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Multiplexed Predictive Control of a Large Commercial
Turbofan Engine

Hanz Richter∗ and Anil Singaraju†

Cleveland State University, Cleveland, Ohio 44115

and

Jonathan S. Litt‡

U.S. Army Research Laboratory, Cleveland, Ohio 44135

Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and

constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to

implement model predictive control in engine control applications, because of the combination of model complexity

and the time allotted for the control update calculation. In this paper, amultiplexed implementation is proposed that

dramatically reduces the computational burden of the quadratic programming optimization that must be solved

online as part of themodel-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically

in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model

predictive control. Theoretical aspects are discussedbased onanominalmodel, and actual computational savings are

demonstrated using a realistic commercial engine model.

I. Introduction

A UTONOMOUS propulsion control of aircraft engines is being
pursued based on the promise of higher fuel efficiency,

extended component life, better transient response, and better
robustness to engine-to-engine variations and engine aging [1].
Relieving the overall workload of the pilot has been another driver
for pursuing this technology. Model predictive control (MPC) is a
technique that has reached maturity in proven applications as well as
in theoretical foundations. MPC has been demonstrated to have the
potential to achieve the preceding goals in the context of aircraft
propulsion.

In this paper, we present a technique for reducing the complexity
of MPC laws, so that real-time implementation is feasible with
limited computational resources. Focus is placed on the application
of MPC to aircraft engines, in which practical implementation of the
predictive laws is problematic, due to limited onboard processing
power and memory. The multiplexed MPC (MMPC) implementa-
tion proposed here greatly reduces the time required for computing
the control law, with small performance degradation. The article is
organized as follows: Section II describes the mathematical model
for the engine, along with an overview of MPC development,
applications, computational burden, and a brief description of
alternatemeasures to reduce it. Application ofMPC to aircraft engine
control problems is also described. In Sec. III, the concept of
multiplexing is introduced, alongwith theoretical results for nominal
linear plants, including the use of an observer. Section IV describes
the application of the multiplexed scheme to the actual engine model
and presents simulation results demonstrating computational savings
with little performance deterioration. Finally, Sec. V offers
conclusions.

II. Engine Modeling and Predictive Control

A. Mathematical Model

Aircraft engine dynamic models are characterized as being highly
complex and nonlinear. As customarily done in model-based control
design, a relatively simple model must be used in control law
derivations, reserving high-fidelity, high-complexity models for the
validation stage. A design model is used in this paper that correctly
maps the influence of actuators upon outputs and also provides a
large number of other variables of interest.

The design model is still nonlinear and complex to a high degree.
The state equations are not available in closed form, because
algebraic loops requiring iterative solutions are present. Further, the
algebraic constraints also involve lookup tables. These character-
istics imply that the state derivatives may only be evaluated
numerically. The dynamic model of the turbofan engine considered
here can be written as

_x� f�x; z; u; p� (1)

0� g�x; z; u; p� (2)

y�x� � h�x; u; z; p� (3)

where x is the state vector, u is the control vector, z are the variables
participating in the algebraic loops, andp is a vector of uncertain and/
or time-varying parameters related to engine health and aging. The
output vector y contains a number of variables of interest, among
them the thrust developed by the engine and the turbine inlet
temperature, which will be controlled. The control vector reflects the
four available actuators: namely, the fuel flow rate, the variable
bleed-valve opening, the variable stator-vane opening, and the
turbine blade clearance. In this paper, only the first three are used for
feedback control.

Themodel is essentially a differential-algebraic system, a type that
has been extensively studied [2,3]. However, it is the numerical
nature of f�:�, g�:�, and h�:�, together with the dependence on the
uncertain parameters p, that makes the controls problem very
difficult to solve using many of the standard analytical tools. Basic
properties such as controllability, observability, and open-loop
stability of the preceding model are not possible to establish in a
rigorous fashion by conventional methods.



Aside from the difficulties imposed by the structure of the model,
dimensionality also poses a major problem. There are more than 90
states and more than 20 algebraic variables, together with four
available actuators. Merely simulating the model in an open-loop
fashion requires extensive software and specialized routines. As
explained in [4], the open-loop functions h�:� and g�:� are linearized
to provide a Newton-based scheme to iteratively solve for the
algebraic variables to a specified level of accuracy at each time step.
Specifically, if zn and yn are available from the previous step,
together with current values of p, u, and x, the next value of z can be
approximated as

zn�1 � L�1�yn�1 � yn� � zn

where L� @g=@z, evaluated at zn and the current values of u, x, and
p. Ideally, iteration for z should be continued until a very small value
is obtained in the evaluation of g�:�, and L should be a function of u,
x, andp. In practice, it is found that a fixed number of iterations and a
constant value for L are sufficient to provide a good estimate of z.
Once z has been estimated, it is used in the main numerical
integration routine for x.

