A Rapid LC-MS/MS Method for Quantification of CSUOH0901, a Novel Antitumor Agent, in Rat Plasma

Ramakrishna R. Voggu
Ravali Alagandula
Xiang Zhou
Bin Su Ph.D.
Bo Zhong

See next page for additional authors

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Analytical Chemistry Commons

How does access to this work benefit you? Let us know!

Publisher’s Statement
This is the accepted version of the following article: Voggu, R. R.; Alagandula, R.; Zhou, X.; Su, B.; Zhong, B.; Guo, B. A rapid LC-MS/MS method for quantification of CSUOH0901, a novel antitumor agent, in rat plasma. Biomedical Chromatography 2015, 29, 797-802., which has been published in final form at https://onlinelibrary.wiley.com/doi/full/10.1002/bmc.3365
Authors
Ramakrishna R. Voggu, Ravali Alagandula, Xiang Zhou, Bin Su Ph.D., Bo Zhong, and Baochuan Guo
A rapid LC-MS/MS method for quantification of CSUOH0901, a novel antitumor agent, in rat plasma

Ramakrishna R. Voggu, Raval Alagandula, Xiang Zhou, Bin Su, Bo Zhong and Baochuan Guo*

ABSTRACT: CSUOH0901, a novel anticancer derivative of nimesulide, exhibits very promising anticancer activities in various cancer cell lines. In order to support further pharmacological and toxicological studies of this promising anticancer drug candidate, an LC-MS/MS method was developed and validated in accordance with the US Food and Drug Administration guidelines. The drug molecules were extracted from plasma samples by protein precipitation and then analyzed with LC-ESI-MS/MS. An excellent analyte separation was achieved using a phenomenex C18 column with a mobile phase of 90% methanol and 5 mM of ammonium formate. The validated linear dynamic range was between 0.5 and 100 ng/mL and the achieved correlation coefficient (r²) was >0.9996. The results of inter- and intra-day precision and accuracy were satisfactory, that is, <12% for accuracy and within ±5% for precision at a low and high quality control concentrations, respectively. In addition, the analyte and internal standard (JCC76) were found to be stable under the storage conditions at −20°C for about 2 months. Hence, the acquired results proved that the LC-ESI-MS/MS method developed is precise, accurate and selective for the quantification of CSUOH0901 in plasma, and can be used for pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: CSUOH0901; nimesulide; LC-MS/MS; protein precipitation; rat plasma

Introduction

CSUOH0901 (benzo [1,3] dioxole-5-carboxylic acid [3-(2,5-dimethylbenzyl)oxy]-4-(methanesulfonylmethylamino)-phenyl amide) (NSC751382; Fig. 1C; Zhong et al., 2013) is a novel, second-generation anticancer agent derived from nimesulide, which can inhibit cyclooxygenase-2 (COX-2; Fig. 1A). In cancer therapy, nimesulide showed hepatotoxicity on long-term usage and required higher concentrations to inhibit COX-2 activity (Zhong et al., 2012). This led to the development of CSUOH0901, a nimesulide derivative, which exhibited very promising anticancer activities by interacting with tubulin and Hsp27 proteins, which are important to cancer cell proliferation. CSUOH0901 inhibited the proliferation of cancer cells of lung, breast, colon, CNS, ovary, renal and prostate cancer with an IC₅₀ of 0.1–0.5 μM, which is 10-fold more active than JCC76 (N-[3-(2,5-dimethylbenzyl)oxy]-4-(methylsulfonylamino) phenyl cyclohexancaboxamide; (Fig. 1B; Suleyman et al., 2008) and 1000-fold more potent than nimesulide (Zhong et al., 2013).

