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studies are to verify that one algorithm outperforms another
on a given set of benchmarks. However, there has not been much
comparative study of various EAs and their principles of operation.
Therefore, it is interesting to discuss and compare the character-
istics of popular EAs from the conceptual and algorithmic aspects.

The aim of this paper is to show the equivalences and
differences of various popular EAs, including GA, BBO, DE, ES and
PSO in a notional as well as in an experimental way. Because these
algorithms bear so many similarities due to their reliance on
organic evolution, it is not a surprising fact that these algorithms
have equivalences under certain conditions. In this study, we
formalize a general description of these algorithms and provide
detailed theoretical and empirical comparisons. This paper can
provide an appropriate overview of the strong similarities of these
algorithms to stimulate further discussions.

There has been much previous work comparing various EAs,
including comparisons between genetic algorithms, memetic
algorithms, particle swarm optimization, ant colony optimization,
and shuffled frog leaping (Elbeltagi et al., 2005); comparisons
between genetic algorithms and particle swarm optimization
(Eberhart and Shi, 1998); comparisons between genetic algorithms
and evolution strategies (Hoffmeister and Bäck, 1990); compar-
isons between memetic algorithms, tabu search, and ant colony
optimization (Merz and Freisleben, 1999); and many others (Gao,
2004; Lai et al.,1998; Settles et al., 2003). Those papers focus
mostly on the motivation behind the algorithms and differences in
performance on benchmarks or specific applications. In this paper
we add to the research literature by providing a more extensive
comparison, by focusing on similarities and differences between
algorithms, by including the recently developed BBO algorithm in
our comparison, and by focusing on differences in performance on
a larger and more recent set of benchmarks. The benchmarks we
study in this paper are recently-proposed real-world continuous
problems from the 2011 IEEE Congress on Evolutionary Computa-
tion (Das and Suganthan, 2010).

We note that there are many other popular EAs that we could
include in our comparison, including ant colony optimization
(ACO) (Dorigo et al., 2002; Dorigo and Gambardella, 1997),
artificial immune systems (AIS) (Hofmeyr and Forrest, 2000), and
artificial bee colony (ABC) optimization (Karaboga and Basturk,
2007). These algorithms may be similar to the five EAs that we
examine in this paper, but their similarity has not yet been
examined. We restrict our comparison to five algorithms due to
space constraints, and we leave the comparison of other algo-
rithms for future work. We chose the five algorithms that we did
because GA and ES are two of the basic and foundational
approaches to computer intelligence; DE is a mid-generation
addition to the EA family that has proven very successful; PSO
takes a fundamentally different approach as a swarm intelligence
algorithm; and BBO is a typical late addition to the family of EAs.
The five algorithms that we chose thus form a representative set
rather than a complete set.

The rest of this paper is organized as follows. Section 2 first
gives a brief overview of various basic EAs and analyzes their
equivalences, and then discusses both their differences and their
unique characteristics. Section 3 presents performance compar-
isons of the basic and advanced EAs on real-world application
benchmarks, and Section 4 gives conclusions and directions for
future research.

2. Equivalences and differences of EAs

This section first introduces various basic EAs, including GA,
BBO, DE, ES and PSO, and then conceptually analyzes their
equivalences under special conditions (Section 2.1). This section

then discusses their differences based on biologic motivations and
algorithmic details (Section 2.2).

2.1. Equivalences of EAs

2.1.1. Genetic algorithms
GAs are popular evolutionary algorithms which were intro-

duced as a computational analogy of adaptive biological systems.
They are modeled on natural selection in evolution. GAs use a set
of candidate solutions as a population, and use fitness functions to
evaluate these candidate solutions. In the process of evolution, the
candidate solutions are improved through selection, mutation and
recombination (crossover) operators, and then pass on the candi-
date solutions with the best fitness to the next generation. A
general description of one generation of a simple GA is given in
Algorithm I.

Algorithm I. A general description of one generation of a simple
GA, which is divided into four steps.

Select the best-fit solutions for reproduction
Breed new solutions through recombination (crossover) and
mutation operations

Evaluate the fitness of the new solutions
Retain the most fit solutions for the next generation

The simple GA described in Algorithm I is usually the one
applied to most problems presented to a GA. The new solutions are
obtained each generation by recombination and mutation. Prior to
its mutation an offspring is produced by recombining parent
solutions:

ykðsÞ ¼
yaðsÞ ðAÞ no recombination
yaðsÞ or ybðsÞ ðBÞ discrete
yaðsÞ þ αðybðsÞ−yaðsÞÞ ðCÞ intermediate

8><
>: ð1aÞ

ykðsÞ ¼
yaðsÞðsÞ or ybðsÞðsÞ ðDÞ global; discrete
yaðsÞðsÞ þ αðsÞðybðsÞðsÞ−yaðsÞðsÞÞ ðEÞ global; intermediate

(

ð1bÞ
where α and α(s) are contraction factors between 0 and 1, y is the
entire population of candidate solutions, a, b, a(s), and b(s) are
parent indices, k is the offspring index, and s is the decision
variable index of a candidate solution. For example, yk denotes the
kth offspring, and yk(s) is the sth decision variable of yk. For options
(A), (B), and (C), parent indices a and b are two randomly-selected
indices that are independent of decision variable index s, and
contraction factor α is also independent of s. For options (D) and
(E), a(s) and b(s) are randomly-selected indices that depend on
decision variable index s, and αðsÞ is a contraction factor that
depends on s.

By convention all parents in a population have the different
mating probabilities, namely, all parents are determined by
fitness-based selection, for example, roulette-wheel selection or
tournament selection. In the case of discrete recombination option
(B) in (1a), the sth decision variable of the offspring is chosen from
either of two parents, which may be interpreted as crossover with
a varying number of crossover points. In the case of intermediate
recombination option (C) in (1a), the sth decision variable of the
offspring is the weighted average of the two parents, and the
weighting coefficient is α. In the case of the global recombination
options (D) and (E) in (1b), a(s) and b(s) are chosen independently
for each decision variable index s, which means that many parents
can contribute to a single offspring. This results in a higher mixing
of genetic information than in the case of options (B) and (C).