B. Overview of Model-Predictive Control

MPC represents a paradigm shift with respect to more traditional
approaches.Well-known control laws such as proportional–integral,
state feedback, and transfer function compensation are based on
observations of past and current errors. That is, a nonzero error must
have been measured for a control action to occur. MPC, in contrast,
uses a mathematical model of the process to predict the errors that
would be incurred if certain control inputs were to be applied. It then
selects the control inputs that minimize the predicted errors. This
strategy is performed continually, as new information is made
available to the controller. Thus, MPC offers the possibility of
reformulating the way it computes the next control move, according
to the newest information about the plant and its external influences
(reference commands and disturbance). Figures 1 and 2 illustrate the
usual MPC scheme.

At time instant k, an internal plant model and a disturbancemodel,
together with measurements of current plant outputs and
commanded references, are used to obtain a function ŷ, which
gives predicted values of the output over a time range Np as a
function of future control inputs over another time interval Nu.
Usually, Nu � Np and the control values are assumed constant
beyond timeNu � k. The function ŷ is used in the minimization of a
measure of the deviations of predicted outputs from the reference
inputs r over a time interval �k; k� Np�. The measure to be
minimized is usually a weighted quadratic sum of output deviations

and control penalties, although other measures are possible and were
considered. The optimization problem yields a sequence of Nu
control values achieving minimal deviations, usually under control
and state constraints. Only the first control move in the sequence is
made effective by the actuators during sampling interval k. The entire
process is repeated at every sample instant, resulting in an enhanced
ability to handle constraints, reject disturbances, and follow the
reference trajectory. Irrespective of the exact form of the objective
function being optimized at each sampling instant and the nature or
existence of constraints, this implementation is universally known as
receding-horizon control. It is evident that the complexity of the
computations for a given form of the objective function depends on
the order of the model, the length of the prediction and control
horizons, the number of inputs, the number of outputs, and the
number and nature of the constraints. In this paper, we address
computational complexity by reducing the number of inputs that are
to be determined at each time step by the online optimization process
by introducing a multiplexed implementation.

MPC has come to designate a variety of related control techniques
that have in common the online optimization process, the use of a
plant model, and the receding-horizon implementation. Receding-
horizon ideas can be traced back to the 1960s, but active interest in
the field started in the 1980s with the introduction of dynamic matrix
control [5] and generalized predictive control [6–8]. Predictive
control strategies were extensively and successfully tested in real-
world process control applications, sparking even greater interest
from researchers. Despite the growing popularity of the technique,
solid theoretical analyses and stability proofs appeared only in the
90s, with the seminal works of Mayne et al. [9–11], Bemporad and
Morari [12], Rawlings and Muske [13], and Bitmead and Gevers
[14], among others. Theoretical works also started to appear that
were applicable to nonlinear systems. Until the 90s, the applicability
ofMPCwas confined to “slow” systems such as oil refining and other
chemical processes, due to the large amount of time required to
perform the optimization calculations. Currently, due to rapid
progress in developing fast and cheap computing power, MPC is
being considered as a serious candidate for faster processes such as
mechanical systems and aircraft engine controls. Theoretical MPC
research in the last five years seems directed to complexity reduction
by piecewise implementation [15], multiplexed schemes [16–18],
and to hybrid approaches that can optimize over logical or integer
variables. For a survey containing industrial applications, see [19].
For a historical survey of theoretical developments and stability
proofs, see [9]. It is worth mentioning that MPC has matured to the
point of commercialization by companies such as Honeywell and
ABB.

C. MPC for Aircraft Propulsion

The application of MPC to aircraft engines has become a realistic
option with the availability of faster onboard processing [20,21].
MPC represents a marked departure from conventional turbofan
engine control schemes, which typically regulate fan speed or engine
pressure ratio, because those are themeasured variables that aremost
closely related to thrust. MPC is inherently multivariable, taking
advantage of actuators that are not used for feedback purposes in
conventional schemes, but are simply scheduled.MPCautomatically
handles disturbances as well as input and state constraints. For a
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survey of modern control technology as it applies to engine control
and health monitoring, see [22]. The MPC scheme addressed a
variety of tasks better handled by model-based computation than by
pilots: notably, the compensation for engine deterioration over time
and the generation of thrust trajectories that reduce fuel consumption.
Automatic fault detection and accommodation are features being
integrated in the MPC formulation via recursive parameter
estimation. Recently, MPC has been applied to active turbine blade
clearance control [21].

