




The role of mixed volumes in algebraic geometry originates in the work of Bernstein, 
Kushnirenko, and Khovanskii, who gave a vast generalization of the classical Bézout 
formula for the intersection number of hypersurfaces in the projective space, see [1, 6, 
7]. This beautiful result, which links algebraic geometry and convex geometry through 
toric varieties and sparse polynomial systems, is commonly known as the BKK bound. 
Consider an n-variate Laurent polynomial system f1(χ) = ∙ ∙ ∙ = fn(x) = 0 over an 
algebraically closed field K. The support Ai of fi is the set of exponent vectors 
in Zn of the monomials appearing with a non-zero coefficient in fi. The Newton 
polytope Pi of fi is the convex hull of Ai. The BKK bound states that the number 
of isolated solutions of the system in the algebraic torus (K*)n = (K \ {0})n is at 
most η! V(P1, . . . ,Pn). Systems that attain this bound must satisfy a non-degeneracy 
condition, which means that certain subsystems (predicting solutions “at infinity”) 
have to be inconsistent, see Theorem 5.1. However, the non-degeneracy condition may 
be hard to check. Let A = ∪ni=1Ai be the total support of the system and choose an 
order of its elements, A = {a1,. . ., al}. Then the system can be written in a matrix 
form

where C ∈ Knxl is the matrix of coefficients, A ∈ is the matrix of exponents 
whose columns are a1, . . . ,al, and xa is the transpose of (xa1,. . .,xal), see Section 5. 
The solution set of (1.2) in (K*)n does not change after left multiplication of C by 
a matrix in GLn(K). Such an operation does not preserve the individual supports 
of (1.2) in general, but preserves the total support A, see Remark 5.3. Furthermore, 
let À ∈ Z(n+1)×l be the augmented exponent matrix, obtained by appending a first 
row of 1 to A. Then left multiplication of A by a matrix in GLn+1(Z) with first row 
(1, 0,. . ., 0) corresponds to a monomial change of coordinates of the torus (K*)n and 
a translation of A, hence, does not change the number of solutions of the system in 
(K*)n, see Section 5.

Assume all Newton polytopes of a system (1.2) are equal to some polytope Q. Then 
the number of isolated solutions of (1.2) is at most n!V(Q,. . ., Q) = n! Voln(Q), by 
the BKK bound. In Section 5 we characterize systems that reach (or do not reach) this 
bound. This characterization follows from the geometric criterion of Corollary 3.7, but 
it has a natural interpretation in terms of the coefficient matrix C and the augmented 
exponent matrix A, see Theorem 5.5. In particular, it says that if Q has a proper face 
such that the rank of the corresponding submatrix of C (obtained by selecting the 
columns indexed by points of A which belong to that face) is strictly less than the 
rank of the corresponding submatrix of A, then (1.2) has strictly less than n! Voln(Q) 
isolated solutions in (K*)n. Naturally, this characterization is invariant under the 
actions on C and A described above.

Another consequence of Theorem 5.5 can be thought of as a generalization of 
Cramer’s rule for linear systems. Linear systems occur when each Pi is contained in 
the standard unit simplex Δ in Rn. The BKK bound for systems with all Newton 
polytopes equal to Δ is just 1 = n! Voln(∆) and, by Cramer’s rule, if all maximal 
minors of the coefficient matrix C are non-zero, then the system (1.2) has precisely 
one solution in (K*)n. We generalize this to an arbitrary Newton polytope Q: If



no maximal minor of C vanishes then the system (1.2) has the maximal number 
n! Voln(Q) of isolated solutions in (K*)n, see Corollary 5.7.

Acknowledgement. This project began at the Einstein Workshop on Lattice Poly­
topes at Freie Universitàt Berlin in December 2016. We are grateful to Mónica Blanco, 
Christian Haase, Benjamin Nill, and Francisco Santos for organizing this wonderful 
event and to the Harnack Haus for their hospitality. We thank Gennadiy Averkov and 
Christian Haase for fruitful discussions. Finally, we are thankful to the anonymous 
referee for their comments and suggestions that led to a substantial improvement of 
the exposition.

2. Preliminaries

In this section we recall necessary definitions and results from convex geometry and 
set up notation. In addition, we recall the notion of essential collections of polytopes 
for which we give several equivalent definitions, as well as define mixed polyhedral 
subdivisions and the combinatorial Cayley trick.

Throughout the paper we use [n] to denote the set {1,. . ., n}.

Mixed Volume. For a convex body K in Rn the function hκ : Rn → R, given 
by hκ(u) = max{(u, x) ∣ x ∈ K} is the support function of K. Here {u,x} is the 
standard scalar product in Rn. For every u∈Rn, we write HK(u) to denote the 
supporting hyperplane for K with outer normal u

Throughout the paper we use

to denote the face of K corresponding to the supporting hyperplane HK(u). Since 
HK (u) and Ku are invariant under rescaling u by a non-zero scalar, we often assume 
that when u ≠ 0, it lies in the unit sphere Sn-1 ⊂ Rn . Clearly, for u = 0 we have 
Hκ(u) = Rn and Ku = K.

Let V(K1,. . .,Kn) be the n-dimensional mixed volume of n convex bodies 
K1,. . ., Kn in Rn , see (1.1). We have the following equivalent characterization.

Theorem 2.1. [11, Theorem 5.1.7] Let λ1,. . .,λn be non-negative real numbers.
Then Voln(λ1K1 +∙ ∙ ∙+ λnKn) is a polynomial in λ1,. . .,λn whose coefficient of the
monomial λ1∙ ∙ ∙λn equals V(K1,. . ., Kn).

Essential Collections. Throughout the paper we use “collection” as a synonym for 
“multiset”. Let K1,. . ., Km be convex bodies in Rn, not necessarily distinct. We say 
that a collection {K1,. . ., Km} is essential if for any subset I ⊂ [m] of size at most 
n we have

Note that every sub-collection of an essential collection is essential. Also {K,..., K}, 
where K is repeated m times, is essential if and only if dim K ≥ m.