2.1.2. Biogeography-based optimization
BBO was introduced in 2008 (Simon, 2008). It is a relatively

new evolutionary optimization algorithm which is inspired by
biogeography theory. In BBO, a biogeography habitat denotes a
candidate optimization problem solution, and it is comprised of a
set of features, which are also called decision variables, and which
are similar to genes or alleles in GAs. A set of biogeography
habitats is an archipelago of islands, and denotes a population of
candidate solutions. The number of islands in the archipelago
corresponds to the BBO population size. Habitat suitability index
(HSI) in biogeography denotes the fitness of a candidate solution.
Like other EAs, each candidate solution in BBO probabilistically
shares decision variables with other candidate solutions to
improve candidate solution fitness. This sharing process is analo-
gous to migration in biogeography. That is, each candidate solution
immigrates decision variables from other candidate solutions
based on its immigration rate, and emigrates decision variables
to other candidate solutions based on its emigration rate. BBO
consists of two main steps: migration (which includes both
immigration and emigration), and mutation.

Migration is a probabilistic operator that is intended to improve
a candidate solution yk. For each decision variable of a given
candidate solution yk, the candidate solution's immigration rate λk
is used to probabilistically decide whether or not to immigrate. If
immigration is selected, then the emigrating candidate solution yj
is probabilistically chosen based on its emigration rate μj. Migra-
tion is written as

ykðsÞ←yjðsÞ ð2Þ

where s is a decision variable index just as in GAs. In BBO, each
candidate solution yk has its own immigration rate λk and emigra-
tion rate μk. A good candidate solution has a relatively high
emigration rate and a low immigration rate, while the converse
is true for a poor candidate solution. Here, immigration rate λk and
emigration rate μk are based on particular migration curves, such
as the linear migration curves shown in Fig. 1, where the
maximum immigration rate and maximum emigration rate are
both equal to 1. More possibilities for the shape of the migration
curves have been discussed in Ma (2010).

Mutation is a probabilistic operator that randomly modifies a
decision variable of a candidate solution. The purpose of mutation
is to increase diversity among the population, just as in other EAs.
A description of one generation of BBO is given in Algorithm II.
Note that Algorithm II includes the use of a temporary population
z so that migration completes before the original population y is
replaced with the new population z at the end of each generation.

Algorithm II. One generation of the BBO algorithm, where N is
the population size. y and z are the entire population of candidate
solutions, yk is the kth candidate solution, and yk(s) is the sth
decision variable of yk.

For each solution yk, define emigration rate μk proportional to
fitness of yk, where μk∈[0,1]

For each solution yk, define immigration rate λk¼1−μk
z←y
For each solution zk (k¼1 to N)

For each candidate solution decision variable index s
Use λk to probabilistically decide whether to

immigrate to zk
If immigrating then

Use {μ} to probabilistically select the emigrating
solution yj

zk(s)←yj(s)
End if

Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

The BBO migration strategy is conceptually similar to a combi-
nation of two ideas from GAs: global recombination and uniform
crossover, which has been explained in detail in Simon et al.
(2011), and is reviewed here. As the name suggests in option (D) of
(1b), global recombination means that many parents can contri-
bute to a single offspring, and uniform crossover means that each
decision variable in an offspring is generated independently from
every other decision variable. Combining global recombination
and uniform crossover results in global uniform recombination. In
addition, we suppose here that the entire population is used as
potential contributors to each offspring, and fitness-based selec-
tion is used for each decision variable in each offspring. This
results in GA with global uniform recombination (GA/GUR) as
shown in Algorithm III.

Algorithm III. One generation of GA/GUR, where N is the popula-
tion size. y and z are the entire population of candidate solutions,
yk is the kth candidate solution, and yk(s) is the sth decision
variable of yk. The crossover method is option (D) in Eq. (1b).

For each solution yk, define parent probability μk proportional
to fitness of yk, μk∈[0,1]

z←y
For each solution zk (k¼1 to N)

For each candidate solution decision variable index s
Use {μ} to probabilistically select the parent solution yj
zk(s)←yj(s)

Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

Comparing Algorithm II with Algorithm III, it is clearly seen that
BBO reduces to GA/GUR when we set λk¼1 for all k instead of
setting λk as a variable in the BBO algorithm of Algorithm II. Also,
GA/GUR can be viewed as a variation of BBO under special
conditions. Since GA/GUR can be viewed as BBO variation, it
follows that these two algorithms function identically under these
special conditions.

μ

λ

Fig. 1. Linear migration curves for BBO. λ is the immigration rate and μ is the
emigration rate, and we assume that the maximum immigration rate and
maximum emigration rate are both equal to 1.



2.1.3. Differential evolution
DE was introduced in 1997 (Storn and Price, 1997). It resembles

the structure of evolution strategies, but differs from traditional
evolution strategies in its generation of new candidate solutions
and in its use of a greedy selection scheme. DE works as follows:
first, all candidate solutions are randomly initialized and evaluated
using the fitness function. Then for each candidate solution in the
population, an offspring is created by adding the weighted
difference of two parent solutions to the third. This process
comprises one generation, and is executed as long as the termina-
tion condition is not fulfilled. The most basic form of DE is DE/
rand/1/bin scheme, shown as

ykðsÞ←yr1ðsÞ þ Fðyr2ðsÞ−yr3ðsÞÞ ð3Þ
where r1, r2, and r3 are three mutually exclusive random candi-
date solution indices, and F is the mutation scaling factor. A
description of one generation of the basic DE algorithm is given
in Algorithm IV.

Based on Algorithm IV, DE is conceptually similar to a combi-
nation of two ideas from GAs: global intermediate recombination
and uniform crossover. As the name suggests in option (E) of (1b),
global intermediate recombination means that a single offspring is
produced by the weighted average of the two parent solutions,
and uniform crossover as described above for GA/GUR. If we
combine global intermediate recombination and uniform cross-
over, we obtain global uniform intermediate recombination. In
addition, suppose that the entire population is used as potential
contributors to each offspring, and fitness-based selection is used
for the parent solutions. This results in GA with global uniform
intermediate recombination (GA/GUIR) as shown in Algorithm V.

Algorithm IV. One generation of the basic DE algorithm, where N
is the population size. y and z are the entire population of
candidate solutions, yk is the kth candidate solution, and yk(s) is
the sth decision variable of yk. CR is the probability of crossover,
and F is the scaling factor.

z←y
For each solution zk (k¼1 to N)

For each candidate solution decision variable index s
Pick three random solutions yr1, yr2 and yr3 that are

distinct from each other as well as from solution zk
Pick a random index n between 1 and the

population size
Use CR (probabilistic) or n (deterministic) to

decide on recombination
If recombination then

zkðsÞ←yr1ðsÞ þ Fðyr2ðsÞ−yr3ðsÞÞ
End if

Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

Algorithm V. One generation of GA/GUIR, where N is the popula-
tion size. y and z are the entire population of candidate solutions,
yk is the kth candidate solution, and yk(s) is the sth decision
variable of yk, F is a weighted coefficient. The crossover method is
option (E) in Eq. (1b).