In this section, the model and the current MPC strategy are
described. Although nonlinear versions of MPC exist that guarantee
stability and can work with constraints [10,11], they are not
applicable to our engine control problem without a number of
simplifications and assumptions. The approach taken is reasonable in
view of problem constraints. The state equation (1) is linearized
every sampling instant, using the estimated values of z from the
Newton approach. This operation generates a linear continuous-time
model of the form

_x� Âx� B̂uu� B̂pp (4)

y� Ĉx� D̂uu� D̂pp (5)

Note that the model is really time-varying, because the values of the
system matrices are updated at the beginning of each sampling
instant. It is also important to note that analytical gradients for f andh
are not available, thus requiring a numerical perturbation approach at
every sampling instant to obtain the linearized system matrices.
Because the health parameters p are slowly varying, they can be
considered to be a bias term for the purposes of MPC computation.
Next, the preceding model is discretized using a zero-order-hold in
the inputs, leading to a discrete-time version of Eqs. (4) and (5). The
predictions for MPC are incorporated through the discretized model
matrices. The MPC optimization problem has the form

min
uk;uk�1;...uk�Nu

J�
XNp
i�1
�rk�i � ŷk�i�TQ�rk�i � ŷk�i�

�
XNu
i�0

�uTk�iR�uk�i (6)

subject to state and control constraints (rate and magnitude).
The degrees of freedom in the optimization are the control

increments �uk�i � uk�i � uk�i�1 for i� 1; 2; . . . ; Nu. The
reference inputs are rk, assumed to be known, and ŷ�k� is a model-
dependent prediction vector. For details regarding predictors, refer to
[23,24]. Matrices Q and R are positive definite and symmetric, as
customarily used in control optimization. If the state vector is
available for measurement and if the constraints are absent, the
preceding optimization problem has a closed-form solution,
depending on systemmatrices. The resulting control lawhas the form
of a state feedback, in which the gain can be readily computed from
the current measurements. When constraints are present, more
general and powerful quadratic programming (QP) algorithms are
needed. The state vector and, moreover, the parameter vector p are
unknown. For this reason, an extended Kalman filter was tuned to
provide state and parameter estimates to the MPC optimization, in a
fashion analogous to observer-based control design. The Kalman
gain and the covariance matrix are not constant, but rather updated at
every sampling instant. Simulation results show that little
performance is lost when the MPC is implemented based on state
estimates [4].

D. Computational Burden of MPC

The domain of applicability of MPC has reached beyond slow-
processing control-oriented problems. The availability of fast and
cheap real-time processing has motivated work on MPC applied to
aircraft engines [20,25]. Onboard processors used in aircraft
propulsion control are still not powerful enough to accommodate the

execution of the complex algorithm in real time. In the following
sections, a brief overview is offered on MPC variants specifically
designed to reduce the computational cost.

1. Explicit MPC Implementations

In an explicit MPC implementation, the solution of the
optimization problem inherent to predictive control is performed
offline. The solution consists in the computation of regions of the
state space and corresponding control gains to be used in the actual
real-time implementation. An explicit MPC implementation is
essentially amultidimensional lookup table for the control gain. This
approach requires that the plant model and objective function be
reducible to a multiparametric programming problem. That is, the
optimization problem should have the initial state appearing as a
parameter in a linear fashion. The paper by Bemporad et al. [26]
develops a performance criterion based on the sum of either the1-
norm or 1-norm of the input command and the deviation of the state
from its desired value. By taking the1-norm over space and the 1-
norm over time, it is possible to reduce the problem to a
multiparametric case. The solution offered by using the mixed 1=1-
norm is attractive for relatively small linear MPC problems. This
method saves computing time by offering precomputed solutions at
each time step. In the case of large plants, using this approach would
impose high demands inmemory because of the high number of state
variables. In addition, the explicit implementation is not well-suited
to plants exhibiting high variability, and the possibility of reducing
the problem tomultiparametric programming is difficult to establish.

