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On Topology of Sensor Networks Deployed
for Multitarget Tracking

Ye Zhu, Member, IEEE, Anil Vikram, and Huirong Fu, Member, IEEE

Abstract—In this paper, we study topologies of sensor networks
deployed for tracking multiple targets. Tracking multiple moving
targets is a challenging problem. Most of the previously proposed
tracking algorithms simplify the problem by assuming access to
the signal from an individual target for tracking. Recently, track-
ing algorithms based on blind source separation (BSS), a statisti-
cal signal-processing technique widely used to recover individual
signals from mixtures of signals, have been proposed. BSS-based
tracking algorithms are proven to be effective in tracking multiple
indistinguishable targets. The topology of a wireless sensor net-
work deployed for tracking with BSS-based algorithms is critical
to tracking performance because the topology affects separation
performance, and the topology determines accuracy and preci-
sion of estimation on the paths taken by targets. We propose
cluster topologies for BSS-based tracking algorithms. Guidelines
on parameter selection for proposed topologies are given in this
paper. We evaluate the proposed cluster topologies with extensive
experiments. Our experiments show that the proposed topologies
can significantly improve both the accuracy and the precision of
BSS-based tracking algorithms.

Index Terms—Blind source separation (BSS), cluster, topology,
tracking.

1. INTRODUCTION

N THIS paper, we investigate topologies of sensor networks

deployed for tracking multiple targets. We focus our atten-
tion on tracking algorithms based on blind source separation
(BSS) algorithms.

Tracking moving targets with wireless sensors is one of the
prominent applications of wireless sensor networks. Sensors,
also called “smart dust” [1], are small devices known for
their simplicity and low cost. Using a network of sensors
with wireless communication capability enables both cost- and
performance-effective approaches to track targets, due to the
availability of a large amount of data collected by sensors for
tracking targets. Depending on the applications, sensors with
different sensing modalities such as acoustic, seismic, infrared,
radio, and magnetic can be deployed for tracking different types
of targets.

In general, data collected by sensors are aggregate data. In
other words, signals received by sensors are, generally, mixtures
of signals from individual targets. For example, an acoustic
sensor in a field of interest may receive sound signals from
more than one target. Obviously, tracking targets based on
mixture signals cannot be accurate when interference from
targets other than the one of interest is not negligible. Without
loss of generality, in the rest of this paper we use the term
individual signal to mean the signal transmitted from or caused
by individual targets. We use the term aggregate signal to mean
the signal received by sensors, i.e., data collected by sensors.
One aggregate signal received by a sensor is essentially a
mixture of the individual signals from targets.

The fact that signals collected by sensors networks are ag-
gregate signals poses a big challenge to target-tracking solu-
tions. Most previous research simplifies the general multitarget
tracking problem and the simplified problems have been well
studied.

» Single-target case: In this case, it is assumed that only one
target exists in a field of interest. Thus, signals received by
sensors are essentially individual signals.

* Negligible interference case: Some research assumes that
the interference from targets other than the one of interest
is negligible. The assumption is legitimate only for ap-
plications in which the signal from a target dramatically
attenuates when the distance between the target and the
Sensor increases.

» Distinguishable target case: Sensors can distinguish tar-
gets by tags embedded in signals or by having different
targets to send signals using different channels such as
using different frequency bands.

All these special cases assume that tracking algorithms can
have access to individual signals.

Singh et al. [2] proposed a general approach to track multiple
targets indistinguishable by sensors. The approach is based on
binary proximity sensors that can only report whether there are
targets in a sensing area. The approach is simple and is robust to
interference from other targets, with the cost of limitation that
it is only applicable to tracking targets in smooth paths [2].

We propose tracking algorithms to solve the general multi-
target tracking problem in [3]. The algorithms are based on
BSS, a methodology from statistical signal processing to re-
cover unobserved “source” signals from a set of observed
mixtures of the signals. BSS models were originally defined to
solve a cocktail party problem: The BSS algorithms can extract
one person’s voice signal given the mixtures of voices in a
cocktail party. BSS algorithms solve the problem based on the
independence between voices from different persons. Similarly,



in the target-tracking problem, it is generally safe to assume
that individual signals from different targets are independent.
Thus, we can use BSS algorithms to recover individual signals
from aggregate signals collected by sensors. For the cases in
which individual signals are dependent, BSS algorithms based
on timing structures [4] of individual signals can be used.
Interested readers may refer to [5] for an evaluation on the
performance of BSS in separating sensor signals collected from
a distributed network.

