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Modelling and validation of a propellant mixer
for controller design ™
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Abstract

A mixing chamber used in rocket engine testing at the NASA Stennis Space Center is modelled by a sys-
tem of two nonlinear ordinary differential equations. The mixer is used to condition the thermodynamic
properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase.
The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets,
and the position of the exit valve regulating the flow of conditioned propellant. Mixer operation during a
test requires the regulation of its internal pressure, exit mass flow, and exit temperature. A mathematical
model is developed to facilitate subsequent controller designs. The model must be simple enough to lend
itself to subsequent feedback controller design, yet its accuracy must be tested against real data. For this
reason, the model includes function calls to thermodynamic property data. Some structural properties of
the resulting model that pertain to controller design, such as uniqueness of the equilibrium point, feedback
linearizability and local stability are shown to hold under conditions having direct physical interpretation.
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The existence of fixed valve positions that attain a desired operating condition is also shown. Validation of
the model against real data is likewise provided.

1. Introduction

The NASA John C. Stennis Space Center (SSC) conducts extensive ground-based testing and
flight certification of rocket engines, in particular, of the Space Shuttle Main Engine (SSME).
Combustion chambers and turbomachinery related to rocket engines are also tested at SSC. This
work is part of an on-going effort to develop a software package providing flexibility in simulation
and control tasks [15,4,5,9] frequently found in test operations at SSC. Test conditions require
that liquid propellants, namely liquid oxygen and liquid hydrogen (LH2) be supplied to the engine
or component at very precise conditions of temperature, pressure and mass flow rate. An excess or
deficiency in any of these three flow parameters may result in damaged components or in a sub-
optimal test. To achieve the required conditions, the delivery system includes a mixing chamber,
henceforth referred to as “mixer”. The mixer subsystem is depicted in Fig. 1. LH2 is stored in the
run tank, which is kept at a constant pressure by an independent control loop. Gaseous hydrogen
(GH2) is stored in high pressure bottles, and has a higher temperature than the LH2. One control
valve, referred to as the “liquid valve” is used to manipulate the flow of LH2 into the mixer. There
is also a “‘gas valve” and an ‘“‘exit valve”. The positions of the valves constitute the only control
variables for the mixer subsystem. A mixer control system must achieve tracking and regulation of
mixer outputs to desired values. The outputs of interest are the mixer pressure, exit flow temper-
ature, and exit mass flow. A dynamic model and controller are intended to replace the current
method of operation of the mixer, which uses only a steady-state thermodynamic model and
extensive heuristics. The use of the modelling and control techniques described herein is expected
to provide great flexibility and better mixer performance. In this article, focus is placed on the
mathematical modelling stage, together with an analysis of model properties and data validation.
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Fig. 1. The mixer subsystem.



2. Transient thermodynamics model of the mixer
2.1. Units

All expressions and numerical quantities are in SI units, with pressures in MPa, densities in
kg/m’, internal energies and enthalpies in kJ/kg, temperatures in K and mass flow rates in
kg/s.

2.2. Valve models

The flow w; of LH2 through the liquid valve depends on the pressure difference across the valve,
the density of the source LH2 and the liquid valve opening coefficient C,; according to [3]

W1:C1CV1\/ (Pl—P)pl, (1)

where P, is the source LH2 pressure and P is the mixer pressure in psia; p; is the source LH2 den-
sity in 1bm/ft>, and C; = 2.404 x 1072, All valve opening coefficients are dimensionless. For gas
flow, there is a separate expression [3]

C>Cyq /Pé - P (@), when P, < 2P,
e = g @
C4Cyor/Typ, when P, > 2P (choked flow),

where T, is the source GH2 temperature, P, is the source GH2 pressure, and C,, is the gas valve
opening coefficient. In SI units C, = 1.086 x 107> and C, = 9.2135 x 10~*. Specifications for the
conditioned exit flow require that the propellant be in the liquid phase. Therefore it is assumed
that the form of Eq. (1) is also valid for the exit flow, namely

we = C3Ce V (P _Ps) ) (3)

where C3 = Cy, p and P are the mixer density and pressure, respectively, and P; is the pressure at
the outlet of the exit valve.