The following well-known result asserts that essential collections of n convex bodies 
characterize positivity of the mixed volume.

Theorem 2.2. [11, Theorem 5.1.8] Let K1, . . . , Kn be n convex bodies in Rn. The 
following are equivalent:

(1) V(K1,. . . ,Kn) >0;
(2) There exist segments Ei ⊂ Ki for 1 < i < n with linearly independent 

directions;
(3) {K1,. . ., Kn} is essential.

Another useful result is the inductive formula for the mixed volume, see [11, The­
orem 5.1.7, (5.19)]. We present a variation of this formula for polytopes. Recall that 
a polytope P ⊂Rn is the convex hull of finitely many points in Rn. Furthermore, P 
is a lattice polytope if its vertices belong to the integer lattice Zn ⊂ Rn.

Let K be a convex body and Q2, . . . ,Qn be polytopes in Rn. Given u ∈ Sn-1, let 
V (Qu2,. . .,Qun) denote the (n-1) -dimensional mixed volume of Qu2,. . .,Qun translated 
to the orthogonal subspace u┴. Then we have

Note that the above sum is finite, since there are only finitely many u ∈ Sn-1 for 
which {Qu2,. . ., Qun} is essential. Namely, these u are among the outer unit normals 
to the facets of Q2 + ∙ ∙ ∙ + Qn.

Remark 2.3. There is a reformulation of (2.2) that is more suitable for lattice poly­
topes. It is not hard to see that n! Vol(P) is an integer for any lattice polytope. This 
implies that n!V(P1,. . ., Pn) is also an integer for any collection of lattice polytopes 
P1,. . ., Pn. Recall that a vector u∈ Zn is primitive if the greatest common divisor 
of its components is 1. Given lattice polytopes P,Q2, . . . ,Qn we have

where the (n — 1)-dimensional mixed volume is normalized such that the volume of 
the parallelepiped spanned by a lattice basis for u┴ ∩ Zn equals one. Note that the 
terms in the sum are non-negative integers, which, as above, equal zero for all but 
finitely many primitive υ ∈ Zn.

Cayley Polytopes and Combinatorial Cayley Trick. Let P1,. . .,Pk ⊂ Rn be 
convex polytopes. The associated Cayley polytope

is the convex hull in Rn × Rk of the union of the polytopes Pi × {ei} for i = 1,. . ., k, 
where {e1, . . . ,ek) is the standard basis for Rk.

Let (x, y) = (x1,. . ., xn, y1,. . ., yk) be coordinates on Rn × Rk and let π1 : Rn × 
Rk → Rn and π2 Rn x Rk→Rk be the projections defined by π1(x,y) = x and 
π2(x,y) = y, respectively. Note that π2(C(P1,. . .,Pk)) is the (k — 1)-dimensional



simplex Δk-1 defined by ∑ki=1 yi = 1 and yi ≥ 0 for 1 ≤ i ≤ k. Furthermore, for
every y ∈ Δk-1 we have

Note that when all yi > 0 the preimage π2-1(y) ∩ C(P1,. . ., Pk) has dimension equal 
to dim(P1 + ∙ ∙ ∙ + Pk). This implies that

If dim Pi ≥ 1 for i = 1,. . .,k, then the Cayley polytope C(P1,. . ., Pk) ⊂ Rn+k, as 
well as the Minkowski sum P1 + ∙ ∙ ∙ + Pk,, is called fully mixed. The following result 
is an immediate consequence of (2.5).

Lemma 2.4. Consider polytopes P1, . . . ,Pn ⊂ Rn. Then the following conditions are 
equivalent.

(1) The Cayley polytope C(P1,. . ., Pn) is a fully mixed (2n — 1) -dimensional sim­
plex.

(2) P1,..., Pn are segments with linearly independent directions.

Remark 2.5. Let P1,. . ., Pn be polytopes in Rn . From Theorem 2.2 and Lemma 2.4, 
we have V(P1,. . ., Pn) > 0 if and only if C(P1,. . ., Pn) contains a fully mixed (2n—1)- 
dimensional simplex C(E1,. . . ,En).

Let τc be any polyhedral subdivision of C(P1,. . ., Pk) with vertices in ∪ki=1 P1 × {ei}. 
Consider any full-dimensional polytope Cσ of τc . Then it intersects each hyperplane 
yi = 1 along a non-empty face σi × {ei} ⊂ Pi × {ei} for 1 ≤ i ≤ k, and it follows that 
Cσ = C(σ1,. . ., σk). Therefore, τc consists of the set of all the polytopes C(σ1,. . ., σk) 
together with their faces. Taking the image under π1 of π2-1(1/k,. . ., 1/k) ∩C(P1,. . .,Pn) 
we obtain, by (2.4), the Minkowski sum P1 + ∙ ∙ ∙ + Pk (up to dilatation by 1/k) to­
gether with a polyhedral subdivision by polytopes σ1 + ∙ ∙ ∙ + σk, where σi ⊂ Pi for 
1 < i < k. This defines a correspondence from the set of all polyhedral subdivisions 
of C(P1,. . .,Pk) with vertices in Uki=1 Pi×{ei} to a set of polyhedral subdivisions of 
P1 + ∙ ∙ ∙ + Pk which are called mixed. Note that τc is uniquely determined by the
corresponding mixed subdivision of P1 +∙ ∙ ∙+ Pk. This one-to-one correspondence is
commonly called the combinatorial Cayley trick or simply the Cayley trick, see [8], 
[13] or [2], for instance.

