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Robust Positively Invariant Cylinders in Constrained
Variable Structure Control

Hanz Richter, Associate Member, IEEE, Brian D. O’Dell, and Eduardo A. Misawa, Senior Member, IEEE

Abstract—This paper proposes the use of cylinders as primary
invariant sets to be used in certain state-constrained control de-
signs. Following the idea originally introduced by O’Dell, the pri-
mary invariant set is intersected with the state constraints to yield
sets which retain the invariance under some conditions. Although
several results presented here apply to fairly general nonlinear sys-
tems and primary invariant sets of any shape, the focus is on con-
strained sliding-mode control (SMC) using infinite cylinders as the
primary invariant set. Their use is motivated by a coordinate trans-
formation where the sliding motion is decoupled from the overall
convergence to the origin. Robust positive invariance conditions
are given for cylinders having convex and compact cross sections.
For the case of cylinders with ellipsoidal cross sections, the invari-
ance condition is given in the form of a linear matrix inequality.
Further, a decision procedure to qualify each state constraint is
given as a tool for the selection of the switching gain. A numerical
example for a third-order plant illustrates the method.

Index Terms—Constrained control, positively invariant sets,
sliding-mode control, variable structure control.

I. INTRODUCTION

PRACTICAL application of any control scheme usually in-
volves a limited amount of control effort and physical con-

straints on some or all state variables. Variable structure tech-
niques, in particular, sliding-mode control (SMC), have received
widespread attention due to their trademark total disturbance re-
jection properties. In contrast with the vast amount of literature
concerning the theory and design of SMC [1]–[6], published
material on constrained SMC is scarce. On the other hand, lit-
erature on constrained linear control using set invariance con-
cepts is again abundant. A survey of invariance theory, including
a comprehensive list of references, is found in [7]. The pur-
pose of this paper is to summarize our findings in applying set
invariance concepts to the constrained SMC design problem.
Unlike many works dealing with set invariance, we do not at-
tempt to determine or approximate the largest invariant set for
a particular constrained system, for this may be achieved with
an allowable control that does not satisfy other design require-
ments. Instead, we assume that the sliding manifold has already
been selected to meet nominal performance requirements for the

sliding mode. The design is completed by selecting a switching
gain that is appropriate for the intended constraints and allow-
able disturbance. Among the shapes selected for invariant sets,
polyhedra offer good accuracy in expense of complexity, while
ellipsoids are, in that sense, the opposite [7]. Semiellipsoidal
sets were introduced by O’Dell and Misawa [8] as a compro-
mise solution between polyhedral and ellipsoidal sets for linear
systems under linear state feedback. A semiellipsoidal set is ob-
tained by intersecting an invariant ellipsoid with the state con-
straints. In this paper, we take the same approach, but substitute
the ellipsoid by an infinite cylinder whose axis represents, in
some coordinate system, the distance to the sliding hyperplane.
Conditions are given so that the constrained cylinder is posi-
tively invariant regardless of the disturbance; that is, the con-
strained cylinder is a robust positively invariant (RPI) set. Ad-
ditional conditions are given for the intersection of the cylinder
and the constraints to be again RPI. The intersection, to be called
“constrained cylinder,” is used at the design stage as a recover-
able set, that is, the set of states from which the system can be
started without constraint violation. Although only regulation
to the origin is directly treated, it is known that many tracking
problems reduce to the regulation of the error. Alternative ap-
proaches to constrained SMC are found, for instance, in [9] and
references therein, where constraint satisfaction in the presence
of uncertainty is achieved for a robotic manipulator by intro-
ducing penalties in a control Lyapunov function, and in [10],
where disturbance is not considered and the control law is al-
lowed to depend on initial conditions. This paper is organized as
follows: Section II introduces basic definitions and results con-
cerning robust positive invariance; Section III develops a gen-
eral result concerning the invariance of the intersection of a pri-
mary RPI set of general shape with the linear state constraints;
Section IV offers an overview of SMC in the context of our
work and develops the central results for cylinders of arbritrary
cross sections; Section V specializes the results to ellipsoidal
cross sections and describes the LMI and critical switching gain
methods; Section VI addresses the use of a boundary layer to
avoid chattering, giving additional conditions to retain the va-
lidity of the original design; Section VII is a numerical example
for a third-order plant; Section VIII describes some possible ex-
tensions to the work; and Section IX offers conclusions.