2.3. Mass and energy balances

The set of two nonlinear differential equations which constitute the model can be derived from
the conservation of mass for compressible flow and from the First Law of Thermodynamics for a
control volume including transient terms [16]. Upon manipulations, the equations may be ex-
pressed in terms of internal energy and density derivatives as

1

p:V(Wl‘i‘Wg_We)a (4)

0= pLV (Wil — u) + wy(hg — u) — we(he — u)], (5)



where Vis the fixed mixer volume, /%, h, and h, are the source liquid, source gas, and exit enthal-
pies, respectively. The mass flows w; are functions of pressure, and are calculated according to
Egs. (1) and (2).

2.4. State variable model

Further manipulations are required to put the above physical model in state-space form. It is
assumed that enthalpy is conserved across the exit valve, and the definition [16] h =u + CP/p,
where C is a constant depending on the choice of units, is used. For the chosen units,
C =1x10°. The resulting model is compactly expressed as

p :ﬁ(P(p?u)7p)CV1 +f2(P(pau)7p)CVg+f3(P(p7u)ap)Cvea (6)
u= gl(P<p7u)7p7u)Cvl +g2(P(p7u)’pvu)Cvg +g3(P(p,u),p,u)Cve, (7)
where

fi = CV (P = P)py,
fi=C, if Py > 2P,

fo=C\/Pi =P, if P, <2P,

ﬁ»:C/SV(P_Ps)a
g1:ﬁ<hl_u>a

P

hy —u
g2:ﬁ<gp )7

P— PP

p P
The constants are given by C| = C1/V, C, = C4/Tep,/V, Cy=—C3/V =—-C1/V, C; = CC,
and C, = C, \/T‘gpg /V. It is to be noted that, given initial conditions of internal energy and den-
sity, the numerical solution of Egs. (6), (7) requires that the mixer pressure P be known at all times
as a function of p and u. Such computation poses difficulties and requires special routines. Indeed,
strictly speaking, density and internal energy do not completely determine pressure. Thermody-
namic data for a variety of substances shows that one may find density-energy-pressure triples
that have the same densities and energies with distinct corresponding pressures. Although it is
possible, in principle, to find correlations that link the variables in limited ranges, the number
of separate expressions and their mathematical form makes this method inadmissible in the devel-
opment of a controls model. Fortunately, the errors introduced by assuming that pressure is a
function of density and internal energy are fairly small in the expected range of mixer operation.
The selection of a pressure based on p and u from thermodynamic data is not trivial, if correla-
tions are not to be used. The available data consists of two tables, one giving density and the other
energy, when pressure and temperature are known. The routines must then perform a reverse

g3:C/3/



look-up of the tables. The details of how these routines work are out of the scope of this paper,
and it suffices to say that they have been proved to be accurate by using them to obtain pressure
and temperature from density and energy and then recovering input data by using the original
tables, with acceptably small errors. For further details, readers are referred to [7].

2.5. Output definitions

Mixer operation requires the simultaneous tracking of exit temperature, exit flow, and mixer
pressure. Exit temperature and mixer pressure are functions of the energy and density states.
Computation of these functions requires the intervention of thermodynamic tables and interpola-
tion algorithms which cannot be represented in closed form. However [7], to each exit temperature
and mixer pressure combination in the expected range of operation there corresponds a unique
value of the state [p,u]". Therefore, it is convenient to specify density and energy as outputs, along
with exit mass flow. A real-time control system should perform pre-processing of commanded
mixer outputs to obtain the corresponding desired state values. With these output definitions,
the controls model becomes

P [flon S £l o
u gl(ﬂ?”) g2(p7u) g3(p’u) CVg ’ (8)

y= [p7 u, _Vf3CV6]T7

where [Cy Cyy Cy]" is the control vector and y is the output vector.