For each solution yk, define selection probability μk proportional
to fitness of yk, μk∈[0,1]

z←y
For each solution zk (k¼1 to N)

For each candidate solution decision variable index s

Use {μ} to probabilistically select the parent solutions
yr1 and yr2

zkðsÞ←yr1ðsÞ þ Fðyr2ðsÞ−yr1ðsÞÞ
Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

Comparing Algorithm IV with Algorithm V, it can be seen that
DE is a generalization of GA/GUIR. Stated differently, GA/GUIR is a
special case of DE. DE involves the selection of three random
candidate solutions from the population, denoted r1, r2 and r3,
and the generation of a random integer n between 1 and the
population size. However, if r1 is selected on the basis of fitness, r3
is replaced with r1 and is selected on the basis of fitness, and n¼1,
then DE in Algorithm IV is equivalent to GA/GUIR as shown in
Algorithm V. Namely, GA/GUIR can be viewed as a special case of
DE. It therefore follows that these two algorithms perform
identically under these special conditions.

2.1.4. Evolution strategies
ESs are optimization techniques based on the ideas of adapta-

tion and evolution. They use natural problem-dependent repre-
sentations, and primarily depend on mutation and selection as
search operators. In the process of evolution, mutation is per-
formed by adding a normally distributed random value to each
solution decision variable. The step size or mutation strength is
often governed by self-adaptation. The selection in ESs is deter-
ministic and only based on the fitness rankings, not on the actual
fitness values. The most popular ES is the (μ, λ)–ES: the μ parent
solutions produce λ offspring solutions using mutation. Each of the
λ offspring solutions is then assigned a fitness value depending on
its quality. The best μ offspring solutions become the next
generation parent solutions. This means λ must be greater or equal
to μ. A description of one generation of the (μ, λ)–ES algorithm is
given in Algorithm VI. Note that the μ and λ that are used in (μ, λ)–ES
notation are not related to the μ and λ that are used in BBO notation.

Algorithm VI. One generation of the (μ, λ)–ES algorithm, where μ
is the population size of the parent solutions, λ is the population
size of the offspring, y and z are the entire population of candidate
solutions, zk is the kth candidate solution, and zk(s) is the sth
decision variable of zk, δkis an adaptive mutation parameter, and
Nk(0,1) is a normally distributed random value with zero mean and
unity variance.

z←y
For each solution zk (k¼1 to λ)

For each candidate solution decision variable index s
Randomly select two parents ya(s) and yb(s)
Use a recombination method to combine the two

parent features to obtain zk(s)
Update the adaptive mutation parameter δk
zk sð Þ←zk sð Þ þ δkNk 0; 1ð Þ

Next candidate solution decision variable index
Next solution
Evaluate each solution zk (k¼1 to λ), and save the fittest
solutions as yk (k¼1 to μ, λ≥μ)

The similarities and differences between GAs and ESs are
discussed in detail in Frank and Thomas (1991). Here we concep-
tually analyze the equivalences of the (μ, λ)–ES and GA/GUR. In



Algorithm VI, when the population size of the parent solutions μ is
equal to the population size of the offspring solutions λ, the fitness
values are used to select parents ya and yb, the entire population
is used as potential contributors to the next generation, and a
constant (non-adaptive) mutation parameter is used, the (μ, λ)–
ES algorithm is equivalent to the GA with global uniform re-
combination (GA/GUR) described in Algorithm III. Namely, GA/
GUR can be viewed as a (μ, λ)–ES algorithm under special
conditions. Since GA/GUR can be viewed as a (μ, λ)–ES variation,
it follows that these two algorithms function identically under
these special conditions.

2.1.5. Particle swarm optimization
PSO was introduced in 1995 (Kennedy and Eberhart, 1995). It is

inspired by the swarming behavior of a flock of birds and a school
of fish. PSO consists of a swarm of particles moving in an
n-dimensional search space of possible problem solutions. Every
particle has a position vector yk encoding a candidate solution to
the problem (similar to the chromosome in GAs) and a velocity
vector vk to update position. Moreover, each particle contains a
small memory that stores its own best position Pbest and a global
best position Gbest obtained through communication with its
neighbor particles. We use the fully connected network topology
to transfer information, which means that Gbest is the best position
in the entire population at the current generation. Intuitively, the
information about good solutions spreads through the swarm, and
thus the particles tend to move to good areas in the search space.
At each iteration, the velocity of a particle is updated based on its
previous velocity, its own previous best position, and the current
global best position, and is determined by

vkðsÞ←wvkðsÞ þ Uð0;ϕ1ÞðPbestðsÞ−ykðsÞÞ þ Uð0;ϕ2ÞðGbestðsÞ−ykðsÞÞ ð4Þ
where vk(s) is the velocity of the kth particle in the sth dimension,
w is called the inertia weight and controls the contribution of the
previous velocity to the calculation of the new velocity, U(a, b) is a
uniformly distributed random number between a and b, and the
cognitive constant ϕ1 and the social constant ϕ2 for neighborhood
interaction determine the significance of Pbest(s) and Gbest(s)
respectively. Furthermore, the position of the particle is calculated
as the sum of the previous position and the new velocity:

ykðsÞ←ykðsÞ þ vkðsÞ ð5Þ
A description of one generation of the basic PSO algorithm is

given in Algorithm VII.
A simplified PSO algorithm can be obtained if each particle's

velocity at each generation is independent of its previous velocity,
namely, the inertia weight of the velocity w is set to 0; the
proportionality constant ϕ1 which determines the significance of
Pbest(s) is set to 0; the global best position Gbest(s) is probabilisti-
cally selected based on fitness; and (4) and (5) are combined. In
this case, Algorithm VII becomes Algorithm VIII.

Algorithm VII. One generation of the basic PSO algorithm, where
N is the population size. y and z are the entire population of
candidate solutions, zk is the kth candidate solution, zk(s) is the sth
decision variable of zk, vk is the kth particle's velocity (intermediate
variable), vk(s) is the sth dimension of vk, w is the inertia weight, U
(0, ϕ) is a uniformly distributed random number between 0 and ϕ,
Pbest is the particle's previous best solution, and Gbest is the current
global best solution.

z←y
For each solution (particle's position) zk (k¼1 to N)

For each candidate solution decision variable index s
vk sð Þ←wvk sð Þ þ U 0;ϕ1

� �
Pbest sð Þ−zk sð Þð Þ þ U 0;ϕ2

� �
Gbest sð Þ−zk sð Þð Þ

zk sð Þ←zk sð Þ þ vk sð Þ

Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

Algorithm VIII. One generation of a simplified PSO algorithm,
where N is the population size, y and z is the entire population of
candidate solutions, zk is the kth candidate solution, zk(s) is the sth
dimension of zk, U (0, ϕ2) is a uniformly distributed random
number between 0 and ϕ2, and Gbest is the global best solution.