II. BASIC THEORY OF ROBUST POSITIVE INVARIANCE

Although the systems which this paper addresses are linear,
the results of this section apply to more general systems, pos-
sibly time varying. Given a dynamic system described by

, having a unique solution in a subset , the
set is said to be positively invariant (PI) for the system
if, for every initial state , the solution belongs to



for . For the uncertain system , where
is a function known to have values in some set , the set

is said to be RPI with respect to if for all and for
all functions the solution belongs to for . The
definition does not restrict the class of functions to which be-
longs, as long as a unique solution to exists
for all initial conditions in . The widely known result due to
Nagumo [11] provides a necessary and sufficient condition for
the invariance of a set in terms of its tangent cone, also known
as Bouligand contingent cone. A precise definition of tangent
cone is given, for instance, in [7]. For our purposes, it will suf-
fice to recall the tangent cones of particular sets, and to cite some
relevant properties. The notation will be used for the tan-
gent cone of set at a point . The notations ,
and indicate, as usual, the complement, closure and
boundary of , and that is a subset (not necessarily proper) of

, respectively. The interior of a set is denoted as . The
extended real line is denoted here as .

Theorem 1 [11]: Consider the system having a
unique solution for each initial condition in a set . Let
be a closed and convex set. Then, is PI for the system if and
only if for all . Mechanically interpreted,
the theorem formalizes the intuitive notion of invariance being
attained when the velocity vectors at the boundary of the set all
point into or are tangent to . The following important extension
of Nagumo’s result is given in [7] and concerns robust positive
invariance.

Theorem 2 [7]: Consider the uncertain system
where the uncertain input has values in

for all . Assume that the system possesses a unique
solution for all initial conditions and all . Then, the
convex and closed set is RPI with respect to (w.r.t.) if
and only if for all and for all .

Note that the RPI property depends only on the range of
values taken by . This allows one to speak of the RPI of

with respect to . A few useful properties of tangent cones
are now stated.

Property 1 [12], [13]: If and are closed and convex sets
such that , then for
all .

In the previous property and throughout this paper, the nota-
tion is used for the set of the such that
and , where and are subsets of . The set-theoretic
difference, in contrast, is denoted as .

Property 2 [12], [7]: If is convex, then is convex
for all .

It is also a fact [12], [7] that if then .
To end this section, we show that, for a certain class of systems,
and when the uncertain input belongs to a closed interval, it
is sufficient to check for positive invariance of the system at
extreme values of the input.

Theorem 3: Consider a system that is linear in the uncertainty,
e.g., where

. Assume that the system possesses a unique
solution for all initial conditions and all . Then,

is RPI w.r.t. if and only if it is PI for
and for .

Proof: Suppose is positively invariant for
and for . Then, by Theorem 1,

and for all . Let
. Then, for some and thus

. Since is convex
whenever is convex, we conclude that for
all and for all . By Theorem 2, is RPI. The
reverse implication is trivial.

III. STATE-CONSTRAINED INVARIANT SETS

Commonly used state constraints are typically specified as
a convex polyhedron. The use of the constraints themselves as
RPI set is difficult to accomplish. For this reason, sets of simpler
description are used as primary invariant sets. The set can be re-
quired, for instance, to be a subset of the state constraint set,
thus guaranteeing that the latter will not be violated. This, how-
ever, can be conservative. Instead, we consider the possibility of
intersecting the state constraints with the primary invariant set.

Definition 1: A linear state constraint set is defined as
for , where . are

row vectors such that is a convex set containing the origin in
its interior.

Note that , the boundary of , is the set of points such
that . At this point, it is convenient to recall [12], [7]
that the tangent cone to a linear state constraint is
given by the points such that . In connection with the
uncertain system , where for all ,
introduce the following sets:

for some

for all (1)

The next result concerns the invariance of the intersection of
a state constraint set and an RPI set. It generalizes Theorem 1
from [8], in that the system is not restricted to be linear under
state feedback, the positively invariant set does not have to be
an ellipsoid, disturbance is allowed, and the constraints may be
asymmetric.

Theorem 4: Consider the system , where
for and let be a compact and convex

set which is RPI w.r.t. . Let be a
linear state constraint set as in Definition 1. Assume, further,
that . Denote . Then, is RPI
w.r.t. if and only if for .

The proof of Theorem 4 can be found in the Appendix.