3. Model properties
3.1. Uniqueness of equilibrium

The equilibrium point indicates the steady values of the density and internal energy of the mixer
when the control valves are set at fixed positions, for a given set of input flow properties. For
given values of the input fluid properties and C, coefficients, setting p., = 0 establishes that
e = Mg + iy and results in an expression relating the equilibrium density p, to the equilibrium
mixer pressure P

Py = p(P). ©)
Setting i1, = 0 gives the equilibrium exit enthalpy /. = A, in terms of the input enthalpies and the
mass flows:

_ mh n.h _

oy = O ), (10)

m + myg
The above enthalpy must match the thermodynamic property data at P and p., of Eq. (9), that is

ECV = hth(ﬁcwp)'



Substituting Egs. (9) and (10) into the above equation results in a single expression which gives the
equilibrium pressure:

h(P) = ha(p(P), P). (11)

A graphical interpretation of the equilibrium solution is shown in Fig. 2. The curve pP vs. P has
been drawn on the base plane. This plane curve is mapped to a space curve by the thermodynamic
property function /,. The equilibrium exit enthalpy 4(P) is a function of pressure only and the
corresponding surface has also been graphed. The point where the space curve pierces the surface
is the equilibrium point of the system. The monotonicity of both curve and surface indicates that
there exists only one equilibrium point in the range of interest of actual mixer operation. An iter-
ative procedure is developed in [7] that calculates the equilibrium point, given thermodynamic
parameters and fixed control inputs.

3.2. Valve positions for a prescribed operating condition
Having three independent controls in a two-state model allows the selection of steady values for

the states, and, in addition, an extra degree of freedom is available. This degree of freedom can be
used to fix the exit mass flow with the desired thermodynamic properties, as shown next. Suppose

Graphical Interpretation of Mixer Equilibrium
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it is desired to have a given exit mass flow, with prescribed temperature (measured at the outlet of
the exit valve). Let these quantities be denoted by w, and T.. The back pressure P, at the outlet
valve exit is assumed to be constant. The problem is to determine the valve coefficients that
achieve this. Two degrees of freedom are used for w, and T., and the third one is used to meet
a desired mixer operating pressure, P. The back pressure P and 7. determine the enthalpy #,
which is constant across the valve. Therefore, the enthalpy and mixer pressure at the exit valve
inlet are known and, in turn, determine the mixer density from thermodynamic data. A static en-
ergy and material balance gives the required input flows that achieve a prescribed flow-exit enth-
alpy combination. The following formulas are straightforward to derive:

(h—h

wlzw( g)’
hy — hy (12)
We(hl—h)

Wy = —— =

£ Th—n, '

where /i, and /4y are the gas and liquid supply enthalpies, respectively. Using the exit flow and the
input equilibrium flows from Eq. (12), the three valve coefficients are determined from Egs. (1)
and (2). This procedure is complementary to the one described in the previous section, which cal-
culates the equilibrium point.

4. Zero dynamics and feedback linearizability

Of the control techniques that are suitable for the present model structure, feedback lineariza-
tion [6,14] is the simplest and most direct. Input/Output linearization consists in finding a coor-
dinate transformation which results in a system which is linear between the new inputs and the
outputs. Linear controller design can then be applied to the transformed system. The technique,
however, may have disadvantages. Specifically, the complexity introduced by the cancellation of
all nonlinear dynamics may be to high for a realistic implementation with limited computational
resources. The other significant disadvantage is that all state measurements are required. Peaking
of control signals is also a factor of concern, especially when actuator saturation and rate limita-
tions are present. Linearizability analysis, however, is worth examining, since essential features of
the model appear during the analysis and provide a basis for other controller design techniques.
Other control techniques for the mixer and related systems are found in [1,11,2,10,8,9,7].

4.1. The concept of zero dynamics

A fair mathematical discussion of the concept of zero dynamics is out of scope and can be
found in standard sources such as [6,14]. Intuitively, when the order of the linear system arising
from the input transformation is less than the order of the original system, the remaining zero
dynamics can be realized by an appropriate set of state variables. These variables represent some
physical aspect of the system and must be kept bounded. Unstable zero dynamics constitute a fun-
damental limitation in several control design schemes, including feedback linearization. When a
system has stable zero dynamics, it is said to be minimum-phase, a term which generalizes the con-
cept of right-half plane zeros in linear systems.