2. 1-Norm Criterion with End Condition

Dynamic matrix control (DMC) involves a system description in
terms of step-response parameters. This description is used in a
receding-horizon optimization to generate a sequence of controls that
minimizes the deviations between the actual and desired step
responses. DMC is traditionally used in conjunction with a quadratic
objective function (QDMC). As seen in [28], an objective function
based on the 1-norm can be used along with an end condition. This
approach is computationally less intensive than QDMC. By
introducing an end condition in the performance index, it is possible
to obtain a stable and high-performance control system even when
using input/output constraints and short prediction horizons. The
control law is calculated by solving an online linear program, which
is less complex than a quadratic program.

3. Min–Max Approaches

A cost function is introduced in [29] that allows the formulation of
a robustly stableMPC problem solvable by a linear program. Using a
1=1-normperformance index for this cost allows precomputation of
the solution, so that the linear program does not have to be solved
online. The objective of predictive control is to compute the future
control sequence u�k�; u�k� 1�; . . . ; u�k� Nu� in such a way that
the optimal j step-ahead prediction y�k� jjk� is driven close to
r�k� j� for the prediction horizon.

The preceding three approaches focus on changing the objective
function so that the optimization problem becomes linear. In some
cases, this allows part or all of the optimization process to be moved
offline. Our approach differs in that it uses the familiar quadratic
optimization problem, which is well-known and for which many
efficient numerical recipes are available. Computational savings
arise from the reduced dimensionality of the online optimization. In
fact, the time required to solve a QP problem grows with the cube of
the number of inputs.We show that our multiplexed approach can be
implemented without significant performance deterioration.

III. Overview of Multiplexed Control

A multiplexed control implementation denotes an arrangement in
which a group of actuators is updated sequentially and cyclically, as
opposed to simultaneously. In this technique, only a group of
actuators are updated every sampling instant, keeping all other
actuators held at their previous values. The group of actuators being



updated is given by a predetermined schedule. A multiplexing
schedule specifies the instants at which each actuator is commanded
to the value dictated by the control law. This technique can be
implemented in software, hardware, or in a combination of both, and
has applications in various fields of engineering.

The exact physical residence of the multiplexer depends on the
purpose for its implementation. In electronics, the multiplexer is a
hardware element inserted between the group of signals and the
hardware resources to be shared. In controls, one may use a
multiplexer for the same reasons as in electronics [for instance, to
save on the number of signal-conditioning channels and data
converters (hardware multiplexing)] or the multiplexer may be
implemented in software, becoming an integral part of the control
law (softwaremultiplexing).Multiplexed control has received recent
attention in the context of MPC [16–18], typically restricting the
number of actuators being updated at every sampling instant to one.
In the following sections, we use a nominal linear model to discuss
the theoretical implications of introducing multiplexing in
conjunction with conventional linear quadratic control.

A. Some Theoretical Results for Nominal Linear Plants

Consider a discrete-time, linear, time-invariant plant in state-space
form:

x�k� 1� � Ax�k� � Bu�k� (7)

where A and B have dimensions n by n and n by m, respectively;
x�k� 2 Rn; and u�k� 2 Rm. To introduce integral action in the
control law and facilitate modeling of the multiplexed
implementation, the control input u�k� is assumed to have the form

u�k� � u�k � 1� ��u�k� (8)

where �u�k� is the control increment to be optimized by the MPC
law. The state vector is augmented with the m components of
u�k � 1�, resulting in the description�

x�k� 1�
u�k�

�
� A B

0 Im

� ��
x�k�

u�k � 1�

�
�
�
B

Im

�
�u�k� (9)

Denoting the extended state vector as ~x�k� � �x�k�T ju�k � 1�T �T and
the new system matrices as Ag and Bg, the augmented system
becomes

~x�k� 1� � Ag ~x�k� � Bg�u�k� (10)

Assume that q groups of r control inputs each are to be
simultaneously updated, where, for simplicity, q�m=r 2 Z� and
r < m � n. Without loss of generality, assume that the q update
groups are contiguous in�u and that the update sequence coincides
with the order in which the groups are stacked in�u. A simple input
transformation can produce the assumed arrangement starting from
any other configuration satisfyingm� qr. Define thep-dimensional
selector matrix at time k as the q-periodic matrix:

Ep�k� �
h
pe

T
r�kmodq��1

��
pe

T
r�kmodq��2

��	 	 	 ��peTr�kmodq��r

i

with pej being the jth canonical basis row vector of Rp. The

multiplexed plant can now be described as

~x�k� 1� � Ag ~x�k� � bg�k�w�k� (11)

where

bg�k� � BgEm�k�

Clearly, bg�k� is periodic with period q, and w�k� is an r vector
reparameterizing the control inputs according to

w�k� � ETm�k��u�k� (12)

Note that the selectormatrices satisfy the propertyETm�k�Em�k� � Ir,
where Ir is the r by r identity matrix. Also, the product Em�k�ETm�k�

gives anm bym block-diagonal matrix, where the blocks are Ir and
an �m � r� by �m � r� zero matrix. Therefore, Eq. (13) may be
written as

�u�k� � Em�k�w�k� (13)

The preceding correspondence provides a mechanism to model the
assignment of zero values to selected components of�u outside their
scheduled update instants.