IV. APPLICATION TO SMC OF LINEAR SYSTEMS

A. Overview of SMC

SMC is a widely studied technique [1], [4], [6] that achieves
total insensitivity of the controlled variables to certain kinds of
disturbances and parameter uncertainties. In this section, we
briefly introduce the salient characteristics of linear systems
under SMC. Consider the single-input, linear, and time-invariant
system

(2)



where is an matrix, and are column vectors,
is the scalar control input, and is a scalar, unknown

disturbance. It is assumed that the pair is controllable
and that the matching condition

rank rank

is satisfied, so that the system can be rewritten as

(3)

Assume that is bounded so that for all ,
where . In order to specify an SMC law
with linear sliding manifold, let be a nonsingular matrix satis-
fying , and such that is a nonsingular

matrix, where for are the partition
blocks of with scalar. Such transformation corre-
sponds to the well-known regular form used in the SMC liter-
ature, with the additional restriction of being invertible. A
method to find such for any controllable pair is given
in the Appendix. Define a coordinate transformation
and write the system equations in the new coordinates as

Consider the sliding manifold .
Without loss of generality, consider that . The control
law

(4)

results in the closed-loop dynamics described by

sign

It can be easily shown that any choice of under the previous
constraints on , and such that , results in . It is
likewise straightforward to show that the closed-loop dynamics
in the original coordinates is described by

sign (5)

The function has a negative derivative if , showing
that the control law (4) results in the state reaching the plane

in finite time and remaining there indefinitely despite the
presence of the disturbance [1], [4], [6]. Evolution of the closed-
loop system (5) for is independent of the disturbance and
described by the reduced dynamics

(6)

where

(7)

Thus, a stable sliding mode is obtained by choosing such that
has eigenvalues with negative real parts ( is Hurwitz).

It can be shown that the controllability of guarantees
that the eigenvalues of may be freely placed using . The
existence and uniqueness of a solution to (5), as well as the
existence of a sliding mode, have been widely considered in the
standard SMC literature [6], [14], [15]. For the remainder of this
paper, it will be assumed that is Hurwitz, , and that
a unique solution to the closed-loop SMC differential (5) exists
for every initial condition in .

B. Decomposition of the Closed-Loop Dynamics

The Lyapunov function induces an obvious family
of invariant sets, namely, the sets
for are all positively invariant. These sets are “naturally”
invariant for systems under SMC. A coordinate transformation
is introduced here that decouples the motion towards from
the overall convergence to the origin. This decomposition will
suggest a cylindrical shape for positively invariant sets.

Lemma 1: There exists a coordinate transformation
with nonsingular in which the closed-loop dynamics (5) is
expressed as

sign (8)

where , and
. Moreover, .

The proof to Lemma 1 is done directly by specifying . In
[16], it is shown that is a valid choice, where is the
invertible matrix given by

Note that is proportional to the scalar and independent of
. An immediate observation is that an arbitrary (and possibly

infinite) real interval containing zero is RPI for the dynamics of
. The result is formalized in the following.
Lemma 2: For any initial condition , where

, with and , the trajectory
of the closed-loop system (8) is such that for all

; that is, is RPI for the dynamics of .
Lemma 2 follows directly from Lemma 1 by using the condi-

tions and in establishing
the monotonic decrease of (and that of ) at both sides of

. With the aid of Lemma 2, it is now possible to specify
cylindrical positive invariant sets with fairly general cross sec-
tions. Introduce the notation

The set is termed the cylinder’s cross section. The following
result follows directly from Lemma 2.

Theorem 5: Let be a compact and convex set
containing the origin. Suppose is RPI for the system

, where is Hurwitz and for



all . Then, all cylinders such that are
RPI for the closed-loop dynamics of (8).

From now on, a compact and convex cross section
will be assumed in the notation for cylinders. Also,
the notation is used for the family of cylinders

. We assume
that is the constraint set in -coordinates. That is, to each
linear constraint for the original coordinates, there
corresponds a constraint . Since is
nonsingular, it is straightforward to see that is convex if
and only if the original constraint set in -coordinates is so.
For the remainder of this paper, assume that for

. This is a basic problem feasibility assump-
tion discussed, for instance, in [10]. Note that it implies that

for . Since is compact, the following
quantities are well defined:

(9)

(10)

Note that , since . Now, a few auxiliary
results are introduced concerning the properties of the sets de-
fined in (1) and their boundaries, for the specific arising
in the SMC closed-loop dynamics

sign

sign (11)

Equation (11) defines as the value of in the SMC
closed-loop dynamics for a constant disturbance value. The
boundary of separates into two regions and

where the value of increases (constraint viola-
tion) and decreases (constraint satisfaction), respectively. The
following result precisely states this observation and gives an
explicit formula for .