4.2. Relative degree and input integration

The partial relative degree [14] of an output of a system is the order of the lowest derivative of
the output which is directly affected by at least one of the inputs. The model of Eq. (8) has a char-
acteristic which prevents direct application of input/output linearization theory. It is seen that the
third component of y is algebraically related to one of the control inputs, namely C,.. This implies
that the partial relative degree of y; is zero. Conceivably, one could use a time-explicit control of
the form

B V3a(?)
Vf3(P(,0, u)’p)

to attain perfect tracking of the output mass flow rate and use the two remaining controls to force
the flow to have the desired pressure and temperature. This approach suffers from the drawback
of not employing feedback and therefore of being not self-correcting or robust. One way to get
around this problem is to augment the exit valve channel with an integrator, that is, let

Cye(t, p,u) =

Cye = v,

where v is a new control input. Now C,. is regarded as a state, and the resulting system is of third
order, with three inputs and outputs. If the arguments of functions g; and f; are dropped from the
notation, the new system equations become

p:ﬁCV1+f2CVg +Jr3cve7 (13)

u=gCy+gCy+ g;Cie, (14)

Cye =, (15)

Yy = [p u _Vf3Cve]T' (16)
Upon differentiating the outputs once, it is seen that the partial relative degrees are all 1

yl :flcvl‘i'fIZCVg +ﬁcve> (17)

V2 = 81Cn + 8,Cvg + 83C0e, (18)

o o
oP 0p

dfs P

(fiCu + foCyy + f3Ce) + P o (81Cu + g2Cyg + g3C1e)

V3= _V|:Uf3+cve<

+%?U1Cvl+f2cvg +f3Cve)>:|- (19)



Upon rearranging, the output derivatives can be expressed compactly as
y=D+ Ew,

where y = [, 7, j’3]Ta w=[Cy Cy U]T and

f3Cve
D = g3cve R
e [6/3 (gﬁﬁ + %&) %f,fﬁ}
fi /2 0
E— g 2 0

V(% (Lh+20) +LA] 1B (Lh+La)+LA] -1,
Provided E is invertible in a region Q of the state space, the feedback law
w=E"'(y,~T(y~y,)~D) (20)
achieves exact linearization of the system, with tracking error dynamics given by
=34 +T» -y, =0.

If I' is chosen as a diagonal positive-definite matrix, the resulting control law is called “decoupling
control”, since the dynamics of the output errors are decoupled. If the appropriate function def-
initions are substituted, the forms of the £ and D matrices are as follows:

Ci\/ (P — P5)pCie
D= C// /P— PSPC :

_ ey { 6P+CP6P_|_(P P)]

Thvets
2 p Ou

Cll (P —P)p S 0
g VPP () () 0 ,
_ VCveC’IC; (PI*P)PI | _ VCVEfZC; r _VC/ (P P )p
24/ (P—Ps)p 24/ (P—Ps)p
where
oP oP
I = = h— ~ P Ps 9
= o5+ -+ (P
oP oP
T, = |p—+(h — + (PP,
= oa =G+ (=P



4.3. Input—output linearizability of augmented model

The ability to construct a feedback linearization controller hinges, first, on stable zero dynamics
of the augmented system, and, second, on the invertibility of matrix E.

4.3.1. Invertibility of E

By inspection, it is readily seen that the first two rows of E are linearly independent provided
hg # hy. This has a direct physical interpretation: if the two fluids have the same thermal proper-
ties (i.e., enthalpies), the ability to change the thermal properties of the mixture by changing the
relative flows is lost. Gas and liquid enthalpies are different for the expected operating conditions.
The third row is linearly independent from the first two if P — P;> 0, which is also true for the
mixer. Therefore F is invertible over the whole range of expected mixer operating conditions.

4.3.2. Zero dynamics of the augmented model

As it is known, the zero dynamics is preserved under input transformations [6]. This implies
that one may examine the non-augmented model for zero dynamics and draw conclusions about
the augmented model’s zero dynamics. Suppose the exit flow is to be held constant at a value Y3.
The only way in which this can be achieved is by letting

Y39
Cye(t) = — 21
(2) 70 (21)
at all times. Differentiating the other two outputs and equating them to zero results in

% =~ |\ % —~ | 22

Calt) = 5 (~AOCut0 + 32) @)
Cult) = = s (mocat + 570 23)

(1) Vf3(1)

Upon substitution and rearrangement, it is seen that there exist three uniquely defined control in-
puts which hold the outputs constant. Since two of the outputs coincide with the states, it trivially
follows that they are kept bounded, and therefore the system has stable zero dynamics (i.e., the
system is minimum-phase). The control inputs are given by Eq. (21) and, dropping the time

notation,
Yofi (&3 _ &
yvo\sooNh

e = , 24

Cue f1& — &2 24)
CYu[, b (& &

S e | &

Note that the above formulas can be used to find the valve positions at which the system has a
prescribed outflow and a pair of thermodynamic properties.