In this paper, we focus on topologies of a sensor network to
improve tracking performance. The topology of a sensor net-
work deployed for tracking is critical to tracking performance.
First, the topology affects separation performance. For better
separation performance, sensors should be clustered so that
there are more sensors than targets within the sensing ranges
of these sensors and, in general, better separation performance
leads to better tracking performance. When the number of
targets is larger than the number of the sensors, it means that the
number of source signals is larger than the number of observed
mixtures. Usually, the separation problems of having more
source signals than observed mixtures are called overcomplete
bases problems [6], which are considered to be harder prob-
lems, and applying generic BSS algorithms may not fully sepa-
rate the source signals. Second, the number of sensors that can
“hear” a target of interest determines how accurate and precise
a BSS-based tracking algorithm can estimate the path taken by
the target.

We propose cluster-based topologies for better tracking per-
formance. Our contributions in this paper can be summarized
as follows.

* We list necessary requirements for candidate topologies.

e We propose the use of cluster-based topologies to improve
tracking performance. Guidelines on selected parameters
of proposed cluster topologies are given in this paper. We
evaluate proposed topologies with extensive experiments.

* We propose metrics to evaluate the performance of the
proposed topologies using target-tracking algorithms. The
metrics originate from the general metrics used to evaluate
performance of an estimator in statistics since, essentially,
target tracking algorithms estimate the paths based on data
collected from sensor networks.

The rest of this paper is organized as follows. Section II
reviews related work. Section III formally defines the problem.
We describe the proposed topologies in Section V. We evaluate
the proposed topologies under various settings in Section V. We
conclude this paper in Section VII.

II. RELATED WORK

Tracking multiple targets in a field is a challenging prob-
lem compared with tracking a single target. Some research
on tracking targets with wireless sensor networks is based
on binary proximity sensors, which can only report whether
there are targets within sensing areas. The initial work [7] on
binary proximity sensors focuses on tracking a single target.
Singh et al. [2] extended the approach to track multiple indis-
tinguishable targets by applying particle filtering algorithms.
Approaches based on binary proximity sensors have two ob-

vious advantages: the sensors are very simple since they only
report binary information and the approaches are robust since
interference from other targets is essentially filtered out by an
equivalent low-passed filter [7]. The cost of using these simple
devices is a loss of information that is helpful to accurately
track targets due to the filtering effect. Hence, approaches based
on binary proximity sensors cannot track target in a path with
high-frequency variations [7]. Since the BSS-based tracking
algorithms are able to recover individual signals for tracking,
the BSS-based algorithms can track targets following paths with
high-frequency variations. Interested readers may refer to [3]
for more comparison and experiment results.

A research problem related to the target tracking is target
identification or target classification. Various advanced tech-
niques have been applied to solve the problem. Friedlander and
Phoha [8] proposed statistical techniques based on principal
component analysis for target identification with knowledge
on target position, time, target velocity, and a set of target
attributes collected from sensors. In [9], the authors proposed
wavelet-based algorithms for target classification. In this paper,
we propose algorithms based on the BSS algorithms for target
tracking.

Topologies of sensor networks have been studied for different
purposes.

* Coverage: In [10], Bai et al. proposed optimal deployment
to achieve full coverage. Different patterns such as poly-
gon, diamond, and square are proposed for sensor deploy-
ment topologies. To ensure full coverage and connectivity,
decentralized density control algorithms were proposed
in [11]. In [12], Kershner proposed a triangular pattern,
which is optimal in terms of number of circles needed to
entirely cover a given area.

e Localization: Zou and Chakrabarty [13] proposed a sensor
deployment for target localization based on the virtual
force algorithm, which attempts to maximize the sensor
field coverage. Chan et al. [14] proposed a localization
approach without requiring any ranging or positioning
equipment.

e Communication cost: Kasetkasem and Varsheny [15] stud-
ied the problem of communication structure planning in
sensor detection systems, based on communication con-
straints and generalized cost formulation.

In this paper, we focus on topologies of sensor networks
deployed for tracking.