Proposition 1: Suppose , where .
Then, the collection of subsets cor-
responding to of (11) is a partition of . Furthermore

where sign .
The shape of the set and the partition it induces is

schematically depicted in Fig. 1 for . The boundary ,
labeled with zeros, is composed of two “vertical” half-planes
situated at opposite sides of , together with the line

at . The regions indicated with plus and
minus signs correspond to and , respectively. The con-
straint shown would not satisfy Corollary 1, since it intersects

inside the cylinder.
The second result establishes the existence of at least one vi-

able point on the intersection of the constraint boundary and the
interior of an RPI cylinder. That is, it discards the possibility that
all points on the portion of the boundary inside the RPI cylinder
result in constraint violation.

Lemma 3: Let the family of cylinders be RPI for the
SMC dynamics (8). Let a linear state constraint be such that

Fig. 1. Set @G and the partition it induces.

. Then, such
that .

The proof of Lemma 3 is shown in the Appendix, while the
proof of the more intuitive Proposition 1 has been omitted due
to space limitations. Interested readers are referred to [16] for
details.

The following corollary to Theorem 4 provides a sufficient
condition for RPI that leads to computation.

Corollary 1: Let the family of cylinders be RPI for the
SMC dynamics (8) and let . Let be a constraint set
such that . Then, is RPI for (8) if

.
Corollary 1 is proven with the aid of Lemma 3 and Proposi-

tion 1. The proof appears in the Appendix.
Comments on Conservativeness: While Theorem 4 is a nec-

essary and sufficient condition, its use would require the explo-
ration of the whole region. As done in [8] and [17], compu-
tational tractability is obtained by expressing the result in terms
of the boundary , a set of reduced dimensionality. In doing
so, the condition becomes only sufficient. However, consider a
set which is RPI but fails the condition of the Corollary. It
can be seen that this can only occur for points
belonging to the boundary of the cylinder. Therefore, a new RPI
cylinder which passes the condition can be obtained by an in-
finitesimally small reduction in volume. This implies that the
result, for all practical purposes, is not conservative.

V. CYLINDERS WITH ELLIPSOIDAL CROSS SECTIONS

The results presented previously apply to a fairly large class
of cylinder cross sections . Ellipsoidal invariant sets are ex-
tensively used in computations due to the correspondence to
quadratic Lyapunov functions and their simplicity in relation to
the also commonly used polyhedral sets. Ellipsoidal sets, how-
ever, can be conservative. The semiellipsoidal sets introduced
by O’Dell for linear systems under state feedback achieve a
good compromise between simplicity and conservativeness. A
semiellipsoidal set is obtained by intersecting a linear state con-
straint set and an ellipsoidal invariant set [8], [17]. In this sec-
tion, we restrict to be ellipsoidal and develop results leading
to design calculations for constrained SMC. As seen in the pre-
vious sections, a cylinder is first required to be RPI for it to yield



an RPI set upon intersection with the state constraints. By The-
orem 5, we see that the cylinder cross section is required to be
itself RPI for a linear system driven by a bounded disturbance.
Moreover, by Theorem 3, it is sufficient to establish invariance
for extreme disturbance values.

A. RPI Cylinders

Consider the system

(12)

where . We wish to find conditions under which
the ellipsoidal set with

is RPI for the dynamics (12). To this effect, note that [7]
the tangent cone of at its boundary is given by

. Nagumo’s condition results in

along (13)

Conditions on for (13) to hold can be derived following two
approaches. One involves linear matrix inequalities (LMIs)
and lends itself to ellipsoid volume optimization. The other
approach has a simpler form and provides the maximum sum of
disturbance bound and switching gain allowable for a particular
ellipsoid.

B. LMI Approach

Nagumo’s condition (13) is equivalent to a quadratic bound-
edness requirement, which, as shown in [18], can be equiva-
lently expressed by the LMI

(14)

where is sought.
Lemma 4: The set is RPI for

system (12) if there exist a symmetric, positive–definite matrix
and a scalar such that the LMI (14) holds.
Note that LMI (14) is always feasible, since is Hurwitz.

Moreover, only values of less than the maximum decay rate
need to be considered, that is, satisfies ,
where is that eigenvalue of with the largest real part in ab-
solute value [18]. The previous matrix inequality can be readily
solved using, for instance, the Matlab LMI toolbox.

