of the product of roots 
formula and the residue formula. Our approach is algebraic and works over algebraically closed 
fields of arbitrary characteristic.

A different formula for the product of the roots of a system (1) can be derived from Poisson’s 
formula for the mixed resultant due to Pedersen and Sturmfels [PS93]. In this formula the product 
of the values of a monomial f0 = ctm over the roots is represented by the product of the mixed 
resultant of f0, . . . , fn (which in this case is just c to the power of the mixed volume of ∆1, . . . , ∆n) 
and the facet resultants to certain powers. The assumption on the Newton polytopes of (1) implies 
that each facet resultant is a monomial in one of the coefficients of the system. To give an idea of 
how this formula is related to the one in Theorem B, let us assume that f0 = c, for c ≠ 0,1. Then 
Poisson’s formula gives the inductive formula for the mixed volume (e.g. see [BZ88, p. 166]), whereas 
Theorem B gives Khovanskii’s formula for the mixed volume in terms of combinatorial coefficients 
[Kho99].

Parshin’s residue is closely related to the toric residue defined by D. Cox [Cox96]. For different 
applications of residues in toric geometry we refer the reader to works of E. Cattani, D. Cox, 
A. Dickenstein, and B. Sturmfels [CCD97, CD97, CDS98].

1.4 In this paper k is always an algebraically closed field. A variety is a reduced separated scheme 
of finite type over k; a subvariety is a reduced subscheme. By T we denote the algebraic n-torus 
over k, T = (kx)n, and M = Homalg.gp(T, kx) the abelian rank-n group of characters of T. Finally, 
Xσ denotes the affine toric variety Spec k[σ ∩ M] defined by a convex rational polyhedral cone σ in 
M ⊗ R.

2. Degree of polyhedral maps and combinatorial coefficient

In this section we show how to compute the degree of a map between two polyhedral sets which is 
defined by a map of the partially ordered sets of their faces. As an application we obtain an explicit 
combinatorial formula for the combinatorial coefficient.

2.1 Polyhedral maps
A polyhedral set is a finite union of convex compact polytopes intersecting in faces. We will assume 
that all the polytopes are embedded in a Euclidean space E of some big dimension. Then a polyhe
dral set is a topological space with the topology inherited from E. The dimension of a polyhedral 
set is the maximum of dimensions of the polytopes it contains. A polyhedral set is oriented if every 
polytope it contains is oriented.

Let X be a polyhedral set and F(X) the set of all faces of all polytopes appearing in X. The 
set F(X) is a finite partially ordered set by inclusion.

Consider two polyhedral sets X and Y, and fix a map ψ : F(X) → F(Y) that preserves the 
partial ordering. A continuous piecewise linear map fψ : X → Y is called a polyhedral map associated 
with ψ if fψ(G) ⊂ ψ(G) for every face G ∈ F(X).



Given any map ψ : F(X) → F(Y) there exists a polyhedral map fψ : X →Y. Moreover all such 
maps are homotopy equivalent within the class of all polyhedral maps associated with ψ.

Proposition 2.1. Each map ψ : F(X) → F(Y) that respects the partial ordering defines a homo
topy class of polyhedral maps fψ:X→Y associated with ψ.

Proof. First, for every map of partially ordered sets : F(X) → F(Y) we construct a continuous 
piecewise linear map fψ : X → Y as follows.

Fix barycentric subdivisions of X and Y. Note that for any polyhedral set X there is a one- 
to-one correspondence between the set of all simplices in a barycentric subdivision of X and the 
set of all chains in F(X). Consider a k-simplex ∆k in the subdivision of X. It corresponds to 
a chain Xo ⊂ ∙ ∙ ∙ ⊂ Xk in F(X). Let ψ(X0) ⊆∙ ∙ ∙⊆ ψ(Xk) be its image. It corresponds to a 
unique simplex (possibly of smaller dimension) in the subdivision of Y, the simplex being denoted 
by ψ(∆k). Since there is a unique linear map between two simplices that maps vertices of one 
simplex to the prescribed vertices of the other simplex, we get a map fψ: X→Y that sends 
each simplex ∆k to the corresponding simplex ψ(∆k). Clearly this map agrees on the common 
faces of simplices of the subdivision and, hence, is continuous piecewise linear. By construction, 
fψ(G) ⊂ ψ(G) for any G ∈ F(X).

Now suppose fψ and are two polyhedral maps associated with ψ. Then for each 0 ≤ t ≤ 1 
the map ftψ = (1 — t)fψ + tf'ψ is also associated with ψ. Indeed, fix a face G ∈ F(X). Then every 
point x ∈ G is mapped to a point ftψ (x) on the segment joining fψ(x) and f'ψ(x). Since both fψ(x) 
and f'ψ(x) belong to the face ψ(G), then fψ(x) also does. Therefore ftψ(G) ⊂ ψ(G). □

2.2 Flags and degree of polyhedral maps
Consider an oriented polyhedral set X. Let X : X0 ⊂ ∙ ∙ ∙ ⊂ Xn, dim Xi = i be a complete flag in X, 
i.e. a maximal chain of elements of F(X). With the flag X we associate an ordered set of vectors 
(e1,... ,en), where ei begins at X0 and points strictly inside Xi. Define the sign of X to be 1 if 
(e1, . . . ,en) gives a positive oriented frame for Xn and -1 otherwise. It is easy to see that the sign 
does not depend on the choice of vectors e1, . . . ,en. We denote it by sgn X.

Now consider a map of partially ordered sets ψ : F(X) → F(Y), where X and Y are 
n-dimensional oriented polyhedral sets. Every polyhedral map fψ : X → Y associated with ψ 
induces a map of the nth homology groups:

Hn(fψ) : Hn(X) → Hn(Y).

By Proposition 2.1 this map is the same for all choices of fψ. We call it the degree map of ψ. We 
will be concerned with the case when both groups Hn(X) and Hn(Y) are isomorphic to Z. (This is 
true, for example, when X and K are the boundaries of (n + l)-dimensional polytopes.) Then the 
degree map is the multiplication by an integer, which we denote by deg(ψ). In the next theorem we 
show how to compute deg(ψ) as a signed number of certain complete flags in X.

Let X : X0 ⊂ ∙ ∙ ∙ ⊂ Xn and y : Y0 ⊂ ∙ ∙ ∙ ⊂ Yn be complete flags in X and Y, respectively. We 
will write ιf(X')=yif and only if ψ(Xi) = Yi for all 0 ≤ i ≤ n. Define the preimage of y under ψ 
to be the set of all X such that ψ(X) = y.