B. Assumptions and Basic Definitions

Several basic definitions and assumptions must be introduced
before the control derivations. Applying multiplexing to a plant
introduces periodicity to the closed-loop system. Multiplexing is
equivalent to periodically setting all columns ofBg to zero, except for
a block of columns corresponding to the actuators being updated at a
particular instant. Therefore, the plant has a periodically varying
input distribution matrix. Control design must take this into account,
because the time-invariant eigenvalue condition for stability does not
apply. The monodromy matrix of A�k� at time j is defined as

�A�T � j; j�≜ A�T � j � 1�A�T � j � 2�; . . . ; A�j�

that is, the product of all instances of A�k� over one period. The
eigenvalues of �A are known as characteristic multipliers. These
eigenvalues are independent of j. A periodic system �A�k�; B�k�� is
said to be stabilizable if a T-periodic feedback matrix F�k� can be
found such that A�k� � B�k�F�k� is asymptotically stable. The
periodic system �A�k�; B�k�� is asymptotically stable if and only if all
characteristic multipliers lie in the open disc fz 2 C: jzj< 1g. The
periodic Kalman decomposition with periodic components is given
as

�
z11�k� 1�
z12�k� 1�

�
� Auc�k� 0

A21�k� Ac�k�

� ��
z11�k�
z12�k�

�
�
�

0

Bc�k�

�
�u�k�

(14)

A periodic system �A�k�; B�k�� is stabilizable if the matrix associated
with the uncontrollable subspace in a periodic Kalman
decomposition is asymptotically stable. For instance, as discussed
in [27], every periodic pair �A�k�; B�k�� admits a canonical
decomposition analogous to the usual Kalman controllability form,
but with periodic block components. Because the situation will arise
in which a pair �A;B�k�� is made up of a constant A and a q-periodic
B�k�, we interpret the constant matrix as periodic with period q, with
the peculiarityA�k� � A for all k. Thus, the period is not defined here
as the smallest T for which A�k� T� � A�k� for all k, but rather a
predetermined value of T for which the equality holds. Such
arrangement extends the definition of and conditions for
stabilizability for such constant-periodic pairs.

Assumption 1: In connection with system (7), define the periodic

matrix b�k�≜ BEm�k�.
1) The pair �A; b�k�� is stabilizable.
2) Rank �b�k�� � r for all k.
Note that the constant pairs �A; b�k1�� for somefixed k1 need not be

stabilizable; that is, a constant state-feedback gain might not exist
that asymptotically stabilizes the system when restricted to a single
update group. The stabilizability assumed for �A; b�k��, however,
guarantees that a periodic state-feedback gain exists that stabilizes
the reduced system (and the original system, by virtue of the
proposed technique), as will be shown in the following sections. An
immediate consequence ofAssumption 1 is that the pair �Ag; bg�k�� is
stabilizable and rank�bg�k�� � r for all k.

In fact, augmentation with input integrators introduces m unity
eigenvalues in Ag, which are associated with the equation

u�k� � u�k � 1� � Em�k�w�k�

The portion of the augmented state vector corresponding to u�k � 1�
is decoupled from x�k� and fully controllable fromw�k�, as a simple
rank calculation shows. Therefore, the newly introduced eigenvalues



belong to the controllable subspace of �Ag; bg�k��, showing
stabilizability. It is straightforward to show that rank�bg�k�� � r for
all k under Assumption 1.