Clustering has been proposed for wireless sensor networks.
Examples are as follows. Alaybeyoglu et al. [16] evaluated
the cluster-based target tracking protocols for wireless sensor
networks and Bhatti er al. [17] studied clustering and fault
tolerance for target tracking. Our work is unique in two as-
pects. First, the related work (including the two papers listed
above) focuses on logical clustering, in which the sensors
are deployed either randomly or as grid. Then, the sensor
nodes are grouped into a cluster and a cluster head is selected
among the sensor nodes for different purposes, e.g., effective
communication, power saving, or tracking. Our paper focuses
on physical clustering, in which the sensor nodes are physically
deployed as clusters at nearby physical locations. Second, the



Fig. 1. System model. Black circles with a cross in the middle represent sensors,
black squares represent targets, dashed lines represent the moving paths of the
targets, and circles with solid lines represent the sensing ranges of the sensors.

related work (including the two papers listed above) focuses
on tracking a single target, whereas our approach focuses on
tracking multiple targets.

III. PROBLEM STATEMENT

Here, we begin with the system model and the goal of this
paper and then proceed with the description on application of
BSS algorithms in target tracking. We finish this section with
the requirements on candidate topologies.

A. System Model and Goal

A general model of tracking targets using wireless sensor
networks is shown in Fig. 1. Wireless sensors are deployed in
certain topology in a field of interest. In general, a wireless
sensor receives signals from multiple targets. For example,
supposing that acoustic sensors are deployed in Fig. 1, Sensor
O can receive audio signals from Targets Si, S3, and Sj3
at the same time. Thus, the signal received by Sensor O; is
an aggregate signal, i.e., a combination of individual signals
transmitted by Targets S1—S.

The goal of this paper is to improve tracking performance
for tracking multiple targets with BSS algorithms. In general,
tracking algorithms output an estimated area for a path segment,
as shown in Fig. 2. We use mean and standard deviation of
error distance to measure tracking performance in this paper.
The error distance is defined as the nearest distance between
a specific point in the estimated area to the actual path taken
by a target, as shown in Fig. 2. The mean and the standard
deviation of the error distance are calculated based on all
the points in the estimated area. The mean and the standard
deviation of the error distance measure the accuracy and the
precision of the tracking algorithm, respectively. If we cast the
evaluation of the estimation algorithm in terms of evaluating a
statistical estimator, the accuracy corresponds to the bias of the
estimator, and the precision corresponds to the variance of the
estimator.

. Error Distance .,

N
N ’
~
~

Estimated Area

Actual Target Path

Fig. 2. Error distance. The solid dot represents one point in the estimated area.
The circle in the dashed line shows that the error distance is the nearest distance
between the point and the actual target path.

B. Application of BSS Algorithms in Tracking Targets

In this paper, we are particularly interested in the topologies
of sensor networks deployed for multitarget tracking with track-
ing algorithms based on the BSS technique because BSS-based
tracking algorithms can solve the general multitarget tracking
problem even when the targets are moving along paths of high-
frequency variation [3]. We introduce BSS and the rationale of
applying BSS to the multitarget tracking problem below.

1) BSS: BSS is a methodology used in statistical signal
processing to recover unobserved source signals from a set
of observed mixtures of the signals. The separation is called
blind to emphasize that the source signals are not observed
and that the mixture is a black box to the observer. While
no knowledge is available about the mixture, in many cases,
it can be safely assumed that source signals are independent.
In its simplest form [18], the BSS model assumes 7 inde-
pendent signals S1(%),...,S,(t) and n observations of mix-
ture O1(t),...,O0,(t), where t denotes the time! and O;(t) =
> _j—1aijS;(t). The goal of BSS is to reconstruct the source
signals S;(t) using only the observed data O;(t), the assump-
tion of independence among the signals .S;(¢). Given the ob-
servations O;(t), BSS techniques estimate the signals .S;(t) by
maximizing the independence between the estimated signals. A
very nice introduction to the statistical principles behind BSS
is given in [18]. The common methods employed in BSS are
minimization of mutual information [19], [20], maximization
of non-Gaussianity [21], [22], and maximization of likelihood
[23], [24]. Timing-structure-based algorithms [4] can be used
to recover source signals when source signals are dependent.