Theorem 2.2. Let X and Y be two polyhedral sets as above, and ψ : F(X) → F(Y) a map of 
partially ordered sets of their faces. Fix any complete flag y in Y. Then the degree of ψ is equal to 
the sign of y times the signed number of all complete flags X in X in the preimage of y under ψ:



Proof. By Proposition 2.1 we can choose any function in the homotopy class defined by ψ. We take 
fψ to be the piecewise linear function constructed in the proof of Proposition 2.1 using barycentric 
subdivisions of X and Y. We view fψ as a simplicial map between two simplicial complexes.

Fix any positive oriented n-simplex ∆nY in the barycentric subdivision of Y. Then the degree of 
fψ is the number of all n-simplices ∆nX in X that are mapped to ∆nY each simplex being counted 
with either sign plus or sign minus according to its orientation. Recall that the n-simplex ∆nY 
corresponds to a complete flag y in Y and every n-simplex Δ nX corresponds to some complete flag 
X in X. Clearly, the orientation of ∆nX coincides with the sign of the corresponding flag X. and 
fψ(∆nX) = ∆nY if and only if ψ(X) = y. It remains to notice that if we fix a negative oriented ∆nY 
then the number we obtain is the negative degree of fψ. □

2.3 Combinatorial coefficient
The combinatorial coefficient is a local analog of the degree considered above.

Let σ ⊂ Rn be a convex polyhedral n-dimensional cone with apex A. Consider an ordered 
collection D = (D1,... ,Dm) of m distinct non-empty closed subsets of σ, where m ≤ n and each 
set Di is a union of facets of σ. Assume that they cover the boundary of σ and, if m = n, that the 
apex A is the only face of σ which is covered by all of them:

∂σ = D1 ∪ ∙ ∙ ∙ ∪ Dm, if m = n then D1 ∩ ∙ ∙ ∙ ∩ Dn = {A}. (2)

A continuous map g : σ → Rn is called a characteristic map of the covering (2) if for each i, 
1 ≤ i ≤ n, the ith component gi of g is non-negative and vanishes precisely on those faces of σ that 
belong to Di. It is easy to see that all characteristic maps send the boundary of σ to the boundary 
of the positive octant Rn+ such that g-1(0) ⊆ {A}, and they are homotopy equivalent within the 
class of such maps.

Definition 2.3. The local degree of the germ at A of the restriction of a characteristic map to the 
boundary of σ,

g: (∂σ,A)→(∂Rn+,0),
is called the combinatorial coefficient of the covering (2).

Clearly, the combinatorial coefficient is zero unless m = n. In the case when m = n, Theorem 2.2 
provides us with a description of the combinatorial coefficient as the number of certain complete 
flags of faces of σ, counted with signs.

For a cone σ ⊂ Rn we let F(∂σ) denote the partially ordered by inclusion set of the proper faces 
of σ. With a covering (2) we associate a map ϕ : F(∂σ) → F(∂Rn+) by putting

if and only if τ is a common face of Di1,... Dik for 1 ≤ iι ≤ n, and k is maximal. Here (y1, . . . ,yn) 
is a coordinate system for R".

For any complete flag Y0 ⊂ ∙ ∙ ∙ ⊂ Yn-1 in ∂Rn+ define its preimage under φ as the set of all 
complete flags σ0 ⊂ ∙ ∙ ∙ ⊂ σn-1 in ∂σ such that ϕ(σi) = Yi, 0 ≤ i ≤ n - 1. Note that the preimage 
of any flag under φ is empty if m < n.

Fix the standard orientation of R" . We orient the boundary of every n-dimensional cone in Rn in 
accordance with this fixed orientation. As before, define the sign of a complete flag σ0 ⊂ ∙ ∙ ∙ ⊂ σn-1 
to be 1 if it gives a positive oriented frame for σn-1, and -1 otherwise.

Theorem 2.4. The combinatorial coefficient of a covering (2) is equal to the signed number of all 
complete flags in the preimage of any positive complete flag under φ.



In particular, if m = n the combinatorial coefficient is equal to the signed number of all complete 
flags σ0 ⊂∙ ∙ ∙⊂ σn-1 ⊂ σ, where σi is a common face of Di+1, . . . ,Dn of dimension i.

Proof. The case m < n is obvious, so we assume that m = n. To be able to apply Theorem 2.2 we 
‘compactify’ the cones σ and Rn+. Consider a pyramid with the vertex A and base D0 which is a 
cross-section of σ by a generic hyperplane. Let X be the oriented boundary of the pyramid. Next 
consider the standard n-dimensional simplex defined in Rn as the convex hull of the origin and the 
endpoints of the standard basis vectors. Let Y be its oriented boundary.

The subsets D1, . . . ,Dn of σ along with the base D0 form a covering of X. Define the map 
ψ : F(X) → F(Y) by putting ψ(G) = {yi1 = ∙ ∙ ∙ = yik = 0} if and only if G is a common face of 
Di1, . . . , Dik for 0 ≤ iι ≤ n, and k is maximal. Here (y0, y1, ∙ ∙ ∙ , yn) are the barycentric coordinates 
for the simplex.

Note that the restriction of a characteristic map g : σ → Rn to X defines a polyhedral map 
fψ : X → Y associated with ψ. According to Theorem 2.2, the degree of ψ is equal to the number 
of complete flags of faces of X counted with signs in the preimage under ψ of any positive complete 
flag of faces of Y. For example, one can take the flag

{y1 = ∙ ∙ ∙ = yn = 0} ⊂ {y2 = ∙ ∙ ∙ = yn = 0} ⊂ ∙ ∙ ∙ ⊂ {yn = 0}. □

Remark 2.5. Notice that since there are n! complete flags in Rn+ we obtain n! formulae for the 
combinatorial coefficient. If m = n a choice of a complete flag corresponds to an order of D1, . . . , Dn, 
and thus we can say that the combinatorial coefficient is skew-symmetric in D1, . . . ,Dn.

3. Toroidal symbol

The toroidal symbol is a slight modification of Parshin’s tame symbol for toroidal varieties. More 
precisely, consider a pair (X, D) consisting of a normal variety X and a codimension-1 subset D 
such that, in a formal neighborhood of each point, X is isomorphic to an affine toric variety Xσ 
and D corresponds to the invariant divisor Xσ \ T. We distinguish special points on X for which 
the corresponding toric variety has a zero-dimensional orbit. At each such point x ∈ X the toroidal 
symbol associates a non-zero element [f0, . . . ,fn]x of the base field to every collection of n + 1 
rational functions f0 , . . . ,fn on X with divisors in D.