C. Infinite-Horizon Quadratic Regulator

An infinite-horizon quadratic regulator for the multiplexed plant
of Eq. (11) is obtained from the minimization of

J�
X1
k�0

~xT�k�Q ~x�k� �wT�k�Rw�k�

The solution is well known [30] to be a periodic state feedback of the
form

w�k� � �F�k� ~x�k� (15)

Computation of F�k� is done by solving the system of discrete-time
periodic Riccati equations:

Xj �Q� ATg�j�Xj�1Ag�j�

� ATg�j�Xj�1bg�j�
h
R� bTg�j�Xj�1bg�j�

i�1
bTg �j�Xj�1Ag�j�

for j� 0; 1; 2; . . . ; �q � 1�. Under the stabilizability assumption, a
unique, symmetric, and positive-semidefinite periodic sequence Xj
can be found. The desired periodic feedback gain is then computed
from

Fj ��
h
R� bTg �j�Xj�1bg�j�

i�1
bTg �j�Xj�1Ag�j�

Note that the q equations cannot be solved separately and that the
solution method can be described as numerically intensive. Several
methods exist to solve the preceding system of Riccati equations
[31]. In one of them, an initial symmetric, positive-semidefinite, and
stabilizing X0 is calculated from a forward-time discrete periodic
Lyapunov equation (FTDPLE). In turn, several methods are
available for solving the FTDPLE. One of them reduces to the
solution of a standard discrete Lyapunov equation. Once X0 is
available, a Newton step having the form of a reverse-time discrete
periodic Lyapunov equation (RTDPLE) is repeated until
convergence of Xj to a periodic sequence. More recent,
computationally efficient, methods involving the periodic Schur
decomposition are also described in [31,32]. The reader is referred to
these works and references therein for a detailed exposition of
numerical methods. The actual control input u�k� is found through
Eqs. (8) and (13).Multiplexing can be applied to systems that are not
stabilizable from the update group of actuators if taken individually.
That is, systems that are not stabilizable when some actuators are
permanently deactivated, but that are stabilizable in the periodic
sense, can be multiplexed.

D. Multiplexed Control with Observer

Themultiplexed plant of Eq. (11) has an augmented state vector in
which the last m components are the previous value of the control
input: that is, u�k � 1�. A full-order observer designed on the basis of
this plant would produce an estimate of u, introducing redundancy.
Using a reduced-order observer can remove this redundancy. The
reduced-order observer presented here estimates plant states only,
and the augmented state vector is formed by stacking these estimates
and the actual values of u�k � 1�, which are assumed to be stored in
the control algorithm. As shown in Sec. III, introduction of
multiplexing to a plant results in a periodic system. Even though the
system being observed is periodic in nature, the observer designed in
this case is a linear time-invariant system. This system is stabilized
independently using a feedback gain that drives the error between
state and estimate to zero. We now offer a new result that can be
understood as a version of the well-known separation principle for
observer-based multiplexed control.

The plant to be estimated is the same asEq. (7), with the addition of
an output vector of dimension p:

x�k� 1� � Ax�k� � Bu�k� (16)

y�k� � Cx�k� (17)

The estimator update equation is given as

x̂�k� 1� � �A �HC�x̂�k� � Bu�k� �Hy�k� (18)

As before, the control input u�k� is assumed to have the following
form:

u�k� � u�k � 1� ��u�k� �u�k� � Em�k�w�k�
w�k� � �F�k� ~x�k�

where

~x�k� �
�

x̂�k�
u�k � 1�

�

The equation for the error dynamics of the system is obtained by
taking the difference between the estimated state x̂�k� and the actual
state x�k�. As customary, the error dynamics are independent of the
control law being used. Define

e�k� � x̂�k� � x�k� (19)

From Eqs. (16) and (18), we get

e�k� 1� � �A �HC�e�k� (20)

The closed-loop dynamics of the multiplexed plant under linear state
feedback and using the estimated values of the state from the
observer can be derived in a straightforward manner. From Eq. (8),
we have

�u�k� � �Em�k�F�k�
�

x̂�k�
u�k � 1�

�

Substituting the preceding control law into the plant equation and
using Eq. (19), we obtain

x�k� 1� � Ax�k� � Bu�k � 1� � BEm�k�F�k�
�
x�k� � e�k�
u�k � 1�

�

(21)

After some matrix algebra [33], it is possible to reduce the closed-
loop dynamics to�

�x�k� 1�
e�k� 1�

�
� A � bg�k�F�k� bg�k�F�k�

0 A �HC

� ��
�x�k�
e�k�

�
(22)

where �
x�k�

u�k � 1�

�

 �x�k�

The block-triangular structure of the preceding system matrix
implies that plant and estimator may be stabilized separately. Note
that the periodic stabilizability of �A; bg� was established earlier.