C. Critical Switching Gain

A computationally simpler alternative is obtained by using
Theorem 3. Positive invariance is now required for the two au-
tonomous systems that result when either or are used. In
view of the symmetry of , Nagumo’s condition can be restated
as

along (15)

Define

It is straightforward to prove that a necessary condition for (15)
to hold for some is that . Thus, we may assume
that is the unique symmetric, positive–definite solution to the
previous Lyapunov equation for arbitrary , guaranteed
to exist due to being Hurwitz. Given and

, there exists some such that
for all . The

quantity is bounded by . The
bound is readily obtained by Lagrange multipliers and given
by

(16)

where and is that eigenvector of yielding
the least value for the right-hand side of (16). Knowing , it now
follows that inequality (15) holds in if .
Moreover, since , we consider

along (17)

To obtain a condition equivalent to (17), we solve

s.t.

This is readily solved using Lagrange multipliers. The max-
imum is , which must be less than . The resulting
invariance condition can be also shown to be necessary, and it
is summarized in the following.

Lemma 5: The set is RPI for
system (12) if and only if there exist symmetric, positive–defi-
nite matrices and such that

and

with defined in (16).
Lemmas 5 and 4 lead to computation of RPI cylinders for

SMC without regard to constraints. Summarizing, the ellip-
soidal cross section is made itself RPI by either the LMI or
critical switching gain methods, taking into account
and . Theorem 5 guarantees that all cylinders of the
family are RPI.

D. State-Constrained RPI Cylinders

In this section, we apply Corollary 1 to cylinders with ellip-
soidal cross sections and provide results leading to design cal-
culations. One way to satisfy the condition in the Corollary is to
find the point of (if any) for which is



minimum and enforce . In other words, we wish
to solve the optimization problem

s.t.

(18)

The set can intersect at the half-planes
or at . Therefore, we solve separate

optimization problems for each case and enforce
in both. Noting that the portion of contained in is
defined by , we see that the
optimization problems to be solved are

s.t.

sign

and

s.t.

Define

It is straightforward to see that is a symmetric, positive–def-
inite matrix when and and are lin-
early independent. The previous optimization problems have
closed-form solutions, divided into several cases according to
whether is singular or not and depending on certain condi-
tions on the parameters. Readers are referred to [16] for details.
Verification of Corollary 1 is achieved through the decision pro-
cedure shown in Tables I and II. The tables are used with the
following variables:

TABLE I
CONDITION TABLE

TABLE II
DECISION TABLE

where are the entries of and are those of .
It is straightforward to show that if then the th
constraint is automatically satisfied.

E. Design Philosophy and Control Constraints

The method presented here does not specifically address reg-
ulation performance. The results are useful to guarantee that the
specified state constraints will not be violated as the state pro-
ceeds to the origin under the SMC law. All this is done in the
presence of a disturbance. The following steps summarize the
basic method.

1) Select the coefficients of the sliding hyperplane based
on dynamic specifications for the sliding mode.

2) Obtain the -coordinate description of the closed-loop
system (8) using matrix .

3) Use either the LMI method or the direct critical switching
gain method to find an RPI cylinder and the maximum sum
of switching gain and disturbance bound . Alternatively,
if has been selected based on other considerations (such
as reaching time), evaluate the maximum allowable distur-
bance to preserve RPI.



4) Use Tables I and II to qualify each constraint. If all
constraints are satisfied, their intersection with the RPI
cylinder is the safe operating set.

5) If a larger operating set is sought, a larger RPI cylinder may
be sought in step 3 (see the following).

Several refinements can be incorporated to aid the solution of
LMI (14). For instance, one may rule out large ellipsoids, e.g.,
those whose interior contains the constraint set. This is accom-
plished by enforcing , where is a suitable positive
scalar to be determined from constraint geometry. The volume
of the ellipsoid can be maximized under and the LMI
constraint. The problem formulation in this case becomes

trace s.t.

