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A KINETIC MODEL FOR SEMI-DILUTE BACTERIAL
SUSPENSIONS * * * §

S. D. RYAN, L. BERLYAND, B. M. HAINES, AND D. A. KARPEEV

Abstract. Suspensions of self-propelled microscopic particles, such as swimming bacteria, 
exhibit collective motion leading to remarkable experimentally-observable macroscopic properties. 
Rigorous mathematical analysis of this emergent behavior can provide significant insight into the 
mechanisms behind these experimental observations; however, there are many theoretical questions 
remaining unanswered. In this paper, we study a coupled PDE/ODE system first introduced in the 
physics literature and used to investigate numerically the effective viscosity of a bacterial suspension. 
We then examine the kinetic theory associated to the coupled system, which is designed to capture 
the long-time behavior of a Stokesian suspension of point force dipoles (infinitesimal spheroids rep- 
resenting self-propelled particles) with Lennard-Jones-type repulsion. A planar shear background 
flow is imposed on the suspension through the novel use of Lees-Edwards quasiperiodic boundary 
conditions applied to a representative volume. We show the existence and uniqueness of solutions for 
all time to the equations of motion for particle configurations — dipole orientations and relative posi- 
tions. This result follows from first establishing the regularity of the solution to the fluid equations. 
The existence and uniqueness result allows us to define the Liouville equation for the probability 
density of configurations. We show that this probability density defines the average bulk stress in 
the suspension underlying the definition of many macroscopic quantities of interest, in particular the 
effective viscosity. These effective properties are determined by microscopic interactions highlighting 
the multiscale nature of this work.

Key words. Collective Motion, Effective Viscosity, Coupled PDE/ODE System, Kinetic Theory

AMS subject classifications. 35Q35, 76D03, 76D07, 92B99.

1. Introduction. Pattern formation, anomalous rheology, and increased diffu- 
sivity are just a few of the many interesting macroscopic phenomena which have been 
observed in bacterial suspensions [1,7,8,17,18,25-28,33]. These properties result 
from the emergence of collective motion among the swimming bacteria and sharply 
distinguish suspensions of active particles from passive suspensions. Collective motion 
arises precisely because bacteria are self-locomoting microorganisms that move and 
interact through the fluid with each other and their environment.

One of the most striking experimental results in bacterial suspensions is the obser- 
vation of a seven-fold reduction in the effective viscosity of a suspension of swimming 
Bacillus subtilis [26]. This reduction is seen as the volume fraction of bacteria in- 
creases to a critical value of about 2%. Below this concentration threshold, referred 
to as the dilute regime, interactions between bacteria are negligible. It is sufficient 
to accurately describe the statistical state of the suspension by the probability of 
configurations - positions and orientations - of a single bacterium swimming in an 
externally-imposed background flow. This simplifying assumption has been used the- 
oretically in [10,12,21] and numerically in [9] to explain the observed viscosity reduc- 
tion. The reduction was shown to be the result of a coherent injection of momentum 
by the bacteria spending significant time aligned to the principal extensional axes of
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the background flow. Here the equations governing the probability density of bacterial 
configurations can be explicitly derived and analyzed.

However, when the concentration exceeds 2%, interactions between the bacteria 
become significant drivers of both interbacterial alignment and increased friction, 
contributing both to the decrease and increase in the effective viscosity. This was 
captured numerically through simulation in our prior work [20]. Analytically, the 
suspension of interacting particles is generally described by the probability density 
of configurations of all bacteria. The governing equations of the probability density 
are sometimes known as the kinetic theory of the suspension. Due to the presence 
of hydrodynamic interactions the kinetic theory will typically include singular terms, 
which diverge as bacteria approach each other. Further, when approximating a bulk 
suspension by a periodic system, only the relative motion (relative positions between 
each particle) of the suspended bacteria is meaningful. Up until now it has not been 
rigorously shown that such a kinetic theory is well defined and suitable to define an 
effective viscosity outside of the dilute limit.