Recent docking studies in SKBR-3 breast cancer cell lines (Suleyman et al., 2008; Yi et al., 2012) revealed that CSUOH0901 interacted with both α- and β-tubulin in the colchicine pocket and disorganized microtubules. Additionally, interaction of heat shock protein 27 (Hsp27) (Sun and MacRae, 2005) with CSUOH0901 inhibited the phosphorylation of Hsp27, leading to cell apoptosis. Hsp27 is a stress protein that is expressed when cells are stimulated by heat (Kampinga et al., 1995; Stege et al., 1995a, 1995b), radiation (Rau et al., 1999), chemotherapeutic drugs (Ciocca et al., 1992) or other agents (Wu and Welsh, 1996). A recent study showed that cancer cells with HSP27 overexpression were resistant to chemotherapeutic drugs (Huot et al., 1991; Fuqua et al., 1994; Hettinga et al., 1996; Richards et al., 1996). Antisense to inhibition of the HSP27 gene decreased cellular resistance to chemotherapy as well as to heat shock (Horman et al., 1999). Other studies have suggested that HSP27 prevents cancer cells from apoptosis and dramatically enhances their tumorigenicity (Garrido et al., 1998, 1999; Guenal et al., 1997; Samali and Cotter, 1996). Mass spectrometric studies revealed that tubulin and Hsp27 proteins are the most prevalent targets of CSUOH0901. Recent in vivo studies demonstrated that CSUOH0901 significantly decreased the size of HT29 tumors in a xenograft model compared with the control group, suggesting the low toxicity and high potency in vivo (Zhong et al., 2012).

Clearly, CSUOH0901 is a very promising anticancer drug candidate and will be further studied. However, to date, no LC-MS/MS method has been developed for the quantification of CSUOH0901. Therefore, a simple and accurate method to quantify CSUOH0901 is needed that will be essential to the future pharmacological and toxicological studies of CSUOH0901. In this work, a rapid and sensitive LC-MS/MS method was developed and validated for quantitative determination of CSUOH0901 in rat plasma. We demonstrated that the method developed was
fast, sensitive and specific for quantifying CSUOH0901 in plasma, and can be used in pharmacological studies.

Experimental

Chemical and reagents

CSUOH0901 and JCC76 (internal standard, IS) were synthesized and purified according to the previously published procedures (Zhong et al., 2013; Suleyman et al., 2008). HPLC-grade methanol and acetonitrile were purchased from Pharmco-Appler (Philadelphia, PA, USA). Formic acid, ammonium formate and ammonium acetate were purchased from Sigma Aldrich Chemical Company (Allentown, PA, USA). Dimethyl sulfoxide was obtained from Fisher Scientific (Pittsburgh, PA, USA). Deionized water was generated from a Barnstead Nano Pure Water Purification System from Thermo Scientific (Waltham, MA, USA). Sprague-Dawley rat plasma K2 with specific lot numbers (10577-01-06) was purchased from Innovative research (Novi, MI, USA).

Calibration standard and quality control samples

Preparation of stock and working solutions. The stock solutions of CSUOH0901 and JCC76 (IS) were prepared in dimethyl sulfoxide (DMSO) at 1 mg/mL and stored at −20°C. A set of CSUOH0901 working solutions of 10, 20, 50, 150, 400, 1000 and 2000 ng/mL were prepared by serial dilution from the stock solution with DMSO. The working solution of JCC76 (IS) was obtained by diluting the stock solution with DMSO to give a concentration of 150 ng/mL.

Preparation of calibration and quality control plasma samples. The calibration plasma solutions were prepared by spiking 10 μL of CSUOH0901 working solutions in 200 μL of blank plasma (mixture of 6 lots) to give drug concentrations of 0.5, 1.0, 2.5, 7.5, 20, 50 and 100 ng/mL. The lower limit of quantification (LLOQ) and quality control (QC) standards were prepared in a similar way at 0.5, 1.25, 10, 80 ng/mL, representing LLOQ, low QC (LQC), middle QC (MQC) and high QC (HQC) respectively. The QC and calibration samples were frozen at −20°C overnight, and then treated by the following sample preparation procedure and subjected to LC-MS/MS analysis.