For each solution yk, define selection probability μk proportional
to fitness of yk, μk∈[0,1]

z←y
For each solution zk (k¼1 to N)

For each candidate solution decision variable index s
Use {μ} to probabilistically select the global best

solution Gbest(s)
zkðsÞ←zkðsÞ þ Uð0;ϕ2ÞðGbestðsÞ−zkðsÞÞ

Next candidate solution decision variable index
Probabilistically decide whether to mutate zk

Next solution
y←z

From Algorithm VIII, it is seen that a single offspring is
recombined by the weighted average of its parent solution and
the global best solution, where the weighting coefficient is U (0,
ϕ2), and each solution decision variable in an offspring is gener-
ated independently from every other solution decision variable. In
addition, fitness-based selection is also used for each solution
decision variable in each offspring. Comparing Algorithm VIII with
Algorithm V, it is found that this PSO variation, like DE, is
equivalent to a GA with global uniform intermediate recombina-
tion (GA/GUIR). Namely, GA/GUIR can be conceptually viewed as
PSO under special conditions. Since GA/GUIR can be viewed as a
simplified PSO algorithm, it follows that these two algorithms
function identically under these special conditions.

2.1.6. Summary of EA similarities
We have seen above that several popular evolutionary algo-

rithms including BBO, DE, ES and PSO, are conceptually similar to
GAs. Under special conditions, these algorithms are equivalent to
GA with global uniform recombination (GA/GUR). Note that GA
with global uniform intermediate recombination (GA/GUIR) is a
special case of GA with global uniform recombination (GA/GUR).
All these algorithms have certain features in common, and they all
adopt some operators to share information between solutions.
Since they use many similar operators, it is not difficult to under-
stand why they have nearly the same optimization ability in some
real-world applications. We also recognize that there are many
other well-established evolutionary algorithms, including evolu-
tionary programming (EP) (Yao et al., 1999), the estimation of
distribution algorithm (EDA) (Pedro and Lozano, 2002) and ant
colony optimization (ACO) (Dorigo et al., 2002; Dorigo and
Gambardella, 1997), and the study of their equivalences is deferred
for future research.

2.2. Differences between EAs

The identical functionality of different EAs that we discussed
above occurs only under special conditions, and each EA still has
its own particular features and parameters that give it a unique



flexibility that other EAs may not have. In this subsection we point
out some differences between these evolutionary algorithms.

First, their differences result from their unique biological
motivations. GAs are based on survival of the fittest and
genetically-motivated recombination strategies, BBO is based on
the migration behavior of species between islands, DE uses
candidate solution vector differences, ES uses self-adaptive muta-
tion rates, and PSO is based on the foraging behavior of birds. It is
therefore useful to retain the distinction between these EAs
because they are based on different natural phenomena.

Retaining the biological foundation of GAs stimulates the
incorporation of features from biology in GAs, which makes the
study of GAs richer and more flexible. Some of these features
include gender, niching, crowding, resource competition, aging,
co-evolution, and ontogeny. Retaining BBO as a separate algorithm
stimulates the incorporation of behaviors from natural biogeogra-
phy into the BBO algorithm, including the effect of geographical
proximity on migration rates, migration momentum, habitat area,
and nonlinear migration curves (Ma, 2010). Retaining DE as a
separate algorithm stimulates the incorporation of simple math-
ematical formulae into the DE algorithm, including arithmetic
operation and vector computing (Das and Suganthan, 2011).
Retaining ES as a separate algorithm stimulates the incorporation
of various mutation methods, including the stochastic distribution
and the covariance matrix of this distribution (Hansen, 2006).
Retaining PSO as a separate algorithm stimulates the incorporation
of swarming behaviors from birds, insects, or fish into the algo-
rithm (Kennedy, 1997).

The second point in this section is that EA differences arise
because the historical developments of the algorithms were
different. We note that GAs and ES reproduce children by cross-
over; namely, their parent solutions disappear and are replaced by
children at the end of each generation. BBO does not involve
reproduction or the generation of children, and its solutions are
not discarded after each generation, but are rather modified
directly by migration. Like BBO, DE and PSO solutions are main-
tained from one generation to the next, and each solution is able to
learn from its neighbors and adapt itself as the algorithm pro-
gresses. But PSO solutions change by virtue of another variable
(velocity) and DE solutions change based on differences between
other solutions.

Unifying various EAs is instructive, but retaining their own
characteristics and distinctions provides rewarding mathematical
and theoretical studies, and valuable tools for practical problems.
From the no free lunch theorem (Wolpert and Macready, 1997), we
know that if an algorithm achieves superior results on some
problems, it must pay with inferior results on other problems. So
the availability of various EAs provides a wealth of alternative
optimization algorithms. Their differences provide opportunities
for practical applications to a variety of problems, and for resulting
contributions to the EA literature.

Table 1 summarizes the differences and similarities among the
five algorithms that we consider, along with the conditions under
which each algorithm reduces to a GA. Note that the year in which
each algorithm was invented is not always clear-cut. For example,
computer simulations of biological evolution were first conducted
in the early 1950s (Barricelli, 1954), and the term “genetic algo-
rithm” was not used until 1975 (Holland, 1975), but we can
consider David Fogel's book in the early 1960s as the earliest work
that closely resembles today's GAs (Fogel et al., 1966).

The “Primary Method of Obtaining Offspring” row in Table 1
indicates whether new candidate solutions are primarily created
by modifying parent individuals, or by recombining parent indi-
viduals. This characteristic is not always clear-cut. For example, the
(1+1)–ES does not use recombination, but the (μ+1)–ES, (μ+λ)–ES,
and (μ,λ)–ES all use recombination. As another example, DE is a
modification algorithm if r1¼k in Algorithm IV; but it is usually
formulated with r1≠k, in which case it is a recombination algo-
rithm. In addition, GA, DE, and ES, which are categorized as
“recombination” methods in Table 1, can also include modification
through mutation. However, mutation is usually a low-probability
occurrence, and often is restricted to changes of small magnitudes.
In contrast, recombination typically occurs for every individual
at every generation, and with no restrictions on the magnitude
of the difference between the parents and children. Therefore,
we categorize GA, DE, and ES, primarily as “recombination”
algorithms.