A mixed polyhedral subdivision of P1+∙ ∙ ∙+ Pk is called pure if the corresponding
subdivision of C(P1,. . ., Pk) is a triangulation. Let σ1 + ∙ ∙ ∙ + σk be a polytope in 
a pure mixed polyhedral subdivision of P1 + ∙ ∙ ∙ + Pk. Then each σi is a simplex 
since σi × {ei} is a face of the simplex C(σ1,. . .,σk). If furthermore k = n and
dim(σ1+∙ ∙ ∙+ σn) = n, then σ1 + ∙ ∙ ∙ + σn is fully mixed if and only if C(σ1,. . .,σn) is
a fully mixed (2n-l)-dimensional simplex, equivalently, σ1,. . ., σn are segments with 
linearly independent directions (see Lemma 2.4). The following result is well-known, 
see [9, Theorem 2.4] or [4, Theorem 6.7].

Lemma 2.6. For convex polytopes P1,. . . ,Pn in Rn, the quantity n! V(P1,. . ., Pn) 
is equal to the sum of the Euclidean volumes of the fully mixed polytopes in any pure 
mixed polyhedral subdivision of Pχ + ∙ ∙ ∙ + Pn.



3. First criterion

In this section we present our first criterion for strict monotonicity of the mixed 
volume and its corollaries.

Definition 3.1. Let K be a subset of a convex polytope A and let F ⊂ A be a 
facet. We say K touches F when the intersection K ∩ F is non-empty.

We will often make use of the following proposition, which gives a criterion for 
strict monotonicity in a very special case, see [11, page 282].

Proposition 3.2. Let P1,Q1, . . . ,Qn be convex polytopes in Rn and P1 ⊆ Q1. Then 
V(P1,Q2,. . . ,Qn) = V(Q1,Q2,.. .,Qn) if and only if P1 touches every face Qu1 for 
u in the set

The above statement easily follows from (2.2) and the observation hP1(u) ≤ hQ1(u) 
with equality if and only if P1 touches Qu1. See [11, Sec 5.1] for details.

Here is the first criterion for strict monotonicity.

Theorem 3.3. Let P1, . . . ,Pn and Q1, . . . ,Qn be convex polytopes in Rn such that 
Pi ⊆ Qi for every i ∈ [n]. Given u ∈ Sn-1 consider the set

Tu = {i ∈ [η] ∣ Pi touches Qui}.
Then V(P1, . . . , Pn) < V(Q1, . . . , Qn) if and only if there exists u ∈ Sn-1 such that 
the collection {Qui ∣ i ∈ Tu} ∪ {Qi ∣ i ∈ [n] \ Tu} is essential.

Proof. Assume that there exists u ∈ Sn-1 such that the collection {Qui ∣ i ∈ Tu} ∪ 
{Qi ∣ i ∈ [n] \ Tu} is essential. Note that Tu is a proper subset of [n], otherwise 
{Qui ∣ i ∈ Tu} is a collection of n polytopes contained in translates of an (n — 1)- 
dimensional subspace, hence, cannot be essential. Without loss of generality we may 
assume that [n] \Tu = {1,. . . ,k} for some k ≥ 1. In other words, we assume the 
collection

is essential. Since Pi does not touch Qui for 1 ≤ i ≤ k there is a hyperplane H = 
{x ∈ Rn ∣ {x, u} = hQi(u) — ε} which separates Pi and Qui. Let H+ be the half-space 
containing Pi. Then the truncated polytope Qi = Qi ∩ H+ satisfies Pi ⊆ Qi ⊆ Qi. 
We claim that, after a possible renumbering of the first k of the Qi, the collection

is essential. Indeed, since (3.1) is essential, by Theorem 2.2 there exist n segments 
Ei ⊂ Qi with linearly independent directions such that Ei ⊂ Qui for k < i < 
n. Replace the first k of the segments with their projections onto Qu1, . . . ,Quk . By 
Lemma 3.4 below, after a possible renumbering of the first k segments, we obtain 
n — 1 segments E2, . . . ,En with linearly independent directions such that Ei ⊂ Qui 
for 2 ≤ i ≤ k and Ei ⊂ Qui for k < i ≤ n. By Theorem 2.2, the collection (3.2) is 
essential.

Now, by Proposition 3.2 and since P1 does not touch Qu1, we obtain



Finally, by monotonicity we have V(P1,. . .,Pn) < V(P1,Q2, . . . ,Qk,Qk+1, . . . ,Qn) 
and V(Q1,Q2,. . .,Qk,Qk+1,. . .,Qn) ≤ V(Q1, . . . ,Qn). Therefore,

Conversely, assume V(P1, . . . ,Pn) < V(Q1,. . . ,Qn). Then, by monotonicity, for 
some 1 ≤ k ≤ n we have

By Proposition 3.2 there exists u ∈ Sn-1 such that {P1u, . . . ,Pk-1,Quk+1, . . ., Qun} is 
essential and k ∉ Tu. By choosing a segment in Qk not parallel to the orthogonal 
hyperplane u┴ (which exists since Pk ⊂ Qk, but Pk does not touch Quk) we see that

is essential. It remains to notice that Pui ⊆ Qui for i ∈ Tu and, hence, the collection 
{Qui ∣ i ∈ Tu} ∪ {Qi ∣ i ∈ [n] \ Tu} is essential as well. □

Lemma 3.4. Let {v1, . . . ,vk, vk+1, . . . , υn} be a basis for Rn where vk+1, . . . ,vn be­
long to a hyperplane H ⊂ Rn. Let π denote the orthogonal projection onto H. Then, 
after a possible renumbering of the first k vectors, the set {π(v2),. . . , π(υk)vk+1,. . .,v 
is a basis for H.

Proof. Clearly, the set {π(υ1), π(v2), . . . , π(vk),vk+1, . . . , vn} spans H. Starting with 
the linearly independent set {vk+1, . . . ,vn} we can extend it to a basis for H by 
appending k — 1 vectors from {π(v1),..., π(vk)}. □

Remark 3.5. Note that if Q1, . . . ,Qn are n-dimensional then {Qui ∣ i ∈ Tu} ∪ 
{Qi ∣ i ∈ [n] \ Tu} is essential if and only if {Qui ∣ i ∈ Tu} is essential. (This can 
be readily seen from (2.1).) In this case we can simplify the criterion of Theorem 3.3 
as follows: V(P1, . . . , Pn) < V(Q1, . . . , Qn) if and only if there exists u ∈ Sn-1 such 
that the collection {Qui ∣ i ∈ Tu} is essential.