Suppose the irreducible components of D are divided into 2n groups D'1, . . . ,D'n, D1",... ,Dn" 
(where n = dim X) and assume that the sets S' = D'1 ∩ ∙ ∙ ∙ ∩ D'n and S" = D1" ∩ ∙ ∙ ∙ ∩ Dn" consist of 
special points only. The main result of this section is a certain reciprocity between the products 
of symbols over S' and S".

3.1 Toroidal pair
Here we recall the definition of a toroidal pair. A detailed treatment of toroidal pairs is given in 
[KKMS73] where they are called toroidal embeddings without self-intersections. We use Danilov’s 
terminology from [Dan78].

Let X be a normal n-dimensional variety over an algebraically closed field k. Let D be a closed 
subset of A, every irreducible component of which is a codimension-1 normal subvariety of A. 
We say that the pair (A, D) is toroidal if for every closed point x E X there exists an n-dimensional 
algebraic torus T, an affine toric variety Xσ (corresponding to a rational convex n-dimensional 
cone σ), and a point x0 in Xσ such that (A, D, x) is formally locally isomorphic to (Xσ, Xσ \T, x0)∙ 
The latter means that there exists an isomorphism of the formal completions of the local rings



such that the image of the ideal of D is mapped to the image of the ideal of Xσ \T. We call (Xσ, x0) 
a local model of (X, D) at x.

Consider the n-form

where (t1, . . . , tn) are coordinates in T. Automorphisms of T correspond to monomial changes of 
coordinates

We will write u = tQ to denote the monomial change of coordinates (3). Note that the form w0 
is preserved under monomial changes of coordinates with det Q = 1, and changes the sign when 
det Q = -1. Therefore, w0 provides an analog of orientation on Xσ.

Furthermore, the choice of coordinates in T defines an orientation of the space of characters 
M ⊗ R. Monomial changes of coordinates (3) preserve this orientation if and only if det Q = 1. 
Therefore, the orientation of M ⊗ R and hence of σ is uniquely determined by the form ω0∙

We call (Xσ,x0,ω0) an equipped local model of (X,D) at x, assuming that the form w0 is fixed 
and the cone σ is oriented accordingly.

Let D = ∪i∈I Ei be the decomposition of D into irreducible components. The components of 
the sets ∩i∈J Ei \ ∪i∉J Ei (where J ⊂ I) are non-singular and define a stratification of X (see 
[KKMS73, p. 57]). In particular, X ∖ D is non-singular. The components of ∩i∈J Ei are normal and 
are the closures of the strata. Furthermore, for each x ∈ X the closures of strata which contain x 
correspond formally to the closures of the orbits in a local model (Xσ,x0) at x.

We denote by Sti(X) the set of all «-dimensional strata, and by Sti(X) the set of the closures of 
the «-dimensional strata. Note that if x ∈ St0(X) then in every local model (Xσ, x0) at x the cone 
σ has an apex and x0 is the closed orbit in Xσ.

In the next proposition we describe what coordinate transformations relate different local models 
at a point x ∈ St0(X).

Proposition 3.1. Let (X, D) be a toroidal pair, x ∈ St0(X). Then for any two local models (Xσ,x0) 
and (Xσ' ,x'0) at x, every isomorphism

that maps the image of the ideal of Xσ\T to the image of the ideal of Xσ'\T' is induced by a 
change of coordinates of the form

where t1, . . . ,tn and u1,. . . ,un are coordinate functions on the tori T and T', respectively.

Proof. Let ∑(x) be the union of all strata Z whose closure Z contains x. Denote by M(χ) the 
group of the Cartier divisors on ∑(x), supported on ∑(x) ∩ D, and by M(x)+ the subsemigroup of 
effective divisors. For each local model (Xσ,x0) at x, M(x) is canonically isomorphic to the group 
of characters M of Xσ, and M(x)+ is canonically isomorphic to the semigroup σ∩ΛL (see [KKMS73, 
p. 61]). Therefore the semigroups σ ∩ M and σ' ∩ M' are isomorphic. In coordinates t1, . . . ,tn and 
u1, . . . ,un, the isomorphism corresponds to a monomial transformation u = tQ, for Q ∈ GL(n, Z).

To describe all isomorphisms π : Oχσ,x0 = Oχσ' ,χ'0 it suffices to describe all automorphisms α
of 0χσ,x0 that fix the orbits of Xσ. Let t1, . . . ,tn be coordinates in T. Then the ring Oχσ,x0 can 
be identified with the ring of all formal power series in t1,..., tn supported in σ ∩ M, where M is 
identified with Zn. Denote this ring by A. Let S be a multiplicative subset of A consisting of all 
elements ϕta, where a ∈ σ∩M and ϕ is an invertible element of A. Then for every automorphism α,



we have α(S) C S. Indeed, since a fixes the orbits of Xσ, it maps every ideal (ta) to itself. Thus 
α(ta) = ϕta, for some invertible φ. Therefore, α induces an automorphism αs of the localization As. 
Note that t1, . . . , tn ∈ As, since the elements of σ ∩ M generate M as a group. Therefore, for each 
z, 1 ≤ i ≤ n, αs(ti) = ϕίti for some invertible ϕi.

Conversely, every map ti → ϕiti, 1 ≤ i ≤ n, ϕi ∈ Ax, defines an automorphism a of A, which 
fixes the orbits. Indeed, for every element f ∈ A, f = ∑a λata, a ∈ σ ∩ M, put

Note that the coefficient of each monomial tb of the series (4) is defined by finitely many series 
λaϕata (this is true since the cone σ has an apex). Therefore this is a well-defined power series. 
Since all the monomials in the series belong to the semigroup σ ∩ M, the series defines an element 
of A. It is easy to check that a is in fact a homomorphism. Also it is clearly invertible. □

3.2 Covering and combinatorial coefficients
Definition 3.2. Let (X, D) be a toroidal pair. We say that (D1, . . . , Dn) is a reasonable covering 
of D if D = D1∣ ∪ ∙ ∙ ∙ ∪ Dn, where each Di is the union of some irreducible components of D, and 
D1 ∩ ∙ ∙ ∙ ∩ Dn ⊆ St0(X).

Let (D1, . . . , Dn) be a reasonable covering of D. Consider an equipped local model (Xσ, x0,w0) 
at a point x ∈ St0(X). It can be easily seen that the covering (D1,..., Dn) defines a covering of the 
boundary of the cone σ in the sense of (2). This allows us to define the combinatorial coefficient of 
the covering (D1,..., Dn) at each point x ∈ St0(X).