The “Search Domain of Original Formulation” row in Table 1
indicates whether the algorithm was initially developed for binary
or continuous search domains. This characteristic is not always
clear-cut. For example, BBO was initially applied to binary search
spaces (Simon, 2008), but its operation is more naturally suited to
continuous search spaces, and it has generally been applied that
way. In addition, GAs are usually applied to continuous search
spaces, even though they were restricted to binary search spaces
for their first couple of decades.

The “GA equivalence” row in Table 1 specifies what type of GA
the algorithm is equivalent to: either a GA with global uniform
recombination (GA/GUR—see Algorithm III), or a GA with global
uniform intermediate recombination (GA/GUIR—see Algorithm
IV). Finally, the “equivalence conditions” row in the table specifies
the conditions under which the given algorithm is equivalent to
either GA/GUR or GA/GUIR.

An examination of Table 1 can provide insights into which type
of algorithm should be applied to a given problem. We begin by
noting, as mentioned earlier, that all EAs can include mutation.
Therefore, all of the EAs that we study here (GA, DE, ES, BBO, and
PSO) can include the modification of existing solutions. However,
the differences between these EAs can be characterized by noting
that GA, DE, and ES primarily involve recombination, while BBO
and PSO involve the modification of existing solutions. This
indicates that GA, DE, and ES are more exploitative algorithms

Table 1
Summary of the similarities and differences among the five EAs.

GA BBO DE ES PSO

Year Introduced 1966 (Fogel et al.,
1966)

2008 (Simon,
2008)

1997 (Storn and Price,
1997)

1968 (Rechenberg,
1968)

1995 (Kennedy and Eberhart,
1995)

Primary method of obtaining
offspring

Recombination Modification Recombination Recombination Modification

Search domain of original
formulation

Binary Continuous Continuous Continuous Continuous

GA equivalence – GA/GUR GA/GUIR GA/GUR GA/GUIR
Equivalence conditions – λ¼1 yr1�fitness δk¼0 w¼0

CR¼1 ya(s)¼0 ϕ1¼0
yb(s)�fitness Gbest�fitness



that may perform better in cases where the user can seed the
initial population with known good candidate solutions, while
BBO and PSO are more explorative algorithms that may perform
better in cases where the user has less problem-specific
information.

Second, note that although DE, ES, and PSO have all been
applied to discrete search spaces, they were originally designed for
continuous search spaces, so their application to combinatorial
problems sometimes often seems unnatural. If a GA or BBO
population is constrained to a discrete search space, then the next
generation will also be so constrained. However, the same is not
true for DE, ES, and PSO; for these algorithms, the offspring of a
population that is constrained to a discrete search space will not
itself necessarily be discrete. This observation is not intended as a
criticism of DE, ES, and PSO for discrete search spaces, but it does
indicate that procedural modifications and extra computational
bookkeeping may be required to apply these algorithms to such
domains. Although BBO is listed as “continuous” in Table 1, the
“equivalence conditions” row in Table 1 indicates that it is more
like a GA than the other algorithms. This indicates that BBO may
perform better than DE, ES, or PSO on combinatorial problems.

3. Experimental results

This section first looks at the performance of the basic EAs,
including GA, BBO, DE, ES and PSO, on a set of real-world
optimization problems (Section 3.1). Then we compare the per-
formance of advanced versions of these algorithms on the same
set of real-world optimization problems (Section 3.2).

3.1. Comparison of the basic EAs

This subsection compares the performance of the basic GA,
BBO, DE, ES and PSO described in the previous section on a set of
real-world optimization problems from the 2011 IEEE Congress on
Evolutionary Computation (Das and Suganthan, 2010). These
functions are briefly summarized in Table 2. For the basic GA we
use real coding, roulette wheel selection, single point crossover
with a crossover probability of 1, which is a special case of option
(B) in (1a), and a mutation probability of 0.001. For the basic BBO

algorithm, we use a maximum immigration rate and maximum
emigration rate of 1, linear migration curves as suggested in Simon
(2008), and a mutation probability of 0. (For BBO mutation is
beneficial primarily for small population sizes.) For the basic DE
algorithm, we use a scaling factor F of 0.5, and a crossover rate CR
of 0.5. For the (μ, λ)–ES algorithm, we use the population size of the
parent solutions μ and the population size of the offspring
solutions λ both equal to 50 each generation, and mutation
parameter δ¼ 1. For the basic PSO algorithm, we use an inertia
weight w of 0.8, a cognitive constant ϕ1 of 1.0, and a social
constant ϕ2 for neighborhood interaction of 1.0.

Each algorithm has a population size of 50, and a maximum of
100,000 fitness function evaluations. The granularity (that is,
search space resolution) of each real-world optimization problem
is 0.1, except for P01, P03, P10, P12 and P13, which are imple-
mented with a granularity of 0.01. The results of solving these real-
world optimization problems are given in Table 3. All results are
computed from 25 independent simulations.

According to Table 3, the basic BBO algorithm performs best on
9 problems (P01, P02, P04, P06, P10, P11.2, P11.8, P11.9, and P11.10),
the basic DE algorithm performs best on 6 problems (P07, P11.1,
P11.4, P11.7, P12, and P13), the basic PSO algorithm performs best
on 3 problems (P09, P11.5, and P11.6), and the basic GA algorithm
performs best on problem P05. In addition, we see that for
problems P03 and P08, all five algorithms attain the same
optimum, and for problem P11.3, both the basic DE algorithm
and the BBO algorithm attain the same optimum. These results
indicate that the basic BBO algorithm is the most effective, the
basic DE algorithm is the second most effective, and the basic PSO
algorithm is the third most effective for the real-world bench-
marks that we studied. This is because the basic BBO algorithm
intelligently uses the fitness information of the solutions to
determine the control parameters of each solution (the immigra-
tion rate and emigration rate).

In addition, the average running times of the five basic EAs are
shown in the last row of Table 3. The basic GA algorithm is the
fastest, and the basic BBO algorithm is the second fastest.

Table 4 shows the results of Friedman test comparisons for the
basic GA, BBO, DE, ES and PSO. Friedman test is a nonparametric
statistical method of the parametric two-way analysis of variance,
which is a multiple comparisons test that aims to detect significant

Table 2
Problem set descriptions. More details about these problems can be found in Das and Suganthan (2010).