5. Small-signal model

The dynamic model of the mixer can be written in the form

A :FI(ZI,ZZangaCVIane)a (26)

Zy = F5(z1,22, Cyg, Cyi, Cye), (27)

where Fi(-) and F»(-) are nonlinear functions of the state and valve coefficients. For the remainder
of this article, we will denote constant or equilibrium values of any variable by an upper bar (*).
Given constant values of valve flow coefficients C, = [C,; Cyi Cy]' (superscript T denotes trans-
position) and constant fluid properties, the state of the model

z; . Density

z(t) =

zy . Internal Energy

reaches a constant equilibrium point z. Next, consider perturbing such an equilibrium by small
signals x(#) and ACy(¢) so that

z(t) =z+x(t) and C,(t) = C, + AC,(?),
where AC,(7) denotes a small, valve-coefficient correction/regulation signal. Then, a standard line-
arization of Egs. (26), (27) results in the small-signal model

X = Ax + BAC,, (28)

where x(¢) is the small perturbation state vector, AC,(#) is the small perturbation control signal,
and the two-by-two matrix 4 and two-by-three matrix B are given by

ai aﬂ GFI aFl aFl
0z 0z 0Cyg 0Cy;  0OCye
A — : B — N vl v 7
oF, OF, oF, OF, oF,
621 622 BCVg 6CV1 6C\,e

where the partial derivatives are evaluated at the equilibrium state Z and constant valve flow coef-
ficient vector C,. Output equations of the form

y = Cx+ DAC,,

where matrices C and D are appropriately dimensioned are easily appended to the model (28) to
account for the measurement of certain variables such as temperature, pressure, or flow. An out-
put of interest is the exit flow w.. Using Eq. (3) and linearizing around a chosen equilibrium point,
we obtain the linear approximation

Oae Oo

Welin = — = x+ [Oce]quCve = CyfiowX + DﬂowACve-

621 622 eq
Other outputs of interest are the mixer pressure P, and the exit temperature 7. Taking these to be
functions of the mixer internal states, that is,

Py = fo(z1(t),22()) and Te= fi(z(1),z:(2))



Table 1
Initial Equilibrium Data. z; in kg/m®; z, in kJ/kg

P (MPa) T (K) 7 (kg/m?) h (kJ/kg) C, w (kg/s) Z Z
GH2 94 305 46.90 5171 2.01 1.552 - -
LH2 59 66 81.11 1019 20.57 15.45 - -
Mixer 47 101 62.45 1398 - 62.45 645.8

Outflow 38 105 55.24 1398 29.82 17 - -

then, the linearization around the chosen equilibrium gives

[oP, 0P,
Pyin = =Cp
lin ] 621 622_ eqx pX
and
[0T. OT.]
Tejin = x = Cpx.
_621 aZZ_ eq

The indicated partial derivative terms may be calculated numerically using accessory routines.
5.1. Numerical example

Table 1 lists the data for a typical equilibrium point EQ; corresponding to a given set of outflow
requirements. The working substance in this example is Hydrogen. The matrices 4 and B are eval-
uated at the equilibrium EQ; listed in Table 1 to be

_ [—43.806 —1.23377 ~ [10.595  10.661 —8.0509
| —493.48 —19.065 |’ ~163.366  772.547 —97.023 |

For an output y = w,, the linear approximation is
Wetin = Cx + DCy. = [—26.831 —0.734]x — [8.081]AC..

The eigenvalues of A4 lie in the left half of the complex plane, establishing the local stability of the
model by Lyapunov’s linearization method [17]. Although not shown here, the computation can
be performed at any point in the range of operation, showing stability in a larger region. Local
controllability [17] can be likewise evaluated from the linearization at various points in the oper-
ating region. In this example, the controllability matrix [B | 4B] has rank two.