Definition 3.3. The combinatorial coefficient at x ∈ St0(X) of the covering (D1, . . . ,Dn) is the 
combinatorial coefficient of the induced covering of σ in an equipped local model at x. We denote 
it by c(rr).

Remark 3.4 (Invariance). By Remark 2.5 the combinatorial coefficient is the same for any two 
equipped local models that correspond to an automorphism of T that preserves the form w0, and 
changes sign otherwise. Also it is skew-symmetric in D1, . . . , Dn.

Now consider the stratification defined by the irreducible components of D (see § 3.1) and let F 
be a complete flag of stratum closures on X:

It corresponds to a complete flag of orbit closures in an equipped local model (Xσ, x0, w0) of (X, D) 
at X0, hence to a complete flag Fσ of faces of σ.

Definition 3.5. We say that the flag F is positive (respectively negative) and write sgn F = 1 
(respectively sgn F = - 1) if the induced flag Fσ of faces of σ is positive (respectively negative).

Like in the case of the combinatorial coefficient, the sign of the flag depends on the choice of the 
form ω0 in an equipped local model.

Definition 3.6. Let Z be a stratum. We say that the closure Z has signature {i1, . . . ,ik} for 
1 ≤ il ≤ n if and only if Z ⊆ Di1 ∩ ∙ ∙ ∙ ∩ Dik and k is maximal.

The following proposition is the analog of the description of the combinatorial coefficient given 
in Theorem 2.4.



Proposition 3.7. Let (X, D) be toroidal and (D1, . . . ,Dn) a reasonable covering of D. Then the 
combinatorial coefficient c(x) of x ∈ St0(X) is equal to the number of all complete flags

where Xi ∈ Sti(X) is a stratum closure of signature {i + 1,. . . ,n}, 0 ≤ i ≤ n - 1, counting signs.

3.3 Symbol of monomials
Definition 3.8. Consider an ordered collection of n + 1 monomials in n variables with coefficients 
in a field k:

Let A = (aij) ∈ Mn+1,n(Z) be the matrix whose rows are the vectors of exponents ai. Then the 
symbol of n + 1 monomials is the non-zero element of k defined by

where Ai is the determinant of the matrix obtained from A by eliminating its ith row, and

where Akij is the determinant of the matrix obtained from A by eliminating its ith and jth rows 
and its kth column.

Proposition 3.9. Let fi = Citai, 0 ≤ i ≤ n, be monomials. The symbol has the following properties:

i) Multiplicativity. Suppose fi is a product of two monomials fi = fi'fi". Then

ii) Multiplicative skew-symmetry.

iii) Invariance.
a) Let u = tQ, Q ∈ GL(n, Z) be a monomial change of coordinates. Then

where fi = ciuai = citaiQ and fi = citai, 0 ≤ i ≤ n. 
b) Let s = Xt be a translation, i.e. sj = λjtj, λj ∈ kx, 1 ≤ j ≤ n. Then

[f'0,. . .,fn' = [f0, . . . ,fn],

where fi' = cisai = ciλaitai and fi = citai, 0 ≤ i ≤ n.

Proof. Modulo the sign (-l)B all the properties follow easily from the properties of the determinant.
To take care of the sign we give an invariant description of B, following [Kho99]. Consider B as a 

Z∕2Z-valued function of the rows a0,... ,an of the matrix A. It is easy to see that B = B(a0, . . . , an) 
s multilinear and its value on each collection of n + 1 standard vectors (ei0,..., ein) is 0 if more 
than two of the vectors ei0,..., ein coincide; and 1 otherwise.

Now define the function B' = B'(a0, . . . , an) to be 0 if the rank of (a0, . . . , an) is less than n;
and λ0 +∙ ∙ ∙+ λn + 1 (mod 2) if the vectors a0, . . . ,an satisfy a (unique) non-trivial relation λ0a0+∙ ∙ + λnan = 0. The function B' is multilinear and on each collection (ei0, . . . ,ein) the functions B' 
and B take the same value. Therefore B = B'∙, in particular, B is symmetric and invariant under 
ion-degenerate transformations. □



3.4 Toroidal symbol
Let (X, D) be toroidal. Let k(X, D) denote the set of rational functions on X whose divisor lies 
in D.

Consider a zero-dimensional stratum x ∈ St0(X). Then the image of f ∈ k(X, D) in an equipped 
local model (Xσ,x0,ω0) at x is the product of a monomial cta and a regular invertible function 
ϕ ∈ Oxxσ, xo with ϕ(x0) = 1. We call this monomial the leading monomial of f at x. The leading 
monomial is defined up to monomial transformations.

Definition 3.10. Let (X, D) be toroidal and x ∈ St0(X) a zero-dimensional stratum. Define the 
toroidal symbol [f0, . . . , fn]x at x of f0, . . . , fn ∈ k(X, D) to be the symbol of the leading monomials 
of f0,. . . , fn at X.

Remark 3.11 (Invariance). Let (Xσ',x'0,ω'0) and (Xσ",x"0,ω"0) be two equipped local models at x. 
Let f' and f" be the images of f ∈ k(X, D) in the two equipped local models. Then, according to 
Proposition 3.1, the leading monomials of f and f" are related by a composition of a monomial 
transformation and a translation: t→ λtQ. Therefore, by Proposition 3.9 the toroidal symbol is the 
same for the two equipped local models if det Q = 1, and is reciprocal otherwise.

By Proposition 3.9 the toroidal symbol is multiplicative and multiplicatively skew-symmetric in 
f0, . . . , fn.

Now we will give a relation between the toroidal symbol and Parshin’s tame symbol at a complete 
flag of stratum closures on X.

Proposition 3.12. Let (X, D) be toroidal. Consider n + 1 rational functions f0, . . . , fn ∈ k(X, D). 
Then, for any complete flag F : X0 ⊂ X1 ⊂ ∙ ∙ ∙ ⊂ Xn-1 ⊂ X of stratum closures on X, we have

where {f0, . . . , fn}F denotes Parshin’s tame symbol at the flag F.

(Note that the number [f0, . . . , fn]X0 sgn F is already independent of the choice of w0 in an equipped 
local model.)

Proof. Since the definitions of the toroidal symbol and Parshin’s tame symbol are local, we can 
pass to an equipped local model (Xσ,x0,ω0) at X0 and assume that F is a complete flag of orbit 
closures in Xσ.