Problem Dimension Comments

P01 6 Parameter estimation for frequency-modulated (FM) sound waves.
P02 30 Lennard–Jones potential problem.
P03 1 Bifunctional catalyst blend optimal control problem.
P04 1 Optimal control of a nonlinear stirred tank reactor.
P05 30 Tersoff potential function minimization problem (instance 1).
P06 30 Tersoff potential function minimization problem (instance 2).
P07 20 Spread spectrum radar polyphase code design.
P08 7 Transmission network expansion planning problem.
P09 126 Large scale transmission pricing problem.
P10 12 Circular antenna array design problem.
P11.1 120 Dynamic economic dispatch problem (instance 1).
P11.2 216 Dynamic economic dispatch problem (instance 2).
P11.3 6 Static economic load dispatch problem (instance 1).
P11.4 13 Static economic load dispatch problem (instance 2).
P11.5 15 Static economic load dispatch problem (instance 3).
P11.6 40 Static economic load dispatch problem (instance 4).
P11.7 140 Static economic load dispatch problem (instance 5).
P11.8 96 Hydrothermal scheduling problem (instance 1).
P11.9 96 Hydrothermal scheduling problem (instance 2).
P11.10 96 Hydrothermal scheduling problem (instance 3).
P12 26 Spacecraft trajectory optimization problem (Messenger).
P13 22 Spacecraft trajectory optimization problem (Cassini2).



differences between the behaviors of two or more algorithms
(Derrac et al., 2011). We find that for the real-world benchmarks
that we studied, the basic BBO algorithm is the best with an
average rank of 1.98, the basic DE algorithm is the second best
with an average rank of 2.64, and the basic PSO algorithm is the
third best with an average rank of 3.02. Such results are consistent
to those shown in Table 3. We also obtain Friedman statistic of
21.690 and corresponding p-value of 0.00062 based on the Fried-
man rank, where the detail of calculating procedure refers to
literature (Derrac et al., 2011). Because the p-value is smaller
than 0.05 (which is often used as the significance level or critical

p-value), the result strongly indicates the existence of significant
differences among the algorithms considered.

There are several reasons that we do not want to use our
benchmark results to draw conclusions that are too definite. First,
for EAs, different tuning parameter values might result in sig-
nificant changes in their performance. This is mainly due to the
difficulty in determining the optimum tuning parameters, such as
population size and mutation rate. A small change in a tuning
parameter could change the effectiveness of the algorithm. Sec-
ond, if we use more advanced versions of GA, BBO, DE, ES and PSO,
it might be possible to obtain better results than those here (as we
see in the following section). The purpose of our comparisons is
not to tune the control parameters of the algorithms to obtain the
best possible performance, but rather to show that the differences
of EAs result in different optimization performance. Third, we have
discretized each optimization problem in this section and exe-
cuted discrete versions of the EAs. We might obtain different
results if we used continuous optimization problems.

3.2. Comparison of advanced EAs

The next experiment compares the performance of advanced
versions of EAs, which generally provide better performance than
the basic algorithms. These advanced EAs include the stud GA
(SGA) with single-point crossover (a special case of option (B) in
(1a)) (Khatib and Fleming, 1998), oppositional BBO (OBBO)
(Ergezer and Simon, 2011; Ergezer et al., 2009), self-adaptive DE
(SaDE) (Qin et al., 2009; Zhang and Sanderson, 2009; Zhao et al.,
2011), covariance matrix adaptation ES (CMA-ES) (Beyer and
Sendhoff, 2008; Hansen et al., 2003; Hansen et al., 2011), and
standard PSO 2007 (SPSO 07) (Bratton and Kennedy, 2007; Particle
Swarm Central). We select SGA because it is an improvement of
the basic GA and uses the best individual at each generation for
crossover. We select OBBO because it is one of the leading BBO
variants and has obtained better performance than BBO on bench-
mark functions and real-world optimization problems (Ergezer
et al., 2009). We select SaDE because it is one of the most powerful
evolutionary algorithms and has demonstrated excellent perfor-
mance on many problems. We select CMA-ES because it is the
most successful improved variant of ES. Finally, we select SPSO 07

Table 3
Comparison of real-world optimization results for the basic GA, BBO, DE, ES and PSO. Here [a7b] indicates the mean value and corresponding standard deviation of 25
independent simulations. The best result in each row is shown in bold font. In addition, CPU times (min) are shown in the last row of the table.

Prob. GA BBO DE ES PSO

P01 9.19E−0574.24E−06 7.35E−1772.53E−19 4.51E−0872.47E−10 6.17E−0272.53E−03 7.68E−1371.95E−14
P02 −1.64E+0172.35E+00 −2.83E+0171.27E+00 −1.84E+0172.55E+00 −1.84E+0173.42E+00 −9.26E+0071.22E+00
P03 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00
P04 3.04E+0172.01E−01 1.43E+0173.98E−01 7.61E+0179.07E−01 9.45E+0173.74E−01 3.11E+0171.68E−01
P05 −1.37E+0172.10E+00 −9.20E+0075.65E+00 −6.63E+0071.84E+00 −3.69E+0071.87E+00 −1.14E+0172.94E+00
P06 −1.62E+0176.43E−01 −2.92E+0171.86E−01 −2.58E+0173.34E−01 −1.12E+0173.75E−01 −6.73E+0071.32E−01
P07 9.47E−0177.30E−03 9.71E−0173.64E−03 8.27E−0171.60E−03 9.07E−0177.48E−03 9.97E−0177.45E−03
P08 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00
P09 1.59E+0375.78E+00 1.04E+0372.55E+02 4.58E+0373.17E+01 1.89E+0376.91E+00 3.51E+0171.87E+00
P10 −1.18E+0176.63E+00 −2.18E+0171.32E+00 −1.84E+0176.62E+00 −4.25E+0071.17E+00 −1.89E+0173.92E+00
P11.1 5.78E+0571.64E+03 9.25E+0473.74E+03 5.74E+0473.64E+03 8.56E+0574.72E+03 2.36E+0574.42E+03
P11.2 6.24E+0675.57E+05 1.05E+0671.96E+05 2.79E+0671.32E+05 8.65E+0673.19E+05 2.68E+0673.14E+05
P11.3 1.56E+0477.19E+02 1.54E+0472.89E+02 1.54E+0472.89E+02 1.57E+0472.56E+02 1.56E+0472.89E+02
P11.4 7.26E+0473.20E+03 8.89E+0473.11E+03 5.72E+0474.16E+03 9.13E+0472.50E+03 6.87E+0474.95E+03
P11.5 7.05E+0472.24E+02 6.29E+0477.15E+02 7.91E+0473.58E+02 4.09E+0478.41E+02 3.92E+0471.77E+02
P11.6 3.47E+0576.38E+03 3.32E+0574.72E+03 4.16E+0578.47E+03 3.59E+0572.76E+03 1.28E+0577.06E+03
P11.7 4.85E+0677.64E+04 1.91E+0679.28E+04 1.74E+0678.02E+05 7.45E+0673.40E+04 3.24E+0675.79E+04
P11.8 1.88E+0676.35E+04 9.23E+0571.02E+04 1.23E+0676.68E+04 3.59E+0675.81E+04 6.37E+0674.41E+05
P11.9 3.50E+0674013E+04 9.30E+0571.73E+04 1.58E+0677.65E+04 7.14E+0677.63E+04 9.82E+0571.55E+04
P11.10 2.38E+0673.36E+04 9.24E+0571.70E+03 1.75E+0675.50E+04 1.12E+0671.81E+04 8.49E+0672.54E+04
P12 1.58E+0174.85E−01 1.64E+0174.81E+00 9.34E+0071.78E−01 6.88E+0175.32E−01 7.23E+0171.14E+00
P13 8.77E+0076.53E−02 1.43E+0171.78E+00 8.42E+0079.46E−01 9.57E+0075.81E−02 4.12E+0173.62E+00
Time 74.92 83.75 110.39 93.02 97.65