Remark 3.6. After the initial submission of our paper to arxiv.org we were informed 
by Maurice Rojas that a similar criterion for rational polytopes appeared in his paper 
[10, Corollary 9]. The proof of his criterion is algebraic and is based on the BKK 
bound. We are thankful to Maurice Rojas for pointing that out.

A particular instance of Theorem 3.3, especially important for applications to poly­
nomial systems, is the case when P1, . . . ,Pn are arbitrary polytopes and Q1, . . . ,Qn 
are equal to the same polytope Q. We will assume that Q is n-dimensional, other­
wise {P1, . . . , Pn} is not essential and, hence, both V(P1,. . ., Pn) and V(Q, . . . , Q) = 
Voln(Q) are zero. Then the strict monotonicity has the following simple geometric 
interpretation.

Corollary 3.7. Let P1, . . . ,Pn be polytopes in Rn contained in an n-dimensional 
polytope Q. Then V(P1, . . . , Pn) < Voln(Q) if and only if there is a proper face of Q 
of dimension t which is touched by at most t of the polytopes P1, . . . ,Pn.

Proof. By Theorem 3.3 and Remark 3.5, we have V(P1, . . . ,Pn) < Voln(Q) if and 
only if there exists u ∈ Sn-l such that the collection {Qu, . . . ,Qu}, where Qu is 
repeated ∣Tu∣ times, is essential. The last condition is equivalent to dimQu ≥ ∣Tu∣.
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where the last inequality follows from the fact that {P1v, . . . , Pvi-l, Qυ, . . ., Qυ} is es­
sential and, hence, (n - 1)!V(P1v, . . .,  Pvi-1 Qv, . . . , Qv) is a positive integer. Summing 
up these inequalities for 1 ≤ i ≤ m we produce

Now the required inequality follows by the monotonicity of the mixed volume.
□

Note that the case of m = 1 and Zχ = 1 recovers an instance of Corollary 3.7 
with t = n — 1. In this case the condition that {Pu1, . . . , Pum-1} is essential is 
void. We remark that in general this condition cannot be removed. Indeed, let 
Q = conv{0, e1, . . . , en} be the standard n-simplex, Qu one of its facets, and Pi ⊂ Q 
for 1 ≤ i ≤ n. Then if P1, . . . , Pm equal the vertex of Q not contained in Qu, then

regardless of m. It would be interesting to obtain a more general statement than 
Proposition 3.11 which deals with smaller dimensional faces, rather than facets.

Remark 3.12. Given a polytope Q, Corollary 3.7 provides a characterization of 
collections Pχ,..., Pn such that Pi ⊂ Q for 1 ≤ i ≤ n and V(P1, . . . , Pn) = Voln(Q). 
Clearly, when Q and the Pi are lattice polytopes there are only finitely many such 
collections. Describing them explicitly is a hard combinatorial problem, in general. In 
the case when Q is the standard simplex we have Voln(Q) = l∕n!. On the other hand, 
since n!V(P1, . . . , Pn) is an integer when the Pi are lattice polytopes, Theorem 2.2 
implies the following: For lattice polytopes P1, . . . , Pn contained in the standard sim­
plex Q we have V(P1, . . ., Pn) = Voln(Q) if and only if {P1, . . . , Pn} is essential. This 
is a particular case of a much deeper result by Esterov and Gusev, who described all 
collections of lattice polytopes {P1, . . . ,Pn} satisfying V(P1, . . ., Pn) = l∕n!, see [5].

4. Second Criterion

In this section, we obtain another criterion for the strict monotonicity property 
(Theorem 4.4) based on mixed polyhedral subdivisions and the combinatorial Cayley 
trick. We first present a result about faces of Cayley polytopes which will be use­
ful. Consider convex polytopes P1, . . . ,Pk ⊂ R". Recall that the Cayley polytope 
C(P1, . . . , Pk) is the convex hull in Rn+k of the union of the polytopes Pi × {ei} for 
1 ≤ i ≤ k, where {e1, . . . ,ek} is the standard basis of Rk (see Section 2).

Lemma 4.1. Let (u, v) be a vector in Rn × Rk with v = (v1, . . . , vk). Then



Moreover, C(P1, . . ., Pk)(u,v) is the convex hull in RnxRk of the union of the polytopes 
Pui × {ei} for i in the set

Proof. Let (x, y) ∈ Rn × Rk be a point of C(P1, . . . ,Pk). There exist αi ∈ R>0 and 
points Xi ∈ Pi for i ∈ [k] such that (x,y) = ∑ki=1 αi(xi,ei) and ∑ki=1αi = 1. Then 
{(u, v), (x, y)) = ∑ki=1 αi({u,xi}+vi) is bounded above by max{hpi(u) + vi ∣ i ∈ [k]}.
Moreover, this bound is attained if and only if {u, xi} + vi = max{hpi(u) +vi ∣ i ∈ [k]} 
for all i such that αi > 0. Since {u,xi}+vi ≤ hPi(u)+vi ≤ max{hpi(u) + vi ∣ i ∈ [k]}, 
the latter condition is equivalent to Xi ∈ Pui with i ∈ I.

Remark 4.2. The polytope C(P1,. . ., Pk) is contained in the hyperplane {x, y) ∈ 
Rn ×Rk ∣ ∑ki=1 yi = 1} . Therefore, C(P1,..., Pk)(u,v) = C(P1, ...,Pk) for u = 0 and 
v = (λ,..., λ) for any non-zero λ ∈ R. Moreover, if dim(P1 + ∙ ∙ ∙ + Pk) = n, then 
C(P1, . . . , Pk)(u,v) = C(P1, . . . , Pk) only if u = 0 and v = (λ, . . . ,λ) with λ ∈ R, 
by (2.5).