Let Fσ be the complete flag of faces of σ corresponding to F,

Fix coordinates (t1,..., tn) in T, M ≅ Zn. Inside each σi, 1 ≤ i ≤ n, choose a lattice point qi ∈ Zn 
at lattice distance 1 from σi-1∙ Let ui = tqi be a monomial change of coordinates in T. Then the 
rational functions ui = tqi give a system of local parameters at F (see Appendix). Therefore by 
Proposition 3.9 and Remark A.2 of the Appendix,

where Q = (q1, ...,qn) and citki is the leading monomial of fi. It remains to note that det Q = 
sgn F. □

Corollary 3.13. Let (X, D) be toroidal and (D1,..., Dn) be a reasonable covering of D. For 
x E St0(X) let F(x) be the set of all complete flags

where Xi ∈ Sti(X) is a stratum closure of signature {i + 1,..., n}, 0 ≤ i ≤ n - 1.



Then for any n + 1 rational functions f0, . . . , fn ∈ k(X, D) we have

where we assume that the product is 1 if F(x) is empty.

Proof. This follows from Propositions 3.7 and 3.12. □

Remark 3.14. Note that for a toroidal pair (X,D) all Parshin’s reciprocity laws (Theorem A.4) for 
i > 0 follow from Proposition 3.12. Indeed, consider a complete flag F : X0 ⊂ ∙ ∙ ∙ ⊂ Xi ⊂ ∙ ∙ ∙ ⊂ Xn 
of irreducible subvarieties of X. We can pass to a local model at X0 and assume that X is an affine 
toric variety and D = X∖T. Then for any n + 1 rational functions f0, . . . ,fn ∈ k(X, D) the symbol 
{f0, . . . , fn}F is trivial unless F is a flag of orbit closures on X. But if we fix all Xj, j ≠ i, and 
vary Xi, there are only two such flags F (since for any face τ of a polyhedral cone there are only 
two codimension-1 faces of τ that contain a fixed codimension-2 face of τ), and the signs of these 
two flags are opposite. Now we can apply Proposition 3.12.

3.5 Main theorem
Theorem 3.15. Let X he a complete normal n-dimensional variety over an algebraically closed 
field k, and D a closed subset of X such that the pair (X, D) is toroidal.

Let (D1,... ,Dn) be a reasonable covering of D such that each Di is a disjoint union of two 
closed subsets of pure codimension 1:

We get 2n disjoint finite closed subsets of X:

Sk = G1 ∩ ∙ ∙ ∙ ∩ Gn, where Gi = D'i or Di", 1 ≤ i ≤ n,  1 ≤ k ≤ 2n.

Then for any n + 1 rational functions f0,... ,fn ∈ k(X, D), the following 2n numbers are equal:

where [f0, . . . , fn]x is the toroidal symbol of f0, . . . , fn at x, c(x) is the combinatorial coefficient 
at x, and │Sk∣∖ is the number of Di'' in the definition of Sk.

Proof. Because of the symmetry it is sufficient to prove the equality for any two sets

Since the number [f0, . . . , fn]c(x)χ is multiplicatively skew-symmetric in D1, . . . ,Dn (see Remark 3.4) 
we may assume that i = 1, so

We have to show that

Let Σ be the union of all stratum closures Y E St1(X) with signature {2', . . . ,n'}. It follows 
from Corollary 3.13 that if x ∈ S1∪ S2 does not lie on any component of Σ then [f0, . . . , fn]xc(x) = 1. 
On the other hand, by (5) the signature of every point x E St0(X) ∩ Σ is either



In the first case [f0, . . . , fn]xc(χ)=1, again by Corollary 3.13. In the second case x ∈ S1; and in the 
third x ∈ S2. Therefore, we have

Now consider a component Y of Σ, and a closed point y ∈ Y. Let F(y, Y) denote the set of all 
complete flags

where Xi ∈ Sti(X) has signature {(i + 1)',..., n'}, 2 ≤ i ≤ n - 1. Denote

and assume that {f0, . . . , fn}y,Y = 1 if F(y,Y) is empty. Then by Corollary 3.13 for each x ∈ 
St0(Λ^) ∩ ∑ we have

where the product on the right-hand side runs over all components Y of Σ containing x. 
On the other hand, by the first Parshin’s reciprocity law (Theorem A.4 for i = 0)

where the product is taken over all points y ∈ Y. Thus

Note that {f0, . . . , fn}y,Y is trivial for all points y not lying in St0(X), so we can assume that 
y ∈ St0(X) ∩ Y. We have

Combining (7), (8) and (9) we get

4. Toroidal residue

Let (A, D) be a toroidal pair, as before. At each point x ∈ St0(X) we define the residue resxT ω of a 
rational n-form ω on X which is regular in X∖D. Then we prove an additive analog of Theorem 3.15.

4.1 Toroidal residue
First we will define the toroidal residue for a local model (Xσ,x0,ω0) at a point x ∈ St0(X). As 
before Xσ is an n-dimensional affine toric variety, x0 is the closed orbit, and w0 = dt1∕t1 ∧∙ ∙ ∙∧dtn∕tn, 
where (t1,..., tn) is a coordinate system in T.



Let A = 0χσ,x0 be the completion of the local ring of x0 on Xσ, and B = As the localization of 
A by the multiplicative subgroup S of all monomials. We consider the B-algebra ΩnB of differential 
n-forms that are regular in T, and the A-algebra ΩnA of regular differential n-forms.

By fixing coordinates (t1, . . . , tn) we can identify every element f ∈ B with a formal power series

Let ω ∈ ΩnB. Then we can write ω = fdt1∕t1 ∧ ∙ ∙ ∙ ∧ dtn∕tn, for some f ∈ B.

Definition 4.1. The toroidal residue of a differential n-form ω ∈ ΩnB is the constant term λ-b in 
the formal power series of f. We denote it by resT ω.

We have the following properties of the toroidal residue.

Proposition 4.2. Consider a differential n-form ω ∈ ΩnB. Then the following hold.

i) If ω is exact then resT ω = 0.
ii) If ω ∈ ΩnA then resT ω = 0.

iii) For any s1, . . . , sn ∈ Bx, resT ds1∕s1m1 Λ ∙ ∙ ∙ Λ dsn∕snmn = 0, unless all mi = 1.
iv) The toroidal residue is independent of the choice of coordinates (t1,..., tn).
v) The toroidal residue is invariant under monomial transformations t → tQ, Q ∈ GL(n,Z), up 

to a factor det Q.

