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Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local 
energies. This leads to frustration and highly degenerate ground states the nature and properties of which 
are still far from being thoroughly understood. We report an analytical approach based on the method of 
functional equations that allows us to construct the Rayleigh approximation to the ground state of a 
two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D 
Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) 
which trap superconducting vortices induced by applied magnetic field. Our findings break ground for 
analytical studies of glassy systems, marking an important step towards understanding their properties.

U
nderstanding the complexity of glassy behaviors resulting from the exponential degeneracy of their 
ground states is key to gaining insight into a variety of systems in nature, including spins and magnetic 
moments in magnetism1-3, electrons in metals4'5, Cooper pairs in disordered superconductors6'7, vortices 
and interfaces in superconductors and magnets1,8-11, social12 and neural13 networks, and protein folding14 remains 

one of the major challenges in physics. One of the furthest-reaching problems in the physics of glasses is that of 
understanding the nature of Coulomb or electronic glasses where concurring effects of long-range Coulomb 
interactions and disorder result in a depletion of the density of electronic states (referred to as the opening of a 
‘Coulomb gap’) which turns metal into an insulator. This causes two key aspects of glassiness, namely disorder 
and frustration, to become maximally pronounced. Disorder means that, unlike periodic structures, glasses do not 
possess long-range order, while frustration refers to the competition among conflicting interactions. 
Consequently, the system does not find an accommodation that complies with all constraints but arrives instead 
at a multitude of degenerate, i.e. almost equally advantageous states the number of which exponentially grows 
with the system size. These states are separated by nearly infinitely large free-energy barriers in a phase space that 
acquires complex hierarchical structure. As a result, glasses are effectively non-ergodic and manifestly lack 
equilibrium, that is they cannot equilibrate with their environment. This gives rise to remarkable aging and 
memory effects and highly nonlinear dynamics. The reason that the properties of glasses are still not thoroughly 
understood is that the same complex structure of a highly degenerate ground state that makes glasses interesting 
and appealing, impedes the application of our standard theoretical physics machinery. Moreover, frustration and 
non-ergodicity denigrate efficiency of even the best numerical algorithms, which are commonly used to study 
glasses, because there is no guarantee that the process of a search for the ground state will take the system close to 
the global minimum rather than getting stuck within some local potential well, see refs 15-17 and references 
therein. The nature of the ground state of Coulomb or electronic glasses poses a special challenge since electronic 
glasses are agreeably at the heart of physics of many strongly correlated systems, most notably, high temperature 
superconductors18.

Here we address this challenge and offer an analytical approach to construct an approximation to a ground 
state of the 2D random finite system in the first order with respect to disorder. We consider a two-dimensional 
Coulomb gas subject to quenched disorder and take advantage of the latter’s equivalence to the system of 3D 
vortices in type II superconductors containing randomly distributed columnar defects9, see Fig. la. Complete 
identity is achieved by choosing a lateral size for the system not exceeding the London penetration depth, λ. Then 
vortex-vortex logarithmic interactions remain unscreened, and the vortex system becomes isomorphic to the 2D 
Coulomb gas of logarithmically interacting electric charges, Fig. lb, c. Hence the equivalence of the problems of 
the lowest energy states of these two systems: the global minimum of the Ginzburg-Landau (GL) functional, 
describing the configuration of vortices corresponding to the lowest energy, defines the ground state of both.
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Figure 1 | Superconducting cylinder with columnar defects and 
corresponding single-particle potential relief. (a): Sketch of a 
superconducting cylinder with arbitrarily distributed columnar defects. 
The characteristic lengths are related by the inequalities chain, 
l<<R<<a<<Rs ~ λ. (b): Egg-crate energy potential relief for a single particle 
in the related two-dimensional Coulomb gas of charged particles. (c): 
Cross-section of the egg-crate potential relief for a charge emphasizing its 
random character.

We consider a large, i.e. containing a macroscopic number of 
defects, but finite superconducting sample in a form of a cylinder, 
with a circular base of the diameter Rs~λ/2. The cylinder is stuffed 
with columnar cavities or defects of radius R, mean spacing between 
defects being a, see Fig. la. We take k = and assume the
chain of inequalities, R<<a<<λ, where ξ is the superconducting 
coherence length. In addition we impose the even stronger scale 
separation condition that |log(k) |>>|log(R/λ) |. We restrict ourselves 
to the range of magnetic fields H < Hc1, where Hc1 is the lower critical 
field, so that vortices do not exist in the bulk of the sample but can 
only be trapped by CDs. We develop an analytical approach for 
finding the vortex distribution {dj},j = 1,2, ... ,N, where vorticity 
or degree {dj} measures the number of flux quanta trapped by the jth 
CD, minimizing the system energy, i.e. for finding the vortex distri- 
bution corresponding to the ground state of the system. The maximal 
filling of a CD is defined by the condition19 nmax = [R/2ξ]. Vortex 
quantization, i.e. the condition that the degrees must be integers 
imposes a constraint on the minimization of the energy. Our tech- 
nique is based on the method of functional equations20-24, see 
Methods and Supplementary Information (SI) for details. That the 
found energy-minimizing distribution (minimizer) corresponds to a 
unique global energy minimum follows from convexity of the energy 
functional. If the array of CDs is regular, the vortex system can 
assume a terrace-like ground state i.e. form a hierarchical nested 
domain structure25,26.