2) Recover Individual Signals for Target Tracking With BSS
Algorithms: In our tracking approach, BSS algorithms are used
to recover individual signals, i.e., source signals, as described
above, from aggregate signals, i.e., observations, as described
above. Supposing that acoustic sensors are deployed in the
field shown in Fig. 1, Sensor O; can receive audio signals
from Targets S1, S5, and S3; and Sensor O, can receive audio
signals from Targets Sy and Sy. If we represent the signal
received by Sensor O; as O;(t) and the signal from Target .S;
as S;(t), we can have the following two equations: Oy (t) =
S1(t) + Sa(t) + S5(t), and O2(t) = Sa(t) + S4(t). In general,

!Essentially, the signals are functions of time ¢.



for m neighboring sensors and n targets, we can rewrite these
equations in vector—matrix notation, i.e.,

O1(t) S1(t)
U UV (1)
O (1) S, (0)

where A, ., is called the mixing matrix in the BSS litera-
ture. Since the individual signals are independent from each
other—they come from different targets—we can use any of the
algorithms mentioned in Section III-B1 to recover individual
signals Si(t),...,S,(t). Given recovered individual signals,
BSS-based tracking algorithms can use tracking techniques
for individual signals such as overlapping sensing ranges of
sensors that can receive similar recovered individual signals. An
example tracking algorithm based on the overlapping technique
is described in [25]. A common step in BSS-based tracking
algorithms is to group m neighboring sensors and apply BSS
algorithms to recover individual signals S7 (¢), Sa2(t), . . . , Sy (¢)
from aggregated signals received by these m sensors, i.e.,
01 (t), Og(t), ey Om(t) in (1)

C. Requirements on Candidate Topologies

We focus on the topologies of low-density sensor networks
simply because the effect of the topologies on tracking perfor-
mance is negligible for high-density sensor networks. In this
paper, we assume candidate topologies that should satisfy the
following requirements.

e Planned deployment: The deployment used in tracking tar-
gets can be classified into two categories: random deploy-
ment [26] and planned deployment [26], [27]. In random
deployment, sensors are randomly distributed over the
field. We eliminate random deployment from considera-
tion because, for low-density sensor networks, the tracking
performance of random deployment is usually worse than
the tracking performance of planned deployment.

e Full coverage: In planned deployment, we focus on
topologies enabling sensors to cover the whole field of
interest. This requirement is particularly important for
low-density sensor networks to prevent targets disappear-
ing from tracking. One of the reasons for eliminating
random deployment from consideration is its possibility
of incomplete coverage for low-density sensor networks.

e Symmetrical topology: In this paper, we only consider
symmetrical topologies. Symmetry is desirable since tar-
get motion direction should be unconstrained. Symmet-
rical topologies can ensure that tracking performance is
direction independent.

IV. TOPOLOGY OF WIRELESS SENSOR
NETWORKS FOR TRACKING

Here, we describe the topologies proposed for BSS-based
tracking algorithms. We start this section with the rationales
behind the proposed topologies.

A. Rationales Behind the Cluster Topologies

The key step in BSS-based tracking algorithms is to apply
BSS algorithms to recover individual signals from aggregate
signals so that tracking algorithms can have access to individual
signals. Obviously, the performance of separating out individ-
ual signals largely dictates overall tracking performance.

As described in Section III-B, the separation requires that
a group of sensors receive different mixtures of individual
signals from targets. In the context of target tracking, suc-
cessful separation requires the following. First, the number of
aggregate signals in one separation should be no less than the
number of individual signals. In other words, the number of
sensors involved in one separation should be no less than the
number of targets involved in the separation because most BSS
algorithms require the number of observations to be larger than
or equal to the number of independent signals. Advanced BSS
algorithms [28], [29] targeting the overcomplete base problem,
in which the number of observations is less than the number of
independent signals, usually require some assumptions on the
individual signals. Second, the underlying individual signals
received by two sensors involved in one separation should be
similar to each other. Based on the rationales, we propose
cluster topologies for tracking with BSS algorithms.

Before introducing the proposed topologies, we would like to
use our preliminary experiments to show the topology impact
on the separation performance.

B. Topology Impact on Separation Performance

To investigate the effect of the topology on separation per-
formance, we did a series of initial experiments with random
topologies.