Table 4
Friedman test results for the basic GA, BBO, DE, ES and PSO. Here “Average”
indicates Friedman average rank, and “Statistic” and “p-values” indicates Friedman
statistic and corresponding p-values respectively.

Prob. GA BBO DE ES PSO

P01 4 1 3 5 2
P02 4 1 2.5 2.5 5
P03 3 3 3 3 3
P04 2 1 4 5 3
P05 1 3 4 5 2
P06 3 1 2 4 5
P07 3 2 1 5 4
P08 3 3 3 3 3
P09 3 2 5 4 1
P10 4 1 3 5 2
P11.1 4 2 1 5 3
P11.2 4 1 3 5 2
P11.3 3.5 1.5 1.5 5 3.5
P11.4 3 4 1 5 2
P11.5 3 4 5 2 1
P11.6 3 2 5 4 1
P11.7 4 2 1 5 3
P11.8 3 1 2 4 5
P11.9 4 1 3 5 2
P11.10 4 1 3 2 5
P12 2 3 1 4 5
P13 5 3 1 2 4

Average 3.30 1.98 2.64 4.07 3.02
Statistic 21.690 p-value 0.00062



because it often offers good performance and is a relatively new
PSO variation.

For SGA and OBBO, the parameters used in this subsection are
the same as those in the previous subsection. For SaDE, the control
parameter settings are gradually adapted according to the learning
progress. The scaling factor F is randomly sampled from the
normal distribution N(0.5, 0.3) and the crossover rate CR follows
the normal distribution N(0.5, 0.1). For CMA-ES, the parameter
settings can be shown in Hansen (2006) in detail.

For SPSO 07 we use an inertia weight of 0.8, a cognitive
constant of 0.5, a social constant for swarm interaction of 1.0,
and a social constant for neighborhood interaction of 1.0. Each
algorithm has a population size of 50, and a maximum of 100,000
fitness function evaluations. The results are given in Table 5. All
results are computed from 25 independent simulations.

According to Table 5, SaDE performs best on 6 problems (P07,
P11.1, P11.4, P11.7, P12 and P13), CMA-ES performs best on
5 problems (P02, P10, P11.2, P11.9, and P11.10), OBBO performs
best on 2 problems (P01, P11.6), SPSO 07 performs best on problem
P04, and SGA performs best on problem P11.5. In addition, we see
that for problems P03, P08, P11.3, P11.8, all five algorithms attain
the same optimum; for problem P05, SaDE, CMA-ES and SGA
attain the same optimum; for problem P06, OBBO, SaDE and CMA-
ES attain the same optimum; and for problem P09, both SaDE and
SPSO 07 attain the same optimum. These results show that SaDE
performs similarly to CMA-ES, and is significantly better than
OBBO, SPSO 07 and SGA for the real-world optimization problems.

These conclusions are completely different than those of the
basic EAs in the previous section. This is because the more
advanced versions of GA, BBO, DE, ES and PSO adaptively tune
the control parameters to obtain better results. For example,
control parameter settings in SaDE are gradually adapted accord-
ing to the learning progress. The covariance matrix adaptation in
CMA-ES adapts the covariance matrix of a multivariate normal
search distribution. The results further indicate that although
these EAs are conceptually equivalent under special conditions,
they have different optimization performances because of differ-
ences in implementation details. Note that different comparisons
of advanced versions of GA, BBO, DE, ES and PSO might result in

different performance rankings than we found. There are many
advanced forms of these algorithms, and researchers are continu-
ally proposing new variants in their search for improved
algorithms.

The average running times of the five advanced EAs are shown
in the last row of Table 5. SGA is the fastest algorithm, and OBBO is
the second fastest.

Table 6 shows the results of Friedman test comparisons for SGA,
OBBO, SaDE, CMA-ES and SPSO 07. We find that SaDE is the best
with an average rank of 2.38, CMA-ES is the second best with an
average rank of 2.41, and OBBO is the third best with an average

Table 5
Comparison of real-world optimization results for SGA, OBBO, SaDE, CMA-ES and SPSO 07. Here [a7b] indicates the mean value and corresponding standard deviation. The
best result in each row is shown in bold font. In addition, CPU times (min) are shown in the last row of the table.