Before stating the main result of this section, we need a technical lemma about 
regular polyhedral subdivisions (see, for example, [8] for a reference on this topic). 
Let A be a finite set in Rn and let A denote the convex hull of A. A polyhedral 
subdivision τ of A with vertices in A is called regular if there exists a map h : 
A → R such that τ is obtained by projecting the lower faces of the convex-hull A 
of {(a, h(a)) ∣ a ∈ A} via the projection Rn+l → Rn forgetting the last coordinates. 
Here a lower face of A is a face of a facet of A with an inward normal vector with 
positive last coordinate. Intuitively, this is a face that can be seen from below in the 
direction of en+1 .The union of the lower faces of A is the graph of a convex piecewise 
linear map h : A → R whose domains of linearity are the polytopes of τ. We say that 
h (respectively h) certifies the regularity of τ and that τ is induced by h (respectively 
h). Note that for h generic enough any n + 2 points of {(a, h(a)) ∣ a ∈ A} are affinely 
independent (i.e. do not lie on a hyperplane), hence the induced subdivision τ is a 
triangulation.

Lemma 4.3. Let A1,A2 be finite subsets of Rn and Α1, A2 their convex hulls.
(1) If A1 ⊂ A2 and if τ1 is a regular polyhedral subdivision (respectively a regular 

triangulation) of A1 with vertices in A1, then there exists a regular polyhedral 
subdivision (respectively a regular triangulation) τ2 of A2 with vertices in A2 
such that τ1 ⊂ T2.

(2) Assume that the relative interiors of A1 and A2 do not intersect. Let A = 
A1 ∪ A2 and let A denote the convex hull of A. If τ1 is a regular polyhedral 
subdivision (respectively a regular triangulation) of A1 with vertices in A1 
and T2 is a regular polyhedral subdivision (respectively a regular triangulation) 
of A2 with vertices in A2, then there exists a regular polyhedral subdivision 
(respectively a regular triangulation) τ of A with vertices in A such that 
τ1 ∪τ2 τ.

Proof. (1) Consider a map H : A2 → R which vanishes on A∣ and takes positive 
values on A2\A1. Then, this map certifies the regularity of a polyhedral subdivision t2



of A2 with vertices in A2 and which contains A1. Now consider a regular polyhedral 
subdivision t1 of A1 with vertices in A1 whose regularity is certified by h1 : A1 →R. 
Then, for ∈ > 0 small enough, the function h2 : A2 → R defined by h2(a) = 
H(a) + ∈h1(a) if a ∈ A1 and by h2(a) = H(a) otherwise certifies a regular polyhedral 
subdivision τ2 of A2 with vertices in A2 such that τ1 ⊂ T2. Finally, if τ1 is a 
triangulation and if the values of H on A2 \ A1 are generic enough, then τ2 is a 
triangulation.

(2) Consider a regular polyhedral subdivision (respectively a regular triangulation) 
ti of Ai with vertices in Ai for i = 1,2. Let hi : Ai → R be a function certifying 
the regularity of ti . Since the relative interiors of the convex sets A1 and A2 do not 
intersect, there is a hyperplane which separates A1 and A2. This means that there 
exist u ∈ Rn and c ∈ R such that A1 ⊂ B_ = {x ∈ Rn ∣ {u, x} ≤ c}, A2 ⊂ B+ = 
{x ∈ Rn ∣ (u, x) > c} and A1, A2 are not both contained in the separating hyperplane 
B+∩B_. Let H : A → R be a piecewise linear map which vanishes on P_ and positive 
on B+\ B-. For ∈ > 0 consider h : A → R defined by h(a) = H(a)+∈hi(a) if a ∈ Ai. 
If e is small enough and generic, the map h certifies the regularity of a polyhedral 
subdivision (respectively a regular triangulation) τ of A such that τ1 ∪ τ2 ⊂ τ. □

Recall that for convex polytopes Q1, . . . ,Qn in Rn, we have V(Q1, . . . ,Qn) > 0 
if and only if the collection {Q1, . . . ,Qn} is essential, which is equivalent to the 
existence of a fully mixed (2n — 1)-dimensional simplex C(E1, . . . , En) contained in 
C(Q1, . . . , Qn), see Theorem 2.2 and Remark 2.5. We now describe a generalization 
of these equivalences. Consider convex polytopes Pi ⊆ Qi ⊂Rn for 1 < i < n. For 
any non-zero vector u ∈ Rn define convex polytopes

Intuitively, Bi,u is the part of Qi lying on top of Pi if one looks in the direction of 
the vector u.

Theorem 4.4. Let P1, . . . ,Pn and Q1, . . . ,Qn be convex polytopes in Rn such that 
Pi ⊆ Qi for every i ∈ [n]. The following conditions are equivalent:

(1) V(P1, . . . ,Pn) <V(Q1, . . . ,Qn),
(2) there exists a fully mixed (2n - 1)-dimensional simplex C(E1,. . ., En) con­

tained in the relative closure of C(Q1, . . . ,Qn) \C(P1,. . . , Pn),
(3) there exists a non-zero vector u ∈ Rn such that the collection {B1,u,. . . , Bn,u} 

is essential.

Proof. First we note that if dim(Q1 + ∙ ∙ ∙ + Qn) < n, then none of the conditions 
(1), (2) and (3) holds. Indeed, if dim(Q1 + ∙ ∙ ∙ + Qn) < n, then V(P1,. . .,Pn) = 
V(Q1,. . .,Qn) = 0. Moreover, dimC(Q1, . . ., Qn) < 2n — 1 by (2.5) and, thus, 
C(Q1,. . ., Qn) cannot contain a (2n - 1)-dimensional simplex. Finally, (3) does not 
hold since otherwise Q1 + ∙ ∙ ∙ + Qn would contain a fully mixed polytope which has 
dimension n. When (P1,. . ., Pn) = (Q1,. . ., Qn), we also conclude that none of the 
conditions (1), (2) and (3) holds for obvious reasons.