In these initial experiments, 700 sensors are randomly dis-
tributed in a field of size 1.6 km x 1.6 km. To remove boundary
issues,” atotal of 15 targets is restricted to move in the field center
of size 1 km x 1 km. The sensing range of each sensor is 250 m.

In the initial experiments, we assume that each target is
moving and emitting sound signals. The sound signals used
in the initial experiments are downloaded from the website
of the Florida Museum of Natural History, Gainesville, FL,
USA [30]. The aggregate sound signals received by the sensors
are simulated by attenuating the sound signals from individual
targets according to the atmospheric sound absorption model
[31] and then mixing the attenuated individual signals. The
BSS-based tracking algorithms recover the individual signals
from the aggregate signals with BSS algorithms. The separa-
tion performance with different topologies can be evaluated
by comparing recovered individual signals with the original
individual signals from targets. A correlation-based metric
denoted by P, is used in our experiments to measure the
separation performance. It is calculated by taking the absolute
value of the correlation between one original individual signal
and the corresponding recovered signal. We use the absolute
value because one recovered signal may be of different sign in

2The boundary issues in this paper mean that targets may not be covered by
sensors of enough density in one or more directions when targets are on an edge
or a corner of the field covered by the sensors. Thus, we restrict the targets to
move within the center of the field.
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Fig. 3. Effect of topology on separation.

comparison with the corresponding original individual signal.
The metric Py, is within the range [0, 1].

Two topology-related metrics are used in our analysis. We
represent the first metric as Dp,i,. It measures the average
distance between each pair of sensors in a sensor group. The
second metric, denoted by D enter, measures the average dis-
tance between a target of interest and the center of the sensor
group of interest when the target is moving. Essentially, the
metric Dp,i, measures the clustering degree of neighboring
sensors, and the metric D¢epntor measures the distance between
a target and a cluster of sensors.

Fig. 3 shows the separation performance of these initial ex-
periments. We present the separation performance visually as a
data image in Fig. 3—a grid with the metrics Dpair and Deenter
on the x- and y-axes, respectively. The gray level of each
pixel in the data image represents the separation performance
Py A darker pixel indicates better separation performance,
i.e., a larger value of P.,. From Fig. 3, we can observe the
following. First, the separation performance is better when
D,,ir is smaller. In other words, the separation performance is
better for sensor groups with sensors closer to each other, i.e.,
clustered together. Second, the best separation performance is
achieved when the target is away from one sensor group but still
within the sensing range of the sensor group.

These two observations are because of signal attenuation, a
natural consequence of signal transmission over long distances.
Attenuation is a function of transmission distance. For moving
targets, the distance between the target and the sensors changes
over time. Thus, the attenuation is essentially a function of time.
The attenuation functions even for two neighboring sensors are
different. Thus, two neighboring sensors in a sensor group may
receive different signals from a target.

The difference causes noise in separation. Obviously, when
sensors are closer to each other and the target of interest is away
from these sensors, the difference in attenuation functions of
these sensors is relatively smaller. In turn, less noise is generated
in separation, and better separation performance can be achieved.

In summary, our initial experiments indicate that topologies
of clustered sensors are more suitable for BSS-based tracking
algorithms since these topologies can lead to better separation
performance.
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Fig. 4. Example of cluster topology.

C. Proposed Topologies

Based on the observations made in our initial experiments,
we propose the cluster topologies for BSS-based tracking algo-
rithms. The cluster topologies are general: any regular and sym-
metric topologies can be regarded as special cases of the cluster
topologies. For example, the grid topology can be formed with
only one node in each cluster. Our experiments indicate that
better separation performance can be achieved when sensors are
clustered together.

In the proposed topologies, as shown in Fig. 4, sensors are
placed into clusters, and sensor clusters are evenly distributed
in a field. The proposed cluster topologies have four parameters.

e In-cluster arrangement: Within each cluster, sensors are
arranged in regular patterns. Possible choices are any
polygon-based patterns such as well-known triangle lattice
pattern, square pattern, pentagon pattern, and hexagon
pattern.

e Number of sensors per cluster n¢),st: This parameter spec-
ifies the number of sensors within each sensor cluster. For
better separation performance, the number of sensors per
cluster should be no less than the number of targets moving
in the sensing range of a cluster. Potentially, all targets
can move into the sensing range of one cluster; thus, we
choose the number of sensors per cluster that is close to
the number of targets in the field.