Each domain is characterized by its filling factor {dj}, which 
grows upon traversing from the sample border to its center. To 
emphasize the net effects of disorder we consider initially a regular 
arrangement of CDs and then watch how the nested domain’s 
ground state structure evolves upon randomizing the distribution 
of the defects. We reveal that, as the randomness grows, the vortex 
count within each vortex domain remains approximately the same 
but the smooth domain walls of the regular defect array acquire 
fractal character and turn into fractal interfaces with non-univer- 
sal fractal dimensionality depending on the degree of disorder. We 
find that disorder generates energy states for vortices, that lie 
below those corresponding to the regular array of CDs. These 
low-lying vortex energy states that can be viewed as a hallmark 
of emergent glassiness manifest themselves, in particular, in 
decreasing the field of the first vortex trapping with increasing 
degree of disorder.

We describe our system with the Ginzburg-Landau (GL) 
functional:

each term h{k) = O(l/|lnk p|). This expansion solves equations from 
the cascade of problems27: Δh(0) = h(0), Δh(1) = 0, Δh(2) = h(1), ...,Δh(k) 
= h(k-1). We find the minimizer for the random distribution of CDs 
within Rayleigh approximation truncating the expansion at the low- 
est order terms28'29. Let ζ = x1 + ix2 be a complex variable corres- 
ponding to r and complex numbers ak be coordinates of CD centers
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in the ζ-plane. We look for a solution to (3) in the form h ≈ ha(h(0) + 
h(1)) with

where the perforated domain D is a cross section of Ω and φ(ζ) is an 
unknown function holomorphic in D. One can prove the conver- 
gence of the successive approximations for the functional equations 
for ψ(ζ) (see SI), where ψ(ζ) = φ'(ζ). The solution to (4) in the multi- 
connected domain D is found up to the order of O(l/ln2 ρ) as

with unknown CoeR. From the boundary conditions at the CDs, we 
express c0 linearly through βk and derive a system of linear algebraic 
equations for the constants βk, k = 1,..., N. The coefficients of this 
system depend on p and we retain terms up to O(l/ln2 ρ). This 
system has a dominant diagonal part for small p implying the 
uniqueness of the solution. One can observe that in the lowest order 
in 1/ln ρ terms, βk ~ 1/ln p and hence h(1) ~ l/ln ρ. If more terms are 
included into the Rayleigh expansion (with each term h,(p) ~ l/lnp p), 
then the series q would converge to h. The linear system for

βk can be solved numerically which completes the calculation of the 
magnetic field h in the Rayleigh approximation for given d = (ft, .... 
ft). Once all βk are obtained, we minimize the energy as a function of 
degrees, d, and determine d corresponding to the energy minimum. 
Since the energy functional is convex, the local minimizer is a global 
minimizer, which solves the problem of finding the ground state. The 
derivation of d = (d1,...,dN) for random CD array constitutes the 
main result of our work.

A fundamental implication of the randomization of the CD arrange
ment is the formation of a Bose glass state endowed with arbitrarily 
low-lying energy states for vortices9. While the Rayleigh approximation 
cannot guarantee the construction of a true glassy state, the observed 
decrease of the effective lower critical field, i.e. the field of the first 
vortex trapping HG as compared to the critical field Hreg where first 
vortices appear at the regular (periodic) CD array, can be viewed as a 
direct manifestation of emerging glassiness in a finite superconducting 
cylinder. Shown in Fig. 2a, b is the is the behavior of HG as function of 
the degree of disorder and of the total number of CDs in a fully 
randomized array. Trapping vortices modifies the phase diagram of 
the type II superconductor as shown in Fig. 2c.