Proof. i) Let ω = dw. We can assume that w = g dt1 ∧ ∙ ∙ ∙ ∧ dti ∧ ∙ ∙ ∙ ∧ dtn. Then

Suppose g = ∑α λata∙ Then

Clearly the constant term of the last series is zero.
ii) Let ui = tai, ai ∈ σ ∩Zn. be n regular functions, such that du1, . . . ,dun are linearly indepen

dent. Then for every ω ∈ ΩnA

where f ∈ A and J = det(a1, . . . , an). Clearly, the constant term of fta1+∙∙∙+an J is zero. 
iii) First assume that char(k) = 0. Suppose mi ≠ 1. Then

and the statement follows from part i. In the case of an arbitrary characteristic, note that the 
toroidal residue is a polynomial function in finitely many coefficients of the series s1, . . . ,sn ∈ Bx. 
This function is independent of the characteristic and vanishes when the characteristic is zero. 
Therefore it is identically zero.

iv) Let (s1, . . . , sn) be another coordinate system in T. Then si = ϕiti, where ϕi ∈ Ax. Consider 
ω ∈ ΩnB and write



Then the residue of ω with respect to (s1, . . . ,sn) is resT(s1,...,sn) w = λ0. On the other hand, by 
part iii the residue of ω with respect to (t1,..., tn) equals

Now, for each 1 ≤ i ≤ n,

Substituting into (10) and expanding we get

where in each wi at least one of the dtj/tj is replaced by dϕj∕ϕj. It is easy to check that the residue 
of every wi is zero.

v) This follows from the fact that if ui = tqi, qi ∈ Zn, then

and from the observation that monomial transformations do not change the constant term of a 
series. □

Remark 4.3. The proof of parts iii and iv is similar to the one given in [FP04] for Parshin’s residue.

Now let (X, D) be toroidal. Denote by Ωn(X, D) the set of all rational n-forms on X that are 
regular in X ∖ D.

Definition 4.4. The toroidal residue of a rational n-form ω ∈ Ωn(X, D) at a point x ∈ St0(X) is 
the toroidal residue of its image in a local model at x. We denote it by resTx ω.

Remark 4.5 (Invariance). As follows from Propositions 3.1 and 4.2, the toroidal residue is the same 
for any two equipped local models that are related by an isomorphism preserving the form w0, and 
changes sign otherwise.

The relation between the toroidal residue and Parshin’s residue is similar to the one between 
the toroidal symbol and Parshin’s tame symbol.

Proposition 4.6. Let (X, D) be toroidal. Consider a rational n-form ω ∈ Ωn(X, D). Then for any 
complete flag F : X0 ⊂ X1 ⊂ ∙ ∙ ∙ ⊂ Xn-1 ⊂ X of stratum closures on X we have

where resF ω denotes Parshin’s residue at the Bag F.

The number sgn F resT ω is independent of the choice of the form w0 in an equipped local model. 
Consequently, if (D1, . . . , Dn) is a reasonable covering of D then at each x ∈ St0(X) the number 
c(x) resxT ω is also well defined.

The following is the additive analog of Corollary 3.13.

Corollary 4.7. Let (X,D) be toroidal and (D1, . . . , Dn) be a reasonable covering of D. For 
x ∈ St0(X) let F(x) be the set of all complete Bags

where Xi ⊂ Sti (X) is a stratum closure of signature {i + 1, . . . , n}, 0 ≤ i ≤ n - 1.



Then for any ω E Ωn(X, D) we have

where we assume that the sum is 0 if F(x) is empty.

4.2 Main theorem
Theorem 4.8. Let X be a complete normal n-dimensional variety over an algebraically closed field 
k, and D a closed subset of X such that the pair (X,D) is toroidal.

Let (D1, . . . , Dn) be a reasonable covering of D such that each Di is a disjoint union of two 
closed subsets of pure codimension 1:

We get 2n disjoint finite closed subsets of X:

Then for any rational n-form ω ∈ Ωn(X, D), the following 2n numbers are equal:

where resTx  ω denotes the toroidal residue of ω at x, c(x) is the combinatorial coefficient at x, and 
│Sk│∖ is the number of Di" in the definition of Sk.

Proof. The proof repeats the arguments of the proof of Theorem 3.15. □

5. Application to systems of equations in the torus

In this section we apply our main results on the toroidal symbol and residue to prove the product 
of roots formula and the sum of values formula (Theorems A and B in the Introduction).

Recall that a Laurent polynomial is a finite linear combination of monomials with integer 
exponent vectors and coefficients in k:

The convex hull of those lattice points m ∈ Zn for which λm ≠ 0 is called the Newton polytope of f. 
The value of f(t) is defined for all t in the algebraic n-torus T = (kx)n.

Consider a system of n Laurent polynomial equations in T:

Let ∆i be the Newton polytope of fi. We assume that none of the fi is a monomial, hence, none of 
∆i is a point.

Every linear functional w on Rn defines a collection of faces Δw1, . . . , Δwn of the Newton polytopes 
such that the restriction of w on Δi attains its maximum precisely at Δwi. The polynomial

is called the initial form of fi with respect to w. According to Bernstein’s theorem [Ber75] the 
number of solutions to the system (12) is finite (and equals the mixed volume of ∆1, . . . , ∆n) if and 
only if for every w ≠ 0 the system f1w(t) = ∙ ∙ ∙ = fwn(t) = 0 is inconsistent.



Definition 5.1. A collection of polytopes ∆1, . . . , ∆n is called developed if none of them is a point 
and for each w ≠ 0 at least one of the faces Δw1, . . . , Δwn is a vertex.

By the above any system with developed collection of Newton polytopes has finitely many 
solutions. We will call them the roots of the system. Every root x of the system has a multiplicity 
μ(x).

Let Δ be the Minkowski sum of ∆1, . . . , ∆n. Then every face Γ ⊂ Δ has a unique decomposition 
as a sum of faces

If the collection ∆1, . . . , ∆n is developed then Δ has dimension n and in the decomposition of 
every proper face of Δ at least one summand is a vertex. In this case, for each vertex A of Δ, the 
combinatorial coefficient c(A) is defined.

Definition 5.2. Let σA be the cone with apex A generated by the facets of Δ that contain A. 
Then the boundary of σA is covered by the closed sets D1, . . . ,Dn, where Di is the union of all 
facets of σA that correspond to the facets of Δ whose ith summand in the decomposition (13) is a 
vertex. The combinatorial coefficient of this covering is called the combinatorial coefficient c(A) of 
the vertex A ∈ Δ.

5.1 Product of roots formula
Consider a system of n Laurent polynomials with developed collection of Newton polytopes. The 
product of the roots counting multiplicities is a point in T, which we denote by p. To locate p it is 
enough to find the product of the values of ti over the roots of the system, for each 1 ≤ i ≤ n. More 
generally, we will find the product of the values of any Laurent monomial ctm. for c ∈ kx, m ∈ Zn, 
over the roots of the system.