Volume optimization is included in the numerical example of
Section VII. Control constraints are easily incorporated in the
design. In fact, the control law of (4) can be expressed in -co-
ordinates as

sign

Thus, it is straightforward to show, using the triangle inequality,
that a control constraint of the form can be accommo-
dated by introducing the additional state constraints
and , where

VI. REMOVAL OF CHATTERING BY BOUNDARY LAYER

Total insensitivity to matched disturbance during the sliding
motion is obtained at the cost of rapid control switching across
the sliding manifold. Such chattering may not be allowed in a
practical realization of the SMC controller due to actuator wear
and excitation of high-frequency unmodeled dynamics of the
plant. The chattering problem has been addressed in a variety of
ways [4], [19], [20]. In this paper, we choose the commonly used
finite-slope approximation of the switching law. This allows us
to exploit the inherent robust positive invariance of the boundary
layer and introduce minor changes to the results derived for the
switching case. That is, we replace the signum function in (4)
with the saturation function

when

sign when

where represents the boundary layer thickness. The closed-
loop dynamics are now described by (8), substituting sign by

. We will refer to the new dynamics as (8) . Although it
is possible and sometimes useful to let vary with time to better
manage the tradeoff between control bandwidth and accuracy,
we will assume that is a constant positive quantity. The set

(19)

is called the boundary layer.

A. Closed-Loop Dynamics in

When , the dynamics in -coordinates become

(20)

(21)

The dynamics of now depend on through a linear func-
tion. In the switching case of (8), full decoupling was achieved
at either side of . Also, the dynamics of is now linear.
It can be easily shown that, when is properly selected, the
interval is RPI with respect to the dynamics of
in (21). Also, is attractive, that is, all trajectories of enter

in finite time and remain there for all future times despite
the presence of the uncertainty. We summarize the results in the
following.

Lemma 6: Let . Then, for any initial condition
such that the trajectory of satisfies

for all .
Note that only the interval (and not an arbi-

trary subinterval) is guaranteed to be RPI. Lemma 6 plays the
role of Lemma 2 in our earlier derivations. Similarly, the fol-
lowing result analogous to Theorem 5 applies.

Theorem 6: Let be a compact and convex set
containing the origin. Suppose is RPI for the system

, where is Hurwitz and
for all . Then, all cylinders such that

are RPI for the closed-loop dynamics of .
In fact, in (20) can be seen as a bounded perturbation

for the dynamics of , that is, for , due to in-
variance. Theorem 6 introduces little modification to the critical
switching gain or LMI methods of Lemmas 5 and 4. Given a
matrix corresponding to the cross section of a cylinder designed
for the switching case, invariance of the cylinder within the
boundary layer is checked by substituting by
in the definition of . The LMI must hold for some value of
(not necessarily the same one used for the switching case) or,
alternatively, the inequality of Lemma 4 must hold.

B. Incorporation of State Constraints

Define the following vector field associated with the dy-
namics (20) and (21):

(22)

and introduce the sets

for some

for all

The counterpart of Corollary 1 of Section IV can be stated as
follows.



Fig. 2. RPI state-constrained cylinder.

Corollary 2: Let the boundary layer be RPI for the dy-
namics of (20) and (21). Then,
is RPI for the same dynamics if

for all .
Corollary 2 can be proved with the aid of the following re-

sults.
Lemma 7: Let the boundary layer be RPI for the dynamics

(20) and (21). Let a linear state constraint be such that
. Then,

such that .
Lemma 7 is proved in a manner similar to Lemma 3.
Proposition 2: Suppose , where .

Then, the collection of subsets corresponding
to of (22) is a partition of . Furthermore

The proof of Proposition 2 is straightforward. Fig. 2 illus-
trates the partition. The constraint boundary shown intersects

within , indicating constraint violation in the boundary
layer. Corollary 2 is proved in the same way as Corollary 1,
using Theorem 4 and taking and

. The result guarantees that the constraints will not
be violated for system trajectories contained in the boundary
layer. We must, however, establish robust invariance of the
whole constrained cylinder, taking into account the change in
dynamics introduced by the saturation function. We assume that
a design has been completed assuming the original switching
dynamics of (8) and that, in addition, Corollary 2 is satisfied.
The following result formalizes the validity of the approach.

Theorem 7: Let and suppose is RPI for
the dynamics of (8). If is RPI for dy-
namics (20) and (21), then is RPI for the dynamics of .

The previous theorem is directly proved by examining an ar-
bitrary trajectory starting in and using the hypotheses
and attractiveness of the boundary layer. Standard causality
and time-invariance arguments allow the concatenation of the
subtrajectories corresponding to motion inside and outside the
boundary layer.

C. Ellipsoidal Cross Sections

For cylinders with ellipsoidal cross section, the results of
Corollary 2 can be reduced to computational steps. Assuming

that the boundary layer has been rendered RPI with respect to
the dynamics (20) and (21), design conditions can be obtained
by finding the point of (if any) for which
is minimum and enforce . In other words, we solve
the optimization problem

s.t.