Assume now that (P1,. . ., Pn) ≠ (Q1, . . ., Qn) and dim(Q1 + ∙ ∙ ∙ + Qn) = n. Write 
(0,1) for the vector (u,v) with u = (0,. . .,0) ∈ Rn and v = (1,. . .,1) ∈ Rn. Then 
C(Q1,. . ., Qn) has dimension 2n — 1 and its affine span is a hyperplane orthogonal



to (0,1), see Remark 4.2. Consider a fully mixed simplex Ce = C(E1, . . .,En) ⊂ 
C(Q1, . . . , Qn). Here E1, . . . ,En are segments with linearly independent directions 
contained in Q1, . . . ,Qn, respectively, and Ce is the convex hull of the union ∪ni=1Ei × 
{ei}, by Lemma 2.4. Since C(P1, . . . ,Pn) and Ce are convex sets contained in a 
hyperplane orthogonal to (0,1), the simplex Ce is contained in the relative closure 
of C(Q1, . . . , Qn) \C(P1, . . ., Pn) if and only if there is a vector (u, v) ∈Rn x Rn such 
that (u, ν) and (0,1) are not collinear and

Note that the hyperplane defined by {u, x} + {v,y} = hc(P1, . . . ,pn)(u,v) is a sup­
porting hyperplane of C(P1, . . . , Pn) and (4.1) means that this hyperplane separates 
C(P1, . . . , Pn) and Ce. Recall that dim CE = 2n-1 and thus Ce cannot be contained 
in this supporting hyperplane since otherwise it would be contained in the intersection 
of two distinct hyperplanes. Since Ce is the convex-hull of the union of the polytopes 
Ei × {ei} for 1 ≤ i ≤ n, we see that (4.1) is equivalent to

By Lemma 4.1, we have hC(P1,. . .,pn)(u, v) = max{hpi(u) +vi∣l≤i≤ n}. For u = 0 
equation (4.2) implies v1 = ∙ ∙ ∙ = vn, which contradicts the fact that (u, v) and (0,1) 
are not collinear (note that hPi(u) = 0 when u = 0). Therefore, if (4.2) holds, then 
u ≠ 0. Moreover, we get Ei ⊂ Bi,u for 1 ≤ i ≤ n since hc(p1,...,pn)(u, v)-vi > hPi(u). 
Consequently, (4.2) implies that {B1,u, . . . ,Bn,u} is essential, as the Ei have linearly 
independent directions (see Theorem 2.2.) We have proved the implication (2) => (3).

Assume (3) holds and let u ∈ Rn be a non-zero vector such that {B1,u, . . . ,Bn,u} 
is essential. Let Ei ⊂ Bi,u, for 1 ≤ i ≤ n, be segments with linearly independent 
directions and choose v = (v1, . . . , vn) ∈ Rn such that hP1 (u) +v1 = ∙ ∙ ∙ = hpn(u)+vn. 
Then, by Lemma 4.1, hc(p1,...Pn)(u,υ) = hpι(u) +vi for 1 ≤ i ≤ n and (4.2) follows 
from Ei ⊂ Bi,u, 1 <i <n. Since (4.2) is equivalent to (2), we conclude that (3) => 
(2)∙

Now assume that (2) holds. Then, there exists a fully mixed (2n — 1)-dimensional 
simplex CE satisfying (4.1). It follows then from Lemma 4.3 that there exists a 
triangulation of C(Q1, . . . ,Qn) with vertices in Uni=1Qi x{ei} which contains CE 
and restricts to a triangulation of C(P1, . . . , Pn). Indeed, we may apply part (2) 
of Lemma 4.3 to the set of vertices A1 of Ce and to the set of vertices A2 of 
C(P1,. . . ,Pn). Taking for τ1 the trivial triangulation of Ce and for τ2 any regular 
triangulation induced by a generic function h2, we get the existence of a regular trian­
gulation of the convex hull of A = A1 ∪A2 which contains Ce and t2 . Applying part 
(1) of Lemma 4.3 to A ⊂ A∪V where V is the set of vertices of C,(Q1, . . . ,Qn) gives 
a regular triangulation of C(Q1, . . . ,Qn) as required. By the combinatorial Cayley 
trick, this corresponds to a pure mixed subdivision tq of Q1 + ∙ ∙ ∙ + Qn restricting to
a pure mixed subdivision τp of P1+∙∙∙+Pn and a fully mixed polytope E contained
in tq \ TP. Therefore, V(P1,. . . ,Pn) < V(Q1, . . . ,Qn) by Lemma 2.6. This proves 
the implication (2) => (1).

Assume now that V(P1, . . . ,Pn) < V(Q1, . . . ,Qn)∙ Then, as in the proof of Theo­
rem 3.3, there exist u ∈ Sn-1 and 1 ≤ k ≤ n such that {Pu1, . . . , Puk-1, Quk+1, . . ., Qun} 
is essential and Pk does not touch Quk. By choosing a segment in Bk,u not parallel



to the hyperplane u┴, which exists since Pk does not touch Quk, we conclude that 
{P1u, . . . , Puk-1, Bk,u, Quk+1, . . . , Qun} is essential as well. It remains to note that Piu 
and are contained in Bi,u for i ≠ k, 1 ≤ i ≤ n. We have proved the implication 
(1)=>(2).

Remark 4.5. Note that if Pi touches Qui then Bi,u = Qui and if Pi does not touch 
Qui then dim Bi,u = dimQi. Therefore, the condition (3) in the above theorem is 
equivalent to the condition in Theorem 3.3.