Definition 5.3 [Kho99]. The symbol of f1, . . ., fn and a Laurent monomial f0 = ctm at a vertex 
A ∈ Δ is the symbol of n + 1 monomials [ctm, f1(A1)tA1, . . . , fn(An)tAn], where A = A1 + ∙ ∙ ∙ + An 
is the decomposition of A, and fi(Ai) is the coefficient of tAi in fi. We denote it by [f0, . . . , fn]A.

The following theorem was proved by Khovanskii [Kho99] in the complex case. Our proof uses 
the result of Theorem 3.15 and works over an arbitrary algebraically closed field k.

Theorem 5.4. Suppose the collection of the Newton polytopes ∆1,..., ∆n of the system (12) is 
developed. Then the product of the values of a Laurent monomial f0 over the roots of the system 
is given by

where the right-hand product is taken over all vertices A of the polytope Δ = ∆1 + ∙ ∙ ∙ + ∆n and 
c(A) is the combinatorial coefficient at A.

Proof. First let us notice that it is sufficient to prove the theorem for a generic system with given 
Newton polytopes. There is an open set U in the space of the coefficients of the system where the 
number of roots counting multiplicities is constant. The left-hand side of (14), being symmetric in 
the roots of the system, is a rational function in the coefficients of the system. On the other hand, 
the product of the symbols [f0, . . . , fn]A is also a rational function of the coefficients of the system. 
Suppose we proved the formula for almost all systems in U. Then the two rational functions coincide 
on an open algebraic subset W ⊂ U, and thus coincide everywhere in U.

Consider the complete toric variety X associated with the Minkowski sum Δ (e.g. see [Ful93]). 
Let D = X ∖T be the invariant divisor on X. Denote by Zi the closure of the zero locus fi = 0 in X,



and let Z = Z1 ∪ ∙ ∙ ∙ ∪ Zn. If the system is generic, the components of Z intersect transversally and 
the intersection of each component of Z with D is also transversal. In this case the pair (X, D U Z) 
is toroidal.

Now we will define a covering of D U Z. Each irreducible component of D corresponds to a facet 
of Δ. Recall that each facet Γ of Δ has a unique decomposition into the sum of faces (13). Denote 
by Di the union of all components that correspond to those facets whose ith summand is a vertex. 
Since the collection ∆1, . . . , ∆n is developed, the sets D1, .  .. ,Dn define a covering of D.

Consider a covering D ∪ Z = (D1 ∪ Z1) ∪ ∙ ∙ ∙ ∪ (Dn ∪ Zn). Notice that every intersection point in 
(D1∪Z1)∩∙ ∙ ∙∩(Dn∪Zn) is either a fixed orbit or a transversal intersection of some components of Z 
and D. Thus the covering is reasonable (see § 3.2). By definition, the components of Di correspond to 
facets of Δ whose ith summand is a vertex, i.e. the corresponding initial forms of fi are monomials. 
This implies that Di ∩ Zi = 0. Now applying Theorem 3.15 we obtain

It remains to notice that for each transversal intersection x of components of Z the combinatorial 
coefficient c(x) = 1 and [f0, . . . , fn]x = f0(x)μ(x) (see Example 1 in the Appendix). Also for a point 
x ∈ D1 ∩ ∙ ∙ ∙ ∩ Dn the toroidal symbol [f0, . . . , fn]x coincides with [f0, . . . , fn]A, where A is the 
corresponding vertex of Δ, and c(x) = c(A), by definition. □

5.2 Sum of values formula
We recall the definition of a Laurent series at a vertex and the residue at a vertex from [GK96]. 
Let f be a Laurent polynomial with Newton polytope Δ(f), A a vertex of Δ(f), and f(A) the 
coefficient of tA in f. Since the constant term of the Laurent polynomial f = f∕(f(A)tA) equals 1, 
we get a well-defined power series

Definition 5.5. Let g be a Laurent polynomial. The formal product of the series (15) and the 
Laurent polynomial g∕(f(A)tA) is called the Laurent series of g∕f at the vertex A ∈ Δ(f). 

Definition 5.6. The residue at a vertex A ∈ Δ(f) of a rational n-form

is the constant term of the Laurent series of g/f at A. We denote it by resA w.

The following theorem was proved by Gel'fond and Khovanskii [GK02] in the case when k = C. 
We prove it for any algebraically closed field k using Theorem 4.8.
Theorem 5.7. Suppose the collection of the Newton polytopes ∆1, . . . , ∆n of the system (12) is 
developed. Then the sum of the values of a Laurent polynomial f0 over the roots of the system 
counting multiplicities is given by

where the sum on the right is taken over the vertices A of Δ = ∆1 + ∙ ∙ ∙ + ∆n, J = det(tj∂fi ∕∂tj) 
for 1 ≤ i, j ≤ n, f = f1 ∙ ∙ ∙ fn, and c(A) is the combinatorial coefficient at A.

Proof. As in the proof of Theorem 5.4 it is enough to consider the case of a generic system with 
given Newton polytopes, since the sum of the values of a Laurent polynomial over the roots of the 
system is a rational function of the coefficients of the system.



As before, X is the complete toric variety associated with the Minkowski sum, D the invariant 
divisor on X, Zi the closure of the zero locus fi = 0 in X, and D∪Z = (D1 ∪ Z1) ∪ ∙ ∙ ∙ ∪ (Dn ∪ Zn) 
a reasonable covering that satisfies Di ∩ Zi = ∅. Applying Theorem 4.8 to the form

we get

For each transversal intersection x of components of Z the combinatorial coefficient c(x) = 1 
and resTxω = μ(x)f0(x) (see Example 2 in the Appendix). Also for a point x ∈ D1 ∩ ∙ ∙ ∙ ∩ Dn, we 
have c(x) = c(A) and

where A ∈ Δ is the vertex corresponding to the fixed orbit x. Therefore, we have obtained the 
required equality. □
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Appendix. Parshin’s reciprocity laws
Here we recall the definition of Parshin’s tame symbol and residue for an arbitrary algebraic variety 
X over an algebraically closed field, and formulate Parshin’s reciprocity laws.

A.l Parshin’s tame symbol
Let X be a complete algebraic variety over an algebraically closed field k.

Consider a complete flag of irreducible subvarieties of X:

We will assume that all Xi are normal. The general case can be reduced to this one by considering 
normalization (for details see [Par83] or [Sop02]). Note also that this assumption holds for complete 
flags of stratum closures on toroidal pairs.