In this paper we start to close this gap by analyzing a particular kinetic theory 
aimed at defining the effective viscosity for a semi-dilute bacterial suspension under 
a planar shear flow. Mathematically, we define a semi-dilute suspension as one that 
satisfies the superposition principle: the flow at any point in the fluid is the sum 
of the flows induced by the individual moving particles (see, e.g., [20]). This is also 
commonly known in the physics literature as mean field theory. We consider bacteria 
similar to B. subtilis used in the experimental work [26]. These bacteria are rod-like 
and propel themselves through the cumulative pushing action of their rotating helical 
flagella. The semi-dilute regime is defined by concentrations at which the interbacte- 
rial distances are typically much larger than the bacteria themselves, yet interactions 
between particles still play a prominent role. This allows the bacteria to be modeled 
as infinitesimal force dipoles acting on the fluid. This amounts to approximating the 
flow produced by each bacterium with its dipolar component [15], which captures 
the effect of its elongated shape and enforces the superposition principle. These as- 
sumptions are supported by experiment: recent work [8] shows that the flow from a 
swimming microorganism is well approximated by a dipolar flow at a distance, that 
the flow decays rather rapidly, and in the absence of significant alignment between the 
bacteria the flow is essentially negligible at distances comparable to the length of the 
bacterium. At shorter distances excluded volume interactions (collisions) dominate 
hydrodynamic interactions and are the main mechanism behind the initial alignment 
and the emergence of coherent motion. Therefore, we can expect that dipolar hy- 
drodynamic interactions and Lennard-Jones-like excluded volume forces capture the 
main mechanisms of interbacterial interaction in the semi-dilute regime. In this pa- 
per we establish that the addition of excluded volume forces to the model serves to 
regularize the theory making it well defined and suitable for a definition of effective 
viscosity.

At a fixed time the instantaneous viscosity can be defined in terms of the volume- 
averaged stress [3,5], a function of only the instantaneous configuration of the sus- 
pended particles. The effective viscosity, on the other hand, must be a measurable 
macroscopic quantity independent of the particular particle configuration and, hence, 
of time. It can be defined using the long time average of the instantaneous viscosity, 
provided this limit exists and is independent of the initial configuration — the clas- 
sical conditions for ergodicity — which can be challenging to establish in a rigorous 
mathematical framework. More basically, however, the kinetic theory must be well
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defined for all times in order for the long time limit to exist.
We define our kinetic theory as the Liouville equation for a suitable ODE gov- 

erning the evolution of bacterial configurations. To ensure the Liouville equation is 
well defined for all time, the ODE’s trajectories must exist for all time, for any initial 
condition in our phase space. The ODE is defined via a balance of forces and torques, 
which involves the hydrodynamic forces from the fluid governed by a PDE - the 
Stokes equation governing the flow generated by the force dipoles. We consider the 
specific yet representative case of a planar shear modeled by imposing time-dependent 
quasiperiodic boundary conditions first proposed by Lees and Edwards [16]. With 
these boundary conditions and a given configuration of finitely many dipoles at a 
fixed time, the Stokes equation is explicitly solvable, at least in the weak sense due to 
the fact that the right-hand side is a distribution. A weak solution is insufficient due 
to the hydrodynamic forces entering the ODE, which require a pointwise evaluation of 
the fluid velocity and its derivatives. Additionally, because of the quasiperiodic form 
of the shearing boundary conditions, the resulting fluid velocity is not unique, but is 
defined only up to an additive constant. As a result, only the relative motion of the 
bacteria is well defined. To address these issues we establish the sufficient regularity 
of the PDE solution and show that the ODE, the kinetic theory as well as the vis- 
cosity can be self-consistently defined in terms of relative particle positions. Finally, 
we show that for any separated initial state — where particles have distinct initial 
positions — the ODE solution is defined for all time and remains separated. This 
allows us to conclude that the kinetic theory is also well defined and the investigation 
of its long time limit, including the question of effective viscosity, is meaningful.