5. Polynomial systems

Consider a finite set A = {a1, . . . , al} ⊂ Zn where l = ∣A∣. Let (a1j,. . ., anj) be 
the coordinates of aj for 1 ≤ j ≤ l Consider a Laurent polynomial system with 
coefficients in an algebraically closed field K

where fi(x) = ∑lj=1 cijxaj and xaj stands for the monomial x1a1j ∙ ∙ ∙ xnanj . We assume 
that no polynomial fi is the zero polynomial. Call Ai = {aj ∈ A ∣ cij ≠ 0} the 
individual support of fi. We may assume that for any 1 ≤ j ≤ l there exists i such 
that cij ≠ 0. Then A = ∪ni=1Ai is called the total support of the system (5.1). The 
Newton polytope Pi of fi is the convex hull of Ai and the Newton polytope Q of the 
system (5.1) is the convex hull of A.

The matrices

are the coefficient and exponent matrices of the system, respectively.
Choose u ∈ and let Aui = Pui ∩Ai. Then the restricted system corresponding

to u is the system

where fui(x) = ∑lj=1 cuijxaj with cuij = cij if aj ∈Aui and cuij = 0, otherwise. Finally, 
a system (5.1) is called non-degenerate if for every u ∈ Sn-1 the corresponding 
restricted system is inconsistent.

The relation between mixed volumes and polynomial systems originates in the 
following fundamental result, known as the BKK bound, discovered by Bernstein, 
Kushnirenko, and Khovanskii, see [1, 6, 7].

Theorem 5.1. The system (5.1) has at most n!V(P1, . . . ,Pn) isolated solutions in 
(K*)n counted with multiplicity. Moreover, it has precisely n! V(P1, . . . ,Pn) solutions 
in (K*)n counted with multiplicity if and only if it is non-degenerate.

Remark 5.2. Systems with fixed individual supports and generic coefficients are 
non-degenerate. Moreover, the non-degeneracy condition is not needed if one passes 
to the toric compactification XP associated with the polytope P = P1 + ∙ ∙ ∙ + Pn. 
Namely, a system has at most η! V(P1,. . .,Pn) isolated solutions in XP counted with 
multiplicity, and if it has a finite number of solutions in XP then this number equals 
η! V(P1, . . . ,Pn) counted with multiplicity.



There are two operations on (5.1) that preserve its number of solutions in the torus 
(K*)n: Left multiplication of C by an element of GLn(K) and left multiplication of 
the augmented exponent matrix

by a matrix in GLn+1(Z) whose first row is (1,0,..., 0). The first operation obvi­
ously produces an equivalent system. The second operation amounts to applying an 
invertible affine transformation with integer coefficients a → b + l(a) on the total 
support A C Zn. Here b ∈ Zn is a translation vector and l : Rn → Rn is a linear 
map whose matrix with respect to the standard basis belongs to GLn (Z). A basic 
result of toric geometry says that there is a monomial change of coordinates x → y 
of the torus (K*)n so that xa = yl(a) for any a ∈ (K*)n. Moreover, translating A by 
b amounts to multiplying each equation of (5.1) by the monomial xb. Thus starting 
from (5.1), we get a system with same coefficient matrix, total support b + l(A), and 
the same number of solutions in (K*)n .

Remark 5.3. Consider a non-degenerate system with coefficient matrix C. While left 
multiplication of C by an invertible matrix does not preserve the individual supports 
and Newton polytopes in general, it preserves the total support of the system. Indeed, 
since A is the total support of the system, no column of C is zero, and thus no column 
of C can become zero after left multiplication by an invertible matrix.

Example 5.4. Assume that (5.1) has precisely n! Voln(Q) solutions in (K*)n 
counted with multiplicity and C has a non-zero maximal minor. Up to renumbering, 
we may assume that this minor is given by the first n columns of C. Left multiplica­
tion of (5.1) by the inverse of the corresponding submatrix of C gives an equivalent 
system with invidual supports A'i ⊂ Ai" = (A \{a1,. . . , an}) ∪ {ai} for 1 < i < n. 
Thus, this new system has precisely n! Voln(Q) solutions in (K*)n counted with 
multiplicity. By Theorem 5.1 this number of solutions is at most n! V(P'1,..., P'n), 
where Pi' is the convex hull of A'i. On the other hand, by monotonicity of the 
mixed volume we have V(P'1, . . ., P'n) ≤ V(P1", . . . , Pn") < Voln(Q). We conclude that 
V(P'1,..., P'n) = V(P"1,..., P"n) = Voln(Q). The second equality is also a consequence 
of Corollary 3.7, see Example 3.10.

Theorem 5.5. Assume dimQ = n. If a system (5.1) has n!Voln(Q) isolated so­
lutions in (K*)n counted with multiplicity, then for any proper face F of Q the 
submatrix CF ∈ Kn x∣F∣ of C with columns indexed by F = {j ∈ [l], aj ∈ F ∩ A} 
satisfies

or equivalently,

Conversely, if (5.2) is satisfied for all proper faces F of Q and if the system (5.1) 
is non-degenerate, then it has precisely n! Voln(Q) isolated solutions in (K*)n counted 
with multiplicity.



Proof. First, note that for any proper face F of Q we have rank AF = dim F + 1. 
Consider a proper face F of Q of codimension s ≥ 1 and assume that rank CF ≤ 
dim F = n — s. Then there exist an invertible matrix L and I C [n] of size ∣I∣ = s 
such that the submatrix of C' = LC with rows indexed by I and columns indexed by 
F is the zero matrix. The matrix C' is the coefficient matrix of an equivalent system 
with the same total support, see Remark 5.3. Denote by P'1, . . . ,P'n the individual 
Newton polytopes of this equivalent system. Then the polytopes Pi' for i ∈ I do 
not touch the face F of Q, as I corresponds to the zero submatrix of C'. Since 
dimF = n — s and ∣I∣ = s, it follows then from Corollary 3.7 that V(P'1, . . . , P'n) < 
Voln(Q). Theorem 5.1 applied to the system with coefficient matrix C' gives that it 
has at most n!V(P'1, . . . ,P'n) < n! Voln(Q) isolated solutions in (K*)n counted with 
multiplicity. The same conclusion holds for the equivalent system (5.1). Therefore, if 
(5.1) has n! Voln(Q) isolated solutions in (K*)n counted with multiplicity, then (5.2) 
is satisfied for all proper faces F of Q.