(23)

As in the switching case, the problem has a straightforward
closed-form solution which leads to a few inequalities to be
checked. Based on Theorem 7, it is evident that these inequal-
ities must be checked in addition to those of Tables I, II. Of
course, the RPI condition in the boundary layer must hold. The
additional inequalities contain as a parameter. The simplifica-
tion of the whole set of inequalities is still a work in progress.
Some simplification is expected if constraint symmetry is as-
sumed.

VII. NUMERICAL EXAMPLE

Consider the following controllable pair:

Consider that the constraints in -coordinates are given by a
parallelepiped containing the origin in its interior. The rows
specify individual constraints

Suppose that the disturbance is given by .
An appropriate set of transformation matrices is given by

The transformed constraints are obtained as the rows of .
Note that the constraints are not symmetric in either - or -co-
ordinates. Using the transformation , matrix

has two negative eigenvalues. Choosing to place the poles
of at results in , which corre-
sponds to in the original -coordinates. The range
for is . Choosing an arbitrary fixed , we solve the
volume optimization problem using and . The
solution is a matrix with being the diagonal
and the off-diagonal. Choosing satisfies the
decision procedure for constraint qualification and thus the in-
tersection of the cylinder and state constraints in -coordinates
is RPI. Of course, the intersection of the transformed cylinder



Fig. 3. RPI state-constrained cylinder.

Fig. 4. Projected trajectories and constraints.

and constraints in -coordinates is also RPI. Using the alterna-
tive method with the same matrix, we obtain and

Then, we may choose, for instance, for ellipsoidal in-
variance alone, but there is no guarantee that this choice of gain
will satisfy the decision procedure for all constraints. In fact,

the second constraint would be violated with . Fig. 3
sketches the shape of constrained cylinder in -coordinates.
Fig. 4 sketches, in -coordinates, the trajectories projected onto
the plane and the constraints and transformed cylinder
section at . If the saturation function is used with ,
it can be verified that the LMI condition of (14) still holds for

, using . This guarantees that the
cylinder is still RPI for the boundary layer dynamics. Note that
the RPI condition alone is independent of . It can be verified
that a value of , for instance, satisfies the set of addi-
tional inequalities required for constraint satisfaction inside the
boundary layer.

VIII. EXTENSIONS

Several extensions to the general cylinder approach are pos-
sible. In this section, we focus in a restricted kind of nonlinear
plants. Certain kinds of nonlinear system under SMC with linear
manifolds have reaching dynamics similar to that of linear sys-
tems. Single-input nonlinear systems in integrator chain form
are a direct example. Consider the single-input system

(24)

where in a convex region of containing the origin.
As in the linear case, let the sliding function be defined by

. Suppose the control input is such that

sign

with . Assume without loss of generality (w.l.o.g.) that
the th component of is 1. Then, the closed-loop dynamics
can be expressed as

...
...

...
...

... sign

(25)

When sliding occurs, and
the last state equation in (25) is redundant with the sliding con-
dition . The reduced dynamics is described by

...
...

...
... (26)

Define the constant matrix in (26) as . This matrix has the
standard controllability form, and it is clear how to choose the
first coefficients of to achieve a stable sliding mode.



In the following, it will be assumed that is Hurwitz. As
in the linear case, we seek a coordinate transformation which
reveals the singular structure of the constant matrix in (25). The
existence of such transformation is ascertained in the following.

Lemma 8: There exists a coordinate transformation
with nonsingular in which the closed-loop dynamics (25) is
expressed as

sign (27)

where .
One possible form of that verifies Lemma 8 is given by

...
...
...

(28)

Once the system is written in -coordinates, it is straightfor-
ward to find invariant cylinders with the methods of previous
sections. In addition to the previous nonlinear extension,
it is observed that certain minimum-phase, nonlinear mul-
tiple-input–multiple-output (MIMO) systems under tracking
control via sliding modes result in decoupled tracking error
dynamics which essentially reduce to the forms contemplated
in this paper and can be, therefore, treated with the methods
described here. Multivariable extensions are certainly possible.