e Intercluster distance dinter: As shown in Fig. 4, the in-
tercluster distance is the distance between two centers of
neighboring sensor clusters. This parameter depends on
N, i.e., the total number of sensors to be deployed in the
field, and n.jyst, 1.€., the number of sensors per cluster.

e Intracluster distance diniro: Intracluster distance is the
distance between the center of a sensor cluster and the
farthest sensor within the same cluster. It is a measure of
clustering degree. To avoid neighboring clusters merging,
the parameter dint;, should be less than dinter/2. Our
initial experiments shown in Fig. 3 indicate that better
separation performance is achieved when sensors are close
to each other. However, it is not desired to cluster sensors
in a very small area because 1) it may leave lots of
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uncovered spots in the field when the sensor density is
low. 2) When sensors are too close to each other, sensors
receive roughly same aggregate signals. In this case, the
separation performance cannot be good. Thus, we suggest
dintra to be close to diyter /4. Our further experiments also
support the choice of the parameter.

In addition to considerations on the separation performance,
we propose cluster topologies because they satisfy the require-
ments listed in Section III-C: They are symmetric, and they can
cover the whole field.

V. PERFORMANCE EVALUATION

Most existing research on target tracking with wireless sen-
sor networks focuses on radio signals or audio signals. In this
paper, we assume that audio signals are used for target tracking
and that acoustic sensors are deployed in the field of interest.
Readers interested in target tracking with radio signals may
refer to the experiments in [3].

In this paper, we evaluate the proposed topologies with
extensive simulations in MATLAB.

A. Experiment Setup

In the following experiments, the simulated field is a
1.6 km x 1.6 km? area. The movement of targets is restricted to
a 1 km x 1 km central area to eliminate boundary effects. The
individual signals used for tracking are real bird signals down-
loaded from the website of Florida Museum of Natural History
[30]. The aggregate signals received by sensors are simulated
by first attenuating the individual sound signals according
to the atmospheric sound absorption model [31] and then
mixing the attenuated individual signals to form the aggregate
signals. The BSS-based tracking algorithm is based on the
aggregate signals only. We experiment with low-density sensor
networks of density N = 128 and 288 sensors. The sensing
range of sensors is 250 m.

In this paper, the BSS-based tracking algorithm works as
follows. We use a BSS algorithm to recover individual signals
from aggregate signals. Similar individual signals can be re-
covered from a number of sensors. The similarity is measured
by the correlation between two recovered individual signals.
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Effect of in-cluster arrangement on tracking performance. (a) Error distance of N = 128. (b) Error distance of N = 288.

Clustering is used to find the recovered signal that is at the
center of a cluster of similar recovered signals. The location is
estimated by intersecting the sensing ranges of sensors that can
receive similar signals. The intersection order is determined by
the similarity to the center recovered signal, i.e., the correlation
with the center recovered signal. A recovered signal with higher
similarity will have the sensing range of the corresponding
sensor be intersected earlier. The intersection ends before the
intersected sensing range becomes zero.

We have tried a wide variety of BSS algorithms, including
FastICA [32], Jade [33], and FPICA [21], for signal separation.
Our experiments show that the difference in tracking perfor-
mance caused by the choice of the BSS algorithms is very
small for different topologies. In this paper, we use FastICA
algorithm [32] for signal separation. FastICA is an efficient and
popular algorithm for independent component analysis in terms
of accuracy and low computational complexity. More details of
the BSS-based tracking algorithm can be found in [3].

The performance metrics used in our experiments are the
mean and the standard deviation of the error distance, as
described in Section III-A. The experiment results presented
below are averaged over 50 trials if not explicitly mentioned.
In the following experiments, targets are moving at a speed
below 0.15 m per sample interval. (In this paper, we focus on
the effect of topologies on tracking performance. The effect of
moving speed on tracking performance can be found in [25].)
We compare the proposed cluster topology with the grid and
random topologies in the experiments.