Conversely, assume that (5.1) is non-degenerate and that (5.2) is satisfied for all 
proper faces F of Q. Then (5.1) has n! V(P1, . . . ,Pn) isolated solutions in (K*)n 
counted with multiplicity by Theorem 5.1. Suppose that V(P1, . . . , Pn) < Voln(Q). 
Then by Corollary 3.7 there exists a proper face F of Q of codimension s ≥ 1 and 
I ⊂ [n] of size ∣I∣ = s such that the polytopes Pi for i ∈ I do not touch F. But then 
rank CF < n—s = dim F, which gives a contradiction. Thus V(P1, . . . , Pn) = Voln(Q) 
and (5.2) has n! Voln(Q) isolated solutions in (K*)n counted with multiplicity. □

As an immediate consequence of Theorem 5.5 from which we keep the notation, 
we get the following corollary.

Corollary 5.6. Consider any Laurent polynomial system (5.1) with dim Q = n. If 
there exists a proper face F of Q such that rank CF < rank ÂF then the system has 
either infinitely many solutions or strictly less than n!Voln(Q) solutions in (K*)n 
counted with multiplicity.

Proof. Assume the existence of a proper face F of Q such that rank CF < rank AF. 
If (5.1) has precisely n!Voln(Q) solutions in (K*)n counted with multiplicity, then 
it is non-degenerate by Theorem 5.1 and thus rank CF ≥ rank AF by Theorem 5.5, 
a contradiction. □

A very nice consequence of Theorem 5.5 is the following result, which can be 
considered as a generalization of Cramer’s rule to polynomial systems.

Corollary 5.7. Assume that dim Q = n and that no maximal minor of C vanishes. 
Then the system (5.1) has the maximal number of n! Voln(Q) isolated solutions in 
(K*)n counted with multiplicity.

Proof. Note that l ≥ n + 1 since dim Q = n (recall that l is the number of columns 
of C'). Thus a maximal minor of C has size n and the fact that no maximal minor 
of C vanishes implies that for any J ⊂ [l] the submatrix of C with rows indexed by 
[n] and columns indexed by J has maximal rank. This rank is equal to n if ∣J∣ ≥ n 
or to ∣J∣ if ∣J∣ < n. Since ∣F∣ ≥ dim F + 1 = rank AF for any face F of Q, we 
get that rank CF ≥ rank AF for any proper face F of Q. Moreover, no restricted 
system is consistent for otherwise this would give a non-zero vector in the kernel of the



corresponding submatrix of C. Thus (5.1) is non-degenerate and the result follows 
from Theorem 5.5. □

When the polytope Q = conv{0, e1, . . . , en} is the standard simplex, the system 
(5.1) is linear and it has precisely n! Voln(Q) = 1 solution in (K*)n if and only if 
no maximal minor of C ∈ Kn×(n+1) vanishes, in accordance with Cramer’s rule for 
linear systems.

6. Examples

We conclude with a few examples illustrating the results of the previous section.
Example 6.1. Let A1 = {(0,0),(1,2),(2,l)} and A2 = {(2,0), (0,1), (1,2)} be 
individual supports, and Λ = A1 ∪ A2 the total support of a system. The Newton 
polytopes Pχ = conv A1, P2 = conv A2, and Q = conv A are depicted in Figure 1, 
where the vertices of P1 and P2 are labeled by {1,2,3} and {4,5,2}, respectively. 
We use the labeling in Figure 1 to order the columns of the augmented matrix

Figure 1. The mixed volume of the two triangles equals the volume 
of the pentagon.

A general system with these supports has the following coefficient matrix

where cij ∈ K are non-zero. One can see that each edge of Q is touched by both 
P1 and P2, hence, V(P1,P2) = V0l2(Q), see Example 3.8. Also one can check that 
the rank conditions rank CF ≥ rank ÀF are satisfied for every face F of Q. (In fact, 
both ranks equal 2 when F is an edge and 1 when F is a vertex.)
Example 6.2. Now we modify the previous example slightly, keeping A1 the same 
and changing one of the points in A2, so A2 = {(2,0), (0,1), (1,1)}, see Figure 2. 
The augmented exponent matrix and the coefficient matrix are as follows.



Figure 2. The mixed volume of the two triangles is less than the 
volume of the pentagon.

This time the edge of Q labeled by F = {2,3} is not touched by P2 and, hence, 
V(P1,P2) < V0l2(Q). Also, the rank condition for F = {2, 3} fails: rank CF = 1 and 
rank AF = 2.

Example 6.3. Consider a system defined by the following augmented exponent ma­
trix and coefficient matrix

Here P1 = P2 = P3 = Q which is a prism depicted in Figure 3. We label the 
vertices of Q using the order of the columns in A. The submatrix of C corresponding

Figure 3. The Newton polytope of the system in Example 6.3.

to the edge F labeled {5,6} has rank 1 which is less than dim F + 1. Therefore the 
associated system has less than 3!Vol3(Q) = 3 isolated solutions in (C*)3. (In fact, 
it has two solutions.) In particular, this is a degenerate system.

In the following very particular situation, the rank condition (5.2) in Theorem 5.5 
implies the non-degeneracy of the system.



Remark 6.4. Assume that P1 = P2 = ∙ ∙ ∙  = Pn = Q with dim Q = n and any 
proper face F of Q is a simplex which intersects Λ only at its vertices. Assume 
furthermore that rank CF ≥ rank ÂF for any proper face F of Q. Then (5.1) is 
non-degenerate and thus has precisely n! Voln(Q) solutions in (K*)n counted with 
multiplicity according to Theorem 5.1. Indeed, if F is a proper face of Q, then the 
corresponding restricted system has total support F ∩ Λ. If this restricted system is 
consistent, then there is a non-zero vector in the kernel of CF and thus rank CF <∣F ∩ A∣ = 1 + dim F which gives a contradiction.
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