E. Multiplexing in Receding-Horizon Control

Application of multiplexing to receding-horizon strategies is
straightforward. At each time step, a constrained MPC problem of
reduced dimension is solved, corresponding to a subset of all
available actuators. Only the first value of the calculated control
sequence is applied, whereas the remaining actuators are kept at their
previous values. The problem is solved again at subsequent time
steps, but using the appropriate subset of actuators. In [17], two
related algorithms are presented, assuming full state information. In
one of the schemes, all actuators are optimized at once, but under the
constraint that their increment will be nonzero only every m time
steps, where m is the number of actuators. This scheme does not



reduce the dimensionality of the constrained optimization routine,
and so it is of little advantage in terms of computational efficiency. In
the second scheme, only one actuator at a time is optimized.
Information about the previously predicted values of the other
actuators is included in the optimization. The approach amounts to
treating the nonoptimized actuators as known disturbances. The
predicted values of the actuators will never be realized, however, due
to the receding nature of the control algorithm. The simulations
presented in this paper do not use information about the values of the
nonoptimized actuators, but this information can certainly be
incorporated in a straightforward fashion.

The main concern in a multiplexed MPC implementation is
stability. The closely related periodic estimation problem has been
analyzed byDeNicolao [34]. The concept is to seek conditions under
which a periodic extension of the first few values of the optimal gain
sequence can be stabilizing when used as periodic feedback. These
conditions are obtained by considering the cyclomonotonicity
properties of the discrete periodic Riccati equation (DPRE). In [35], a
similar problem is considered and sufficient conditions for stability
are derived. These works can be used as a basis to derive theoretical
stability conditions for the nominal multiplexed plant of Eq. (11)
under receding-horizon control. These derivations are works in
progress.

IV. Application of Multiplexed MPC to the Turbofan
Engine Model

The motivation for including a multiplexer is to reduce the
complexity (i.e., dimensionality) of MPC calculations. At sampling
instant k, linearization and discretization are performed to derive a
single-input linear model, in which the input is selected from among
the set of all actuators according to a predefined cyclic schedule. All
other inputs are assumed constant and equal to the values they had at
sampling instant k � 1. The single-input linear model is used in the
MPC optimization of Eq. (6), resulting in an optimal move sequence
for the selected input. The first element of the sequence is applied to
the corresponding plant actuator, whereas the other actuator
commands are held at their previous values. The operation is
repeated at the following sampling instants for the remaining inputs
one by one and according to the schedule, completing what will be
termed an update cycle. Update cycles are repeated indefinitely, until
the control system is stopped. The update cycle is illustrated in Fig. 3.
Note that the effective sample rate was reduced to the original one
divided by the number of actuators. However, the rate at which some
actuator is being updated is the same as the original.

The computational advantage of the multiplexed implementation
lies in the fact that all QP routines are now performed over just one

degree of freedom. It is a well-established fact that the time required
to solve a QP problem grows with the cube of the number of inputs
[36],whereas the sample rate reduction is only linear in the number of
inputs. Therefore, the time savings earned byMMPCmay even allow
an increase of the original sample rate to help recover any lost
performance due to slower sampling. This is especially true for the
disturbance rejection properties (a faster rate helps reduce the effects
of disturbance in the intersample). This possibility is heavily
dependent on the problem at hand, because the other computational
costs need to be taken into account.

A. Implementation of the MMPC Control Law

Multiplexing was implemented on three of the four available
actuators: namely, fuel flow rate, variable stator-vane opening
(VSV), and variable bleed-valve opening (VBV). Fuel is optimized
and updated at “modulo 3” sampling instants (0, 3, 6, etc.). Actuator
VBV is optimized and updated at “modulo 3 plus 1” sampling
instants (1, 4, 7, etc.) and actuator VSV at “modulo 3 plus 2”
sampling instants (2, 5, 8, etc.). Two engine outputs provided by
Eq. (3) were controlled: thrust and turbine inlet temperature.
Traditionally, thrust is controlled indirectly using the fan speed or
engine pressure ratio, but the onboard model provides an estimate of
the actual thrust for control. Turbine inlet temperature is controlled
because it has a large impact on component life, and so it is important
that it is maintained within an acceptable range. By adjusting the
actuators using MPC, the engine can be controlled such that the
optimal thrust response is obtained while minimizing specific fuel
consumption and preserving part life.

The linear model of Eqs. (4) and (5) is obtained by linearization
with respect to these inputs and outputs. A number of constraints on
the states and the inputs are present in the optimization. With this
multiplexing approach on the engine model, we demonstrate
substantial computational savings while achieving almost the same
performance for the thrust as obtained with MPC. As will be seen
next, the savings increase dramatically for large prediction horizons,
starting with 27% corresponding to control and prediction horizons
of 2. The computation times reported here were obtained by timing
single quadratic optimization function calls and averaging the results
during the course of a simulation. Therefore, these times are
independent of the way code was written and provide meaningful
comparison with the conventional MPC.