B. Effect of In-Cluster Arrangement

In this set of experiments, we investigate the effect of in-
cluster topology. Here, we show experiments on the square
and pentagon patterns as in-cluster arrangement. Similar exper-
imental results are obtained from other polygons. Parameters
used in this set of experiments are dintra = 80 m and ngargets =
10. As shown in Fig. 5(a) and (b), we observe that the tracking
performance is not sensitive to the in-cluster arrangement since
the difference between the two patterns is between 1.4% and
4.5% with different parameters. In the rest of the experiments,
the sensors within a cluster are arranged into the square pattern.
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Fig. 6. Effect of number of sensors per cluster (n.1ust) With 95% confidence interval (When n.j.st = 1, the cluster topology essentially degenerates into the
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distance.

C. Number of Sensors per Cluster (nclust)

In this set of experiments, we focus on the number of
sensors per cluster ncust. The parameter dingr, is set to be
80 m based on the conclusion drawn in Section IV-C. The
intercluster distance depends on NV, i.e., the sensor density, and
Neclusts 1-€., the number of sensors per cluster. When the sensor
density is 128 (i.e., N = 128), the intercluster distance dipter
is 320 and 533.33 for n¢just = 8 and ncjusy = 32, respectively.
In addition, when N = 288, the intercluster distance dipter 1S
228.5714 and 400 for ncust = 8 and nerusy = 32, respectively.
The number of moving targets 7¢argets 18 10 or 30 in this set
of experiments. As shown in Fig. 6, in the case of 128 sensors
(N = 128) and 10 targets (nargets = 10), the minimum error
distance is achieved when n.j,s; = 8. In the case of 30 targets
(Mtargets = 30), the tracking performance is best when nciyst
is 32. This supports our conclusion made in Section IV-C. In
comparison with the grid and random topologies, the perfor-
mance increase of the cluster topology is 18.75% and 23.28%
for 10 and 30 moving targets, respectively, when N = 128.

When N = 288, the increase is 26.12% and 27.90% for 10 and
30 moving targets, respectively. We can also observe that the
performance of the cluster topology with selected parameters
can be 33.62% and 32.78% better than the random and grid
topologies, respectively.

D. Effect of Intracluster Distance (dintra)

In this set of experiments, we investigate the effect of dipra,
i.e., the intracluster distance, on the tracking performance. The
number of sensors per cluster n.just 1S set to be 8 or 32, and
the intracluster distance djnt., varies from 20 to 100 m. As
shown in Fig. 7(a), the best tracking performance is achieved
when diptra = 80 m. When the intracluster distance is very
small or even close to zero, sensors within a cluster observe
signals from the same set of targets. Thus, the aggregate signals
received by the sensors within a cluster are close to each other.
In turn, it degrades the separation performance. As shown in
Fig. 7(a), the performance is getting better with the increase in



TABLE 1
PERCENTAGE INCREASE IN PERFORMANCE OF CLUSTER TOPOLOGY
COMPARED WITH GRID AND RANDOM TOPOLOGIES
(N = 288, nclust = 32)

TABLE III
PERCENTAGE INCREASE IN PERFORMANCE OF CLUSTER TOPOLOGY
COMPARED WITH GRID AND RANDOM TOPOLOGIES
(N =288, nclust = 8)

Nyargets | Performance Increase over | Performance Increase over Nyargets | Performance Increase over | Performance Increase over
Grid Topology Random Topology Grid Topology Random Topology
5 24.14 25.23 5 24.21 2547
10 25.87 27.45 10 26.12 27.90
15 28.85 29.93 15 28.16 29.77
20 30.22 30.94 20 29.52 29.86
25 30.47 31.28 25 30.07 30.08
30 32.78 33.62 30 32.66 33.02
35 33.92 35.13 35 33.67 34.44
40 35.02 37.18 40 34.87 36.53
TABLE 1I TABLE 1V

PERCENTAGE INCREASE IN PERFORMANCE OF CLUSTER TOPOLOGY
COMPARED WITH GRID AND RANDOM TOPOLOGIES
(N = l287"7'c1ust = 8)

PERCENTAGE INCREASE IN PERFORMANCE OF CLUSTER TOPOLOGY
COMPARED WITH GRID AND RANDOM TOPOLOGIES
(N = 128, nclust = 32)

dintra. However, when the intracluster distance is larger than
80 m (dintra > 80 m), the error distance is increasing because
the overlap of neighboring clusters’ sensing ranges increases,
and the bigger overlap area causes degradation in the tracking
performance. The same trend can be observed on the standard
deviation of the error distance, as shown in Fig. 7(b).