Sample extraction

Plasma samples were removed from the −20°C freezer and thawed to room temperature. Single and double blanks were prepared by spiking 10 μL of acetonitrile in 200 μL of rat plasma. Then 10 μL of IS working solution was spiked in all calibration, QC solutions and single blank, except in double blank and vortexed immediately for 30 s. The samples were deproteinized by adding 800 μL of acetonitrile and sonicated for 15 min followed by centrifugation at 13,000g for 15 min. The supernatants were transferred into autosampler vials for LC-MS/MS analysis.

LC-MS/MS analysis

LC-MS/MS analysis was conducted using 5500 QTRAP triple quadrupole, tandem mass spectrometer (AB Sciex, Toronto, Canada) with an electrospray ionization (ESI) source (Framingham, MA, USA) interfaced with high-performance liquid chromatography (HPLC, Shimadzu, Columbia, MD, USA) with two LC-30 AD pumps, DUIG-20A inline, a SIL-30 AC autosampler, a CRM-20A controller and a CTO-10AVP column oven (Shimadzu, Tokyo, Japan). Analyst software, version 1.5.2 (AB Sciex) was used to control all the parameters of tandem mass spectrometer and HPLC.

A Luna C18 (2) HPLC column (50 × 2.0 mm 5 μm) with a C18 security guard guard from Phenomenex (Torrance, CA, USA) was used for the chromatographic separation of the supernatants from the deproteinized samples. An optimized gradient flow of mobile phase A, 5% ammonium formate in 2% methanol, and mobile phase B, 5% ammonium formate in 90% methanol at a flow rate of 0.2 mL/min, was developed. The column was equilibrated with the mobile phase for 10 min and the run time was 8 min for each run with 10 μL injection volume. The positive ESI mode was selected and the MRM (multiple reaction monitoring) function was used for quantification, with the transitions set at m/z 483.2 →404.3, m/z 483.2 →119.0 for CSUOH0901 and m/z 445.3 →366.3 for JCC76 (IS) (Fig. 2). The dwell time for each MRM transition was set at 120 ms. Source dependent parameters were optimized by flow infusion analysis: nebulization gas (30), heating gas (30), curtain gas (40), ion spray voltage (5000 eV) and temperature (450°C). Compound dependent parameters were manually optimized as following: declustering potential, 180; entrance potential, 10; collision energy, 20; and cell exit potential, 12.

Analytical method validation

A full method validation was performed using rat plasma according to the currently accepted FDA bioanalytical method guidelines (US Food and Drug Administration, 2001) and also other references (Liu et al., 2013; Ito et al., 2013). The entire method was validated for precision, accuracy, linearity, selectivity, extraction recovery, LLOQ, matrix effect and stability studies.

Calibration curve, linearity and sensitivity. Seven CSUOH0901 plasma calibrators at the concentrations of 0.5, 1.0, 2.5, 7.5, 20, 50 and 100 ng/mL, double blank and single blank (only JCC76 internal standard) were selected to establish a calibration curve. The weighted linear regression, 1/x, as weighing factor was used to calculate the slope and correlation coefficient of the calibration curve. The LLOQ was defined as the concentration with precision (coefficient of variation, CV) <20%.

Accuracy and precision. Intra- and inter-assay precision and accuracy studies were performed using three QC standards, LQC, MQC and HQC, at 1.25, 10 and 80 ng/mL with five replicates (n = 5). Intra- and inter-assay precisions were determined as CV, and accuracies were calculated by comparing experimentally determined concentrations with the spiked values. Therefore, accuracy (%) = [(experimental concentration - spiked concentration)/spiked concentration] × 100.

Recovery and matrix effect. The absolute extraction recovery was determined by comparing the peak areas of CSUOH0901 in QC samples at 1.25, 10 and 80 ng/mL (CSUOH0901 added prior to deproteination) with those of postextraction samples (CSUOH0901 added after
deproteinization) of corresponding concentrations. The relative recovery was determined by comparing peak area ratio of CSUOH0901 and IS (JCC76) spiked in plasma before extraction with that in postextraction spiked samples.