6. Model validation

The usefulness of the model must be demonstrated with real data. Visual and quantitative
assessments of the model’s ability to capture the essential dynamics of mixer operation are pro-
vided in this section. Data available for model validation consisted of a preliminary operation
of the mixer with Nitrogen as working substance. The thermodynamic lookup routines discussed
earlier were set to work with Nitrogen, without modifications to the model equations.



6.1. Calibration of valve coefficients

Part of the experimental data corresponds to nearly steady conditions. A measurement of the
flows and of some thermodynamic properties can then be used to estimate the corresponding val-
ues of the model valve coefficients. The coefficients corresponding to other percent openings are
found by direct proportionality.

6.2. Boundary conditions and valve position histories

The thermodynamic properties at the inlet of the liquid and gas valves change with time and
were measured through the duration of the experiment. In particular, pressure and temperature
were recorded, data from which the enthalpy and density can be easily found by direct lookup
of appropriate thermodynamic tables. The exit fluid was dumped into the atmosphere, thus estab-
lishing a fixed boundary pressure at the outlet of the exit valve. Knowledge of the above proper-
ties, valve position history and initial conditions of the mixer states is sufficient to obtain a
numerical solution to the differential equations. The initial conditions are obtained from the meas-
ured mixer internal temperature and pressure at the beginning of the experiment. These mixer var-
1ables were measured at all subsequent times during the experiment and provide the basis for
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S 4225 i g 533
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?g ?g : : : :
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Fig. 3. Inlet thermodynamic properties and valve position history.



comparison and evaluation of the model. It is to be noted that during the actual experiment, the
exit valve was kept at a fixed position. Fig. 3 shows the measured temperatures and pressures of
the liquid and gas nitrogen as recorded, as well as the valve positions.

6.3. Simulation

The boundary variables shown in Fig. 3 were fed into a Simulink model of the mixer equations.
Figs. 4 and 5 show the simulated and measured temperature and pressure inside the mixer. De-
spite of some spurious effects due to the interaction of the integration method with noisy input
data, it can be seen that the agreement is very good. It should be noted that the pressure curve
has been slightly shifted to compensate for an initial offset error found in the original data.

6.4. Immediate improvements to the model

The mathematical model developed may be improved and extended by considering the static
and dynamic characteristics of valve actuation. In the above development, it is assumed that
the valve opening coefficients can be directly and instantaneously commanded to any desired
value. This assumption did not interfere, however, with the model validation, since actual valve
coeflicient responses were available and were used instead of valve commands. In the practical
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Simulated vs. Measured Pressure
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Fig. 5. Pressure validation.

situation, the control system has authority over the commanded openings only. A simple model of
valve response is given by the first-order system

where { is the commanded valve opening, 7 is a time constant and f is a proportionality constant.
An equation of the above form must be written for each of the three valves in the system and the
model must be augmented with these dynamics, thus becoming a fifth-order model. Note that di-
rect proportionality has been assumed to exist between { and C, under steady conditions (C, = 0).
If nonlinearity is observed in an experimental characterization of the valve, it can be included in
the form

. 1
Cv:_?Cv +g(C)a (30)

where g is a function to be determined from static calibration, as done in [13]. Further improve-
ments to the model include adding a disturbance term—mainly corresponding to unmodelled heat
transfer—to be used in robust controller design. A Matlab-based graphical user interface (GUI)
has been developed that provides flexibility in using the model in simulation studies [9,12].



7. Conclusions

A mathematical model for the mixer system is presented. The model consists of a system of two
nonlinear equations having density and internal energy as states. The independent variables are
the valve positions represented by flow coefficients, and the controlled outputs are mixer pressure,
exit temperature and exit mass flow. Model reliability is ensured by the use of function calls to real
thermodynamic data. It is shown that, in the expected range of operation, the mixer has a single
equilibrium point for each set of fixed valve coefficients and that it is feedback linearizable and
locally stable. The reachability of operating conditions is shown by the possibility of determining
a unique set of valve coefficients that achieve a desired set of steady outputs. The model is vali-
dated against experimental data with excellent agreement.
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