IX. CONCLUSION

General results are given concerning robust positive invari-
ance of the intersection of a primary invariant set with a convex
state constraint set. RPI cylinders are introduced as a tool to
design sliding-mode controllers for constrained linear systems.
In the case of ellipsoidal cross sections, we provide conditions
under which the cylinder is RPI in terms of a linear matrix in-
equality. Further, a decision procedure is described that qualifies
each constraint so that the constrained cylinder is itself RPI. The
conditions reduce to a few inequalities on the switching gain.
The number of inequalities to check depends on the number
of constraints, but not on system order. Removal of chattering
is addressed by introducing a finite-slope approximation to the
switching function. The treatment of this case fits in the cylinder
framework. Additional conditions are given so that an already
designed cylinder for the switching case can still be used. Cer-
tain nonlinear plants under SMC with linear manifold also fit
in the cylinder framework. Other extensions to explore include
robust output tracking, multiple-input systems and unmatched
disturbance.

APPENDIX I
CONSTRUCTION OF

One possible way to select is presented here. First, find a
transformation to put in regular form using, for in-
stance, the QR decomposition method shown in [14]. In this
method, the nonzero component of is not guaranteed
to be 1, as required in this paper. A new , however, can be

easily obtained by scaling. Denote the block component
of by . If is invertible, the required transforma-
tion has been found. If not, a second transformation is applied
to the regular form found previously. The regular form matrices
have the form

(29)

Note that the regular form has the properties of being
controllable and [14]. Partition into four compatible
blocks named . Then, we must have

Set to any invertible matrix, set , and
let

Selection of can be done so that the block of
has desired eigenvalues, specifically, to make

it nonsingular. Let and denote the four block com-
ponents of by . Using the block matrix
inversion formulas found, for instance, in [21, App.], it is
possible to show that

Since is controllable and , it follows directly
that is also controllable. Thus, can be used
to assign nonzero eigenvalues to . Therefore,
is the sought transformation. Finally, we show that
is controllable. In fact, has the same controllability
as , since the two pairs are related by
similarity transformation. Given that the system associated with

is controllable, the feedback transformation
shows that is also con-

trollable.

APPENDIX II
PROOF OF THEOREM 4

Sufficiency: In view of Theorem 2, we wish to show that
. It is possible to show

[16], under the convexity and closure assumptions, that one can
decompose the boundary of as

First, we show that . By hy-
pothesis, .
Noting that , we have that

. Now, since , we have
that, if then , thus ,
whereas if then due to being



RPI. Therefore, .
By assumption, . Then, by Property
1, . Thus,

. Now, we show that
. is RPI by assump-

tion, therefore, , in particular,
. Since , we have that, if

then , thus , whereas if for
some , then , since is closed.
By hypothesis, it follows, as before, that .
Thus, .
We conclude that , and that

is, therefore, RPI.
Necessity: Suppose is RPI, and by contradiction, suppose

for some such that .
Then, ; so
such that . Since

, we have that such that ,
contradicting that is RPI.

APPENDIX III
PROOF OF LEMMA 3

Partition as . Let
. Suppose .

Then, can be parameterized as
. Consider the set

. The
functional given by
is bounded and, therefore, continuous in . Then,
is compact, since is compact [22]. Thus, ,
the translation of , is also closed and bounded, i.e.,
is a real closed interval possessing a minimum and a max-
imum. Note also that the maximum and minimum values
of are achieved at the boundary of . Denote by
and the half-spaces of where and ,
respectively. Denote by the plane . Consider,
first, the case when . Let

. Note that . Then,
is RPI as a member of the family . This

implies, by Theorem 2 that
. Now, ,

thus , in particular, for
a point , where ; so

.
Therefore, , with

. To prove the strict inequality, suppose,
by contradiction, that for some . This
would require , which is impossible, since

. Thus, is a point satisfying the Lemma. The case
when is treated similarly, taking

, which is negative, and considering the cylinder
. Finally, consider the remaining possibilities of

or . In those cases, the
intersection of with the cylinder and the sliding hyperplane

is nonempty. System dynamics on the sliding hyper-
plane is given by . Consider the set resulting from

the intersection of and the closure of the complement of the
state constraint restricted to , that is, let ,
where . It is easy to see that

is compact and convex and that it does not contain the origin.
Suppose, by contradiction, that .
Then, following arguments similar to those used in the proof of
Theorem 4, it is possible to deduce that is positively invariant
for , which contradicts the asymptotic stability
of the origin. Thus, such that ,
which in turns implies that
satisfies .

APPENDIX IV
PROOF OF COROLLARY 1

By hypothesis, and using Proposition 1, we have that
either or

. For the first possibility, we have that

Then, for all such that
, contradicting Lemma 3. Therefore, it must be

true that . However,
, therefore . Finally,

since , we have . The
Corollary now follows from Theorem 4.
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