Prob. SGA OBBO SaDE CMA-ES SPSO 07

P01 7.44E−1875.11E−19 0.00E+0070.00E+00 1.34E−1973.17E−20 2.94E−1873.18E−19 2.60E−0274.83E−03
P02 −2.62E+0171.75E+00 −2.81E+0171.39E+00 −2.88E+0175.66E+00 −2.90E+0175.32E+00 −1.25E+0171.53E+00
P03 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00 1.15E−0570.00E+00
P04 2.87E+0173.26E−01 2.12E+0178.45E−01 2.03E+0176.72E−01 3.58E+0173.10E−01 1.37E+0174.85E−01
P05 −3.70E+01 79.06E+00 −2.20E+0173.44E+00 −3.70E+0179.06E+00 −3.70E+0179.06E+00 −2.27E+0172.01E+00
P06 −2.91E+0178.64E−01 −2.94E+0175.48E−01 −2.94E+0175.48E−01 −2.94E+0175.48E−01 −2.68E+0176.77E−01
P07 6.89E−0176.25E−03 7.14E−01 72.25E−03 4.93E−0174.87E−03 5.00E−0171.22E−02 5.08E−0177.65E−03
P08 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00 2.20E+0270.00E+00
P09 3.05E+0274.64E+01 1.63E+0379.31E+01 4.60E+0175.64E+00 9.47E+0175.14E+00 4.60E+0175.64E+00
P10 −2.01E+0177.65E+00 −2.35E+0171.54E+00 −2.28E+0179.36E+00 −3.24E+0174.36E+00 −2.09E+0174.18E+00
P11.1 4.79E+0475.87E+02 6.10E+0573.26E+04 1.14E+0472.56E+03 8.14E+0479.35E+02 1.50E+0571.49E+04
P11.2 1.81E+0777.26E+05 3.42E+06 72.94E+05 7.34E+0674.25E+05 9.48E+0576.24E+04 6.10E+0674.27E+05
P11.3 1.54E+0472.86E+02 1.54E+0472.86E+02 1.54E+0472.86E+02 1.54E+0472.86E+02 1.54E+0472.86E+02
P11.4 1.80E+0474.55E+03 1.57E+0474.58E+03 9.21E+0377.36E+02 1.82E+0472.40E+03 2.47E+0478.45E+03
P11.5 3.20E+0477.11E+02 5.85E+0471.23E+02 9.52E+0474.31E+02 3.26E+0474.37E+02 5.48E+0473.22E+02
P11.6 6.12E+0577.49E+03 1.15E+0578.92E+03 2.08E+0575.21E+03 1.21E+0573.92E+03 1.37E+0573.55E+03
P11.7 2.27E+0673.14E+04 1.81E+0677.06E+05 1.14E+0671.39E+04 1.95E+0673.19E+04 2.13E+0671.03E+05
P11.8 9.20E+0570.00E+00 9.20E+0570.00E+00 9.20E+0570.00E+00 9.20E+0570.00E+00 9.20E+0570.00E+00
P11.9 9.39E+0574.33E+04 1.10E+0672.07E+04 5.22E+0671.27E+04 8.58E+0574.66E+04 1.60E+0672.01E+04
P11.10 1.63E+0676.13E+04 9.51E+0576.83E+03 1.21E+0672.95E+04 9.01E+057480E+03 4.58E+0676.21E+04
P12 7.89E+0073.12E−01 1.57E+0178.96E−01 6.74E+0073.17E−01 9.14E+0075.47E−01 1.38E+0176.90E−01
P13 3.21E+0176.79E−02 3.97E+0175.24E−01 6.63E+0078.92E−01 8.65E+0077.61E−01 8.78E+0071.54E−01
Time 73.28 87.34 124.92 135.65 101.20

Table 6
Friedman test results for SGA, OBBO, SaDE, CMA-ES and SPSO 07. Here “Average”
indicates Friedman average rank, and “Statistic” and “p-values” indicates Friedman
statistic and corresponding p-values respectively.

Prob. SGA OBBO SaDE CMA-ES SPSO 07

P01 4 1 2 3 5
P02 4 3 2 1 5
P03 3 3 3 3 3
P04 4 3 2 5 1
P05 2 5 2 2 4
P06 4 2 2 2 5
P07 4 5 1 2 3
P08 3 3 3 3 3
P09 4 5 1.5 3 1.5
P10 5 2 3 1 4
P11.1 2 5 1 3 4
P11.2 5 2 4 1 3
P11.3 3 3 3 3 3
P11.4 3 2 1 4 5
P11.5 1 4 5 2 3
P11.6 5 1 4 2 3
P11.7 5 2 1 3 4
P11.8 3 3 3 3 3
P11.9 5 2 4 1 3
P11.10 4 2 3 1 5
P12 2 5 1 3 4
P13 4 5 1 2 3

Average 3.60 3.09 2.38 2.41 3.52
Statistic 12.064 p-values 0.03148



rank of 3.09. Such results are consistent with those shown in
Table 5. We also obtain a Friedman statistic of 12.064 and
corresponding p-value of 0.03148 based on the Friedman rank,
which is smaller than 0.05. The result indicates the existence of
significant differences among the algorithms considered.

4. Conclusions

In this paper the equivalences and differences of various
popular population-based EAs, including GA, BBO, DE, ES and
PSO, are discussed in detail based on algorithm motivations and
implementation details. Because these algorithms have so many
similarities due to their reliance on organic evolution, it is found
that the basic versions of BBO, DE, ES and PSO are equivalent to the
GA with global uniform recombination (GA/GUR) under certain
conditions. In addition, we compared the basic versions and the
advanced versions of GA, BBO, DE, ES and PSO on a set of real-
world continuous optimization benchmark problems, and empiri-
cal results show that although these algorithms are nearly iden-
tical under special conditions, their optimization performances are
different with the conditions that we tested, because they retain
their own characteristics when implemented in their standard
forms. Although many EAs are equivalent under special conditions,
we conclude that it is necessary to maintain the distinction
between various EAs, because they provide a wealth of optimiza-
tion algorithm development and application opportunities.

EA researchers and practitioners often want to know which
algorithm is best. However, the no free lunch theorem (Wolpert
and Macready, 1997) and the empirical results in this paper show
that this question is moot. These results show that relative
performance is greatly affected by the variant or tuning para-
meters of the EAs. These results also support the general theore-
tical contribution of the paper: the EAs are equivalent under
certain conditions.

For future work there are several important directions. This
paper generalizes the equivalences and differences of several
mainstream EAs. But many other algorithms exist, including
ACO, EDA, ABC, AIS, and their variants, which may provide better
optimization performance for certain classes of problems than the
algorithms in this paper. So it is of interest to discuss and analyze
their equivalences and differences also. The second important
direction for future work is to study theoretical equivalences and
differences of these algorithms based on Markov chains, dynamic
systems, statistical mechanics, or other mathematical models. This
will provide more definite theoretical conclusions. The third
important direction for future work is to develop better state-of-
the-art versions of these EAs by using natural principles. Finally,
we note that our empirical comparisons have been restricted to
optimization problems with continuous domains. It will be inter-
esting and important in future research to compare the perfor-
mance of various EAs on a standard set of combinatorial
benchmarks (for example, traveling salesman problems).
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