B. Simulation Results

The following simulations illustrate the performance ofMMPC in
comparison with conventional MPC. Simulations shown here
correspond to multiplexing of all three actuators controlling the two
outputs after suitably retuning the system for the required
performance in thrust. In fact, significant performance loss was
observed when implementing the multiplexed approach with the
originalQ and Rweights used in the original MPC implementation.
Retuning to recover the performance in thrust was donemanually, by
trial-and-error simulations. Simulations correspond to a takeoff
thrust profile, which is used as a benchmark for control system
performance.

As can be seen in Fig. 4, the thrust response is similar to that
obtained from MPC, but Fig. 5 shows some jitter in the turbine inlet
temperature response. However, further tuning may be able to
remove this effect. Exact-temperature tracking is difficult to
accomplish with the three selected actuators. Instead of attempting to
track a temperature profile, leaving the temperature as a constraint
might prove more useful in future studies. In addition, the use of
nonupdated actuator values as known biases in the online
optimization process might help improve the response. Figures 6–8
show the control input update for fuel, VBV, andVSV resulting from
optimization performed for each actuator in a multiplexed fashion.
Note that the control trajectories for VSV and VBV are significantly
different from those of the original MPC. These simulations are
based on the fixed value of control and prediction horizons (both
equal to 20). Figure 9 shows the thrust response ofMMPC system for
various values of control and prediction horizons. In this figure, ch

Act. 1

Act. 2

Act. n

MMPC Update Cycle

MMP C Update Cycle

Act. 1

Act. 2

Act. n

T T T

T̄

Multiplexed Implementation

Effective sample period T̄ = nT

Conventional Implementation

Internal sample period T

Fig. 3 Multiplexed control updates.



represents the value of the control horizon and ph represents the
prediction horizon. During the up-transient, all horizon combina-
tions result in approximately the same performance, except for the
case ch� ph� 2, which gives a slightly longer rise time. Finally,
Fig. 10 shows the comparison of MPC and MMPC in terms of the

computational time taken by each of them in calculating the optimal
control law with variation in control and prediction horizon.

Simulations show that the thrust response of the engine using
MMPC is similar to that obtained with MPC after some tuning, even
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Fig. 4 Thrust comparison: MPC vs MMPC.
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Fig. 5 Temperature comparison: MPC vs MMPC.
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Fig. 6 Fuel-consumption comparison: MPC vs MMPC.
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Fig. 7 Variable bleed-valve opening comparison: MPC vs MMPC.
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Fig. 8 Variable stator-valve opening comparison: MPC vs MMPC.
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though the turbine temperature response shows some jitter. This
provides reassurance that the systemwill not be destabilized and that
it is likely to meet other performance requirements for the engine by
systematic tuning of the systems. It is important to note that the
ultimate purpose is real-time implementation. The bottleneck lies in
the computation of the actuator updates. If the time taken for this
computation plus overhead calculations is larger than the sampling
period permitted by the processor, real-time implementation is not
feasible.MMPCupdates only one actuator at a time, greatly reducing
the computation time and enabling the use of slower processing. For
horizons of 8 and larger, MMPC is faster by a factor of 3 or more.

V. Conclusions

The MPC technique represents a significant improvement over
traditional engine control approaches. Transient performance
optimization, disturbance rejection, and constraint handling are
combined in one systematic approach to control design. High-level
objectives such as pilot workload reduction, fuel economy
improvement, and component life extension can all be incorporated
as part of a control objective to be solved in the framework of MPC.

However, MPC is characterized by a large computational cost,
which precludes real-time implementation. The use of multiplexing
inMPC laws reduces the computational time required for calculating
the optimal control law by reducing the dimensionality of the
quadratic program. This can be done without adversely affecting
performance of the closed-loop system if retuning is performed. The
work presented here could be the basis for conducting test-stand
trials with actual engines and processors. The time savings earned by
MMPC is large enough to allow an increase in the original sample
rate. Thismay be used to help recover any lost performance due to the
slower effective rate introduced by multiplexing, in particular, in
terms of disturbance rejection. The use of an observer with the
multiplexed approach does not present difficulties. We have also
shown that the nominal multiplexed plant can be estimated by a
conventional linear time-invariant observer and that the usual
separation principle holds.
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