The emergence of glassy features in the sample containing N = 
770 columnar defects and nv = 1105 vortices is illustrated in Fig. 3. 
Initially CDs are arranged into a regular lattice. Accordingly, vortices 
form two nested domains with the degrees d = 0 and d = 1. Panels a- 
c of Fig. 3 demonstrates how the terrace structure of the nested 
domains evolves and gets blurred upon incremental growth of the 
randomness in the CD’s locations. While the domains corresponding 
to different degrees retain their identities, the interfaces between 
them acquire a fractal structure. Making use of the Box-Counting 
method30, we find the fractal dimension of the interface, 
D: = —ln(Na)/ln(sa), where Na is the number of cells the interface 
curve crosses and sa is the scale for the trial a. The evolution of the 
interface between the d = 0 and d = 1 domains, clearly seen in Fig 3, 
visualizes incremental fractalization. The fractal dimensionality as a 
function of the degree of disorder quantified by the number of steps 
M in the randomization procedure, see SI, is presented in Fig. 3d. Its 
initial part is reasonably fitted as D(M) = cMv + 1.000 with c = 0.060 
± 0.01 and v = 0.335 ± 0.01. Upon further increase of the random 
steps, fractal dimensionality converges to 27=1.286 + 0.021.

Figure 2 | Emergence of glass. (a): The field of the first emergence of a 
vortex trapped by CD, HG, as function of the number of the randomization 
steps M. Incremental decrease of HG reflects the decrease of the lowest 
energy of the vortex trapped by CD, i.e. emergence of glassiness. (b): Fields 
of the first penetration Hreg for periodic array of CDs and HG for random 
array as functions of the number of CDs in the sample. Upon increasing the 
number of CDs, Hreg saturates, but HG continues to gradually decrease. 
This illustrates the increasing glassiness of the system: as the number of 
CDs grows, more and more deep potential wells associated with CDs 
appear. (c): Low-temperature part of the H-T vortex phase diagram.

Fractalization of the interface leads to the shrinking of the vortex- 
free shell near the sample surface: its average width first decreases 
with the growing level of randomness (see Fig. 3e) as c1Mv1 + c2, with 
v1 = 0.323 ± 0.01, c1 = -0.025 ± 0.01, and c2 = 0.257 ± 0.01, and 
then saturates, which parallels the behavior of D(M). Note that v1 
appears to be close to v.
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Figure 3 | Fractal dimension of vortex domain interface. (a)-(c): Developing fractality with increasing degree of disorder. (d): Fractal dimensionality D 
as function of the number of random steps M. Fractal dimension of the interface grows with increasing randomness and saturates to the value of 
D = 1.286 + 0.029 at about M ~ 60. The growing part of D(M) is well approximated as D(M) =cMv + 1 with c = 0.060 ± 0.01, v = 0.335 ± 0.01 (the red 
line). (e): Average width d of the vortex-free shell near the edge of the sample as function of M. The red line is d = c1Mvl + c2 fit with c1= —0.025 ± 0.01,c2 
= 0.257 ± 0.01, and v1 = 0.323 ± 0.01.

A special situation, where the defect radius is chosen to be com
parable with the superconducting coherence length, R > ξ so that 
nmax = 1, is identical to a 2D Coulomb glass of bosons in which the 
double occupancy is forbidden. The calculated set d describes thus 
the distribution of charges corresponding to the minimal energy, i.e. 
the ground state, of the system. Thus, our finding offers a firm 
ground for numerical study of hopping conductivity of the 
Coulomb glass. Using the minimizer d an initial state in numerical 
simulations of hopping ensures that the transport indeed occurs due 
to excitations over the ground state as it should in reality. Note 
further that although our derivation is done for a particular situation 
where the lateral size of the system is close to the screening length of 
the 2D Coulomb interaction, our results carry importance well 
beyond their immediate context and break ground for a general 
analytical description of the ground state of glassy systems.

Methods
Since the spatial scale of the variation of the order parameter ξ is the smallest scale in 
the problem we can set the dimensionless order parameter | u | = 1 everywhere besides 
the CDs. Then the problem of minimizing GL functional is formulated as a problem 
of finding a minimizer for the so-called harmonic map-type functional25,

Fg[w,A]=^ f [|(V — zA)w|2 + (curlA — ha)2]d2rdz, (6)
2 Jo

which, in its turn, is reduced to minimizing the energy given by Eq. (2). The solution 
for the field distribution is sought in a form given by function φ of Eq. (4), having the 
general representation

N

f’(c)=^(o+ y (7)
m=1

where φ(ζ) is single-valued, Am are real constants23, and the summation is taken over 
all arbitrarily located CDs. By extending this function to the CD boundaries and 
taking its derivative (ψ(ζ): = dφ/dζ) one arrives at the classical Riemann-Hilbert 
problem for ψ analytic in the multiply connected domain D, which results in a 
solution in a form of (5). Now the key step is to apply the method of functional 
equations that allows us to express d through Further, it is convenient to minimize 
numerically the energy as a function in βk (k = 1,2,..., N) and after to calculate the 
optimal values of d = (d1,..., dN) by exact formulas through the optimal values of βk.
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