The absolute matrix effect was calculated by comparing the peak areas of postextraction blank plasma samples spiked with CSUOH0901 (1.25, 10 and 80 ng/mL) with those of corresponding standard solutions at equivalent concentrations. The relative matrix effect was calculated by comparing the peak area ratio of CSUOH0901 and IS (JCC76) spiked in the blank plasma postextraction solution with that in standard solution.

Results and discussion

Optimization of mass spectrometric conditions for MRM quantitation

Positive ionization mode was selected to detect and optimize the MS parameters for the detection of both CSUOH0901 and JCC76 (internal standard). It was found that the standard CSUOH0901 and JCC76 solutions prepared in methanol–water (9:1, v/v) yielded higher intensity when compared with the solutions prepared in acetonitrile–water (9:1, v/v). Fragmentation led to the formation of daughter ions in the product ion scan mode (Fig. 2). Based on the fragmentation study, the MRM transitions of m/z 483.2 → 404.3 for CSUOH0901 and 445.3 → 366.3 for JCC76 were selected for quantification, as these product ions yielded strong signals. The highest MS signal was obtained by fine-tuning collision energy, spray voltage and ion source temperature.

Stability studies

Effect of freeze–thaw on CSUOH0901 in plasma. Two QC samples of 1.25 and 80 ng/mL concentrations were selected to verify their stability. The stability test for CSUOH0901 in plasma was studied after three freeze–thaw cycles over a 3 day period.

Short- and long-term stability studies of analyte in plasma. The stability studies of CSUOH0901 in rat plasma were performed using two QC standards (1.25 and 80 ng/mL), which were kept under different storage conditions: 10 h at room temperature and 6 months at −20°C, before and after sample extraction.

Stability of analyte in stock solutions. The stability studies of stock solutions and working solutions of CSUOH0901 and internal standard (JCC76) were also evaluated. The stock solutions of analyte were stored at −20°C for 7 months. Two QC standards of concentrations 1.25 and 80 ng/mL were prepared from both the stored and fresh stock solutions and the experimentally determined concentrations of CSUOH0901 were compared (n = 3 for each sample).

Reference:

[Figure 2. Precursor/product ion spectra and proposed fragmentation pathways for internal standard JCC76 (A) and analyte CSUOH0901 (B).]
predicted logD value of 4.86. The intensity of CSUOH0901 was increased 2-fold when 5 mM ammonium formate buffer was used in the mobile phases and the retention times were around 5.09 min for CSUOH0901 and 5.58 min for JCC76 (IS) (Fig. 3B).

Linearity, sensitivity, selectivity and LLOQ

the Calibration curve for CSUOH0901 in plasma was linear in the range of 0.5–100 ng/mL. Linearity results showed the quadratic fit for CSUOH0901 with a seven-point calibration curve of concentrations 0.5, 1.0, 2.5, 7.5, 20, 50 and 100 ng/mL including double-blank and single-blank (only JCC76 internal standard) plasma samples. An excellent linearity was obtained with the correlation coefficient of 0.9996 and the linear regression equation was $y = 0.073x - 0.0085$. This method exhibited high selectivity with no interfering peak in six different blank plasma samples from different sources. The LLOQ was found to be 0.5 ng/mL, where the signal intensity was 20-fold higher than the blank signal (Fig. 3). The lowest concentration in a calibration curve (LLOQ) was quantified with the accuracy and precision within 15% (Table 1).