E. Effect of Number of Targets (Niargets)

In this set of experiments, we investigate the effect of the
number of targets on the tracking performance. Table I shows
the performance increase of the cluster topology over grid and
random topologies averaged over 30 trials. The experiment
parameters are as follows: density N = 288, n.just = 32, and
dintra = 80 m.

We can observe that the percentage of increase can achieve
37.18% and 35.02% for 40 targets over the random and grid
topologies, respectively. Table I shows that performance in-
crease becomes larger when the number of targets increases.
It is mainly because better separation performance can be
achieved for the cluster topology. Similar observations can be
made in Tables II-IV, which shows the percentage of increase
in performance of the cluster topology over the grid and random
topologies with different experiment settings.

FE. Effect of High-Frequency Variations

In this set of experiments, we experiment on the perfor-
mance of tracking targets following paths with high-frequency
variations. We focus on the path between two points with the
physical distance of 300 m from each other. The path shape
is sawtooth. In this set of experiments, we vary the sawtooth

Niargets | Performance Increase over | Performance Increase over N¢qrgets | Performance Increase over | Performance Increase over
Grid Topology Random Topology Grid Topology Random Topology
5 17.23 22.59 3 16.83 22.29
10 18.75 23.28 10 18.35 22.78
15 19.54 23.64 15 18.64 23.94
20 20.57 23.94 20 21.32 24.36
25 21.12 25.55 25 22.47 26.25
30 22.77 26.65 30 23.37 27.25
35 24.37 27.48 35 25.27 27.98
40 26.65 29.88 40 27.15 29.93

frequency, i.e., the number of sawtooth periods, as shown in
Fig. 8(a). When the frequency is equal to to zero, the path
becomes a straight line path. As shown in Fig. 8(b), we can
observe that mean error distance is increasing with the increase
in frequency. The slight increase in the error distance with the
number of sawtooth periods is because of higher speed required
to finish longer paths. This experiments show the benefit of
applying BSS algorithms in tracking targets: It enables tracking
algorithms to have richer information for target tracking. Thus,
the proposed algorithm can successfully track targets following
paths with high-frequency variations even with low-density
sensor networks in the cluster topologies.

VI. GUIDELINES FOR TOPOLOGY DESIGN

In this paper, we focus on the topologies of sensor net-
works deployed for multitarget tracking with tracking algo-
rithms based on the BSS technique. We propose the cluster
topologies for BSS-based tracking algorithms. Our experiments
indicate that better separation performance can be achieved
when sensors are clustered together. In the proposed topologies,
sensors are placed into clusters, and sensor clusters are evenly
distributed in a field.

Based on the experiment results presented above, we sum-
marize the guidelines for the topology design.

e To deploy a sensor network in a field of interest for
tracking targets with BSS-based tracking algorithms, we
propose cluster topologies. The clusters should be evenly
distributed throughout the field.

* The number of sensors per cluster should be larger than
the number of targets to be tracked within the field.
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» The tracking performance is not sensitive to the in-cluster
arrangement; thus, the in-cluster arrangement can be in
any polygon pattern.

¢ To cover the whole field, the intercluster distance dipter
should be at least less than twice the sensing range of
deployed sensors. Reducing the intercluster distance, i.e.,
increasing sensor density, can improve the tracking per-
formance. The intracluster distance d;,,, should be close
to dintcr/4-

VII. CONCLUSION

In this paper, we have proposed cluster topologies to improve
tracking performance of BSS-based tracking algorithms. The
topologies satisfy desired topology requirements: They are
planned deployments with full coverage, and they are sym-
metrical. A set of guidelines on parameter selection for the
proposed topologies is given in this paper. We evaluate the
proposed topologies with extensive experiments. The proposed
topologies can achieve more than 35% improvement in tracking
performance over the grid and random topologies. In conclu-
sion, the proposed cluster topologies can significantly improve
both the accuracy and the precision of the BSS-based tracking
algorithm.

We plan to investigate the multipath effect in our future work.
Currently, BSS-based tracking approaches [3] focus on tracking
targets for outdoor applications or tracking in large indoor
facilities such as stadiums. The approaches do not work well
for indoor applications mainly because of the multipath effect.
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