Given a flag F as in (A1) define a system of local parameters at F, (u1,..., un)f ∈ k(X)n, as 
follows. There exists an open subset of Xn where the codimension-1 subvariety Xn-1 has a local 
equation un. In general, for every i = 0, . . . , n -1, let un-i be a local equation (in some open subset) 
of the codimension-1 subvariety Xη-i-1 ⊂ Xn-i.

Next, for every rational function f on X define its order (a1,... ,an)F ∈ Zn at the flag F. 
First let an be the order of f along Xn-1. We can write

Let f(n-1) be the restriction of f(n-1) to Xn-1, and an-1 be the order of this restriction along Xn-2,

and so on. Finally,

where a1 is the order of f(1) at X0.



Definition A.1. Let f0, . . . ,fn be rational functions on X. Fix a complete flag F of irreducible 
subvarieties (A1). Let (ai1, . . . ,ain)F be the order of fi at F. Denote A = (aij) ∈ Mn+1,n(Z). 
Parshin’s tame symbol of f0, . . . , fn at the flag F is the following non-zero element of k:

where Ai is the determinant of the matrix obtained from A by eliminating its ith row, and

where Akij is the determinant of the matrix obtained from A by eliminating its ith and jth rows 
and its kth column.

Note that the order of the rational function inside the large brackets in (A3) is (0, . . . , 0)f, hence, 
its value at X0 makes sense and is not zero.

Remark A.2. Let us associate with every rational function f on X a monomial cu1a1 ... unan, where 
(u1, . . . , un)f are local parameters at F, (a1, . . . ,an)f is the order of f at F, and c = f(0)(X0). 
Then the tame symbol {f0, . . . , fn}f is equal to the symbol of the corresponding n + 1 monomials 
(see Definition 3.8).

Parshin’s symbol does not depend on the choice of local parameters (u1, . . . ,un)f. It is multi
plicative and skew-symmetric (compare to Proposition 3.9).

Example 1. Let f1, . . . , fn be rational functions on an algebraic variety X, whose zero loci {fi = 0} 
intersect transversely at a non-singular point x ∈ X. Denote by Zi the irreducible component of 
{fi = 0} that contains x.

Let f0 be any rational function on X whose divisor does not contain x. Then

where F : x = X0 ⊂ X1 ⊂ ∙ ∙ ∙ ⊂ Xn-1 ⊂ X for Xi = Zi+1 ∩ ∙ ∙ ∙∩Zn, and μ(x) = μ1 . . . μn is the 
product of the multiplicities μi of fi along Zi.

Indeed, for the system of local parameters at F we can choose the local equations of Zi at x. 
Then the first row of the matrix A is zero and the other n rows form a lower triangular matrix with 
the multiplicities μi on the diagonal. Therefore, A0 = μ1 . . . μn and Aj = 0, 1 ≤ j ≤ n. It is also 
not hard to see that B = 0 (for example, one can use the description of B given in the proof of 
Proposition 3.9).

A.2 Parshin’s residue
Let X be a complete algebraic variety over an algebraically closed field k, and F a complete flag of 
irreducible subvarieties (A1). Let (u1, . . . , un)f be a system of local parameters at F, as before.

Consider a rational differential n-form on X. At a generic point of Xn-1 the differentials 
du1, . . . , dun are linearly independent, and we can write

The restriction of the form f-1du1 ∧ ∙ ∙ ∙ ∧ un-1 onto Xn-1 makes sense and gives us a rational 
(n — l)-form ωn-1on Xn-1. Continuing in this way we arrive at a sequence of rational (n — i)-forms 
ωn-1 on Xn-i, i = 1, . . . , n, the last one being a number w0 = f-1,..., -1 at the point X0. Note also



that this number is the coefficient of the series

where we identify f with an element of the field k((u1))... ((un)). Here K((t)) denotes the field of 
the Laurent power series in t with coefficients in a field K.

Definition A.3. Let ω be a rational n-form on X. Fix a complete flag F of irreducible subvarieties 
(A1). Parshin’s residue resF w at the flag F is the number f-1,...,-1 constructed above.

Parshin’s residue does not depend on the choice of local parameters (u1,... ,un)f. The proof 
of this statement is similar to the proof we gave for the invariance of the toroidal residue in 
Proposition 4.2.

Example 2. Let f1,...,fn be rational functions on an algebraic variety X, whose zero loci {fi = 0} 
intersect transversely at a non-singular point x ∈ X. Denote by Zi the irreducible component of 
{fi = 0} that contains x.

Let f0 be any rational function on X which is regular in an open neighborhood of x. Then

where F : x = X0 ⊂ X1 ⊂ ∙ ∙ ∙ ⊂ Xn-1 ⊂ X, for Xi = Zi+1 ∩∙ ∙ ∙∩ Zn, and μ(x) = μ . . . μn is the 
product of the multiplicities μi of fi along Zi.

Indeed, for the system of local parameters at F we can choose the local equations μi of Zi at x. 
Then

A.3 Reciprocity laws
Now we will formulate Parshin’s reciprocity laws for the tame symbol and the residue.

Theorem A.4. Let X be a complete irreducible n-dimensional algebraic variety over an alge
braically closed Geld k. Fix a partial Gag of irreducible subvarieties X0 ⊂ ∙ ∙ ∙ ⊂ Xi ⊂ ∙ ∙ ∙ ⊂ Xn = X, 
where Xi is omitted. Then

i) for any n + 1 rational functions f0, . . . ,fn on X

ii) for any rational n-form ω on A

where the product (sum) is taken over all irreducible subvarieties Xi that complete the Gag, and is 
Gnite.

It follows by definition that Parshin’s symbol {f0, . . . ,fn}F equals 1 unless F consists of inter
sections of components of the divisors of f0, . . . , fn. This shows that the above product is finite. 
Similarly, Parshin’s residue resF ω is zero unless F consists of intersections of components of 
the polar set of ω, hence, the above sum is finite.

In the proof of the main theorems (Theorems 3.15 and 4.8) we referred to the special case of 
the reciprocity law when i = 0. In this case the proof of the first part of Theorem A.4 is based on



the ‘reduction formula’ for the symbol. Namely, the property of the symbol analogous to the cofactor 
expansion for the determinant allows one to represent the n-dimensional symbol as a product of 
symbols of dimension n — 1 (see [FP04]). Then the statement follows from Weil’s reciprocity by 
induction.

For the case of the residue, notice that the residue of the n-form ω at the flag F is equal to the 
sum of the residues of 1-forms w1 on X1at X0. The statement then follows from the one-dimensional 
residue formula.
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