<table>
<thead>
<tr>
<th>Nominal concentration (ng/mL)</th>
<th>Determined concentration (ng/mL)</th>
<th>Accuracy (RE)</th>
<th>Precision (CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.49 ± 0.01</td>
<td>-2.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>1</td>
<td>0.90 ± 0.09</td>
<td>-10.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>2.5</td>
<td>2.58 ± 0.08</td>
<td>3.2%</td>
<td>6.7%</td>
</tr>
<tr>
<td>7.5</td>
<td>7.23 ± 0.27</td>
<td>-3.6%</td>
<td>11.0%</td>
</tr>
<tr>
<td>20</td>
<td>20.42 ± 0.42</td>
<td>2.1%</td>
<td>1.7%</td>
</tr>
<tr>
<td>50</td>
<td>49.14 ± 0.86</td>
<td>-1.7%</td>
<td>1.6%</td>
</tr>
<tr>
<td>100</td>
<td>97.30 ± 2.70</td>
<td>-2.7%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>
Table 2. Inter- and intra-assay accuracy and precision of CSUOH0901 in rat plasma

<table>
<thead>
<tr>
<th></th>
<th>Intra-assay</th>
<th>Inter-assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Determined</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Spiked (ng/mL)</td>
<td>(ng/mL)</td>
<td>(%RE)</td>
</tr>
<tr>
<td>1.25</td>
<td>1.39</td>
<td>11.2%</td>
</tr>
<tr>
<td>10</td>
<td>10.26</td>
<td>2.6%</td>
</tr>
<tr>
<td>80</td>
<td>78.52</td>
<td>-1.9%</td>
</tr>
</tbody>
</table>

Accuracy and precision

Intra- and inter-assay accuracies of the validated method ranged from 1.9 to 11.2% and from 0.5 to 11.2%, respectively. The intra- and inter-assay precision values ranged from 1.8 to 2.9% and from 4.5 to 5.5%, respectively. The inter- and intra-assay accuracy and precision of the QC samples are depicted in Table 2.

Extraction recovery and matrix effect

The absolute recoveries of the extraction method were 104.0, 105.0 and 104.0% for the QC standards at 1.25, 10, and 80 ng/mL, and the relative recoveries of the extracted method were 99.9, 96.1 and 97.7% for the QC standards at 1.25, 10, and 80 ng/mL, respectively, as indicated in Table 3. Absolute matrix effects for each of three plasma samples at 1.25, 10, and 80 ng/mL were 5.5, 8.1 and 9.9%, and relative matrix effects were 2.6, 5.1 and 12.4% indicating the minimal matrix effect. Hence, the protein precipitation technique for sample preparation was found to be effective, as it not only extracted the analyte and internal standard well but also removed impurities causing interferences from the sample matrix. Performing MRM confirmed the absence of significant matrix effect by comparing the peak areas ratio of CSUOH0901 MRM transitions (MRM1, m/z 483.2 → 404.3; and MRM2, m/z 483.2 → 119.0) for the spiked rat plasma samples with the average peak area ratio for seven calibrators:

\[
\text{MRM ratio} = \frac{\text{peak area MRM}_1}{\text{peak area MRM}_2}
\] (1)

The average MRM ratio of the seven calibrators was 1.5 ± 1.9 (±SD). This confirmed the absence of matrix effect in the plasma samples and that they are in the acceptable range.

Stability

CSUOH0901 was stable for at least 8 h at room temperature (bench top) and for 10 h when postextracted at room temperature and the results were summarized in Table 4. The recovery of CSUOH0901 was 112.0% at LQC and 104.5% at HQC levels after three freeze–thaw cycles. Stability studies of stock solutions and working solutions of CSUOH0901 and internal standard (JCC76) were performed by storing them at −20°C for at least 6 months. The analyte and the internal standard were found to be stable in stock solutions and the results are summarized in Table 5.

Conclusion

In conclusion, a highly sensitive LC-MS/MS method for the quantitation of CSUOH0901 in rat plasma was developed and validated for the first time. The method developed has a short run time of 18 min employing a simple one-step sample preparation. The accuracy and precision were <10% and the LLOQ was as low as 0.5 ng/mL. The results from the validation studies illustrated that this method can be used to determine the pharmacological and toxicological profiles of CSUOH0901 in rats.

Acknowledgments

We thank Cleveland State University for providing the financial support of this research. We also acknowledge The National Science Foundation Major Research Instrumentation Grant (CHE-0923398), which supported the use of the AB Sciex QTrap 5500 mass spectrometer instrument in the current project.
References