The remainder of the paper is organized as follows. In Section §2 we discuss the 
definition of effective viscosity for bulk suspensions. Section §3 describes our model 
of the suspension as a coupled particle/fluid system as well as the modeling of shear. 
Section §4 establishes the main theoretical results: (i) the existence, uniqueness, and 
regularity of the solutions of the fluid equations, (ii) the global solvability of the par- 
ticle equations of motion. Section §5 concludes the paper. Throughout this work, we 
adopt the Einstein summation convention and use the following notation for deriva- 
tives ui,m := To avoid confusion we denote vectors in the standard basis with a
superscript, {ex,e2,e3}.

2. Effective (homogenized) viscosity of suspensions. Viscosity quantifies 
the response of the bulk fluid flow to an applied stress. Conversely, viscosity is a 
measure of the bulk stress in the fluid necessary to maintain a prescribed bulk flow. 
Assuming this response is linear, the viscosity is represented as a 4th order tensor, 
nijkl, quantifying the constitutive relationship between the deviatoric stress, E[f = 
Ey — j<5yEmm, and the rate of strain, Ekl, as follows: ET = ijijkiEki. In the case 
of an isotropic fluid the tensor is uniquely characterized by a single scalar, also called 
viscosity. In general, however, the relationship between the strain rate and the stress 
— the rheology of the fluid — is nonlinear and cannot be characterized by a constant 
scalar or tensor. Even in these situations, however, it is frequently possible to derive 
useful scalar constants quantifying some aspects of this constitutive relationship. Here 
we develop the definition of the effective shear viscosity as a measure of shear stress 
induced by a prescribed shear flow.

We impose a rate of strain on the suspension by specifying a planar shear back
ground flow or, equivalently, suitable velocity boundary conditions, and compute the 
resulting bulk stresses acting in the suspension. A configuration of the suspension 
is defined as a set of bacterial positions x = (x1,..., xN) G R3V and orientations
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d = (d1,..., dN) G S2N, where S2 is the unit 2-sphere — the space of dipole ori- 
entations in R3. In contrast to the dilute regime where it was sufficient to consider 
two variables for a single bacterium’s orientation, the added difficulty of a semi- 
dilute suspension is that now we must consider 5N variables (three for each particle’s 
position and two for each orientation). Assuming only dipolar and Lennard-Jones 
interactions as explained in Section §1, for a given configuration the instantaneous 
volume-averaged bulk stress is given by the symmetric trace-free tensor

where l,m = 1,2,3, r(4’J) = x4 — xJ, Uo is the dipole moment, and |Vl| is the volume 
of the domain. The stress is broken into two components: the hydrodynamic dipolar 
stress [3] and the excluded volume stress due to the Lennard-Jones force F [34]. The 
key feature of the stress is that it only depends on the N(N~1') relative positions, r(4,J) 
for 1 ≤ i < j ≤ N, and N orientations, d4. This is because in the dipole limit the total 
hydrodynamic stress is independent of the particles’ positions, and the Lennard-Jones 
stress is defined in terms of relative positions. For a given background flow strength γ 
and a given bacterial configuration at time t we can calculate the instantaneous stress 
S(r,d) and define the instantaneous shear viscosity as follows:

d(/)) := 77 (l + ,

where 77 is the velocity of the ambient fluid.
The viscosity is an intrinsic bulk property of a fluid. Bulk properties are charac-

terized by the average behavior of the fluid on sufficiently large scales, such as those 
larger than the suspended particles or interparticle distances, while the local varia- 
tions on smaller scales are irrelevant. Thus the effective viscosity, ή, like the viscosity 
of a homogeneous fluid should be a property of the suspension independent of time 
and the microscopic configuration. Thus we define the effective viscosity using a long 
time average of the instantaneous viscosity

similar to its computation in experiment. However, this quantity still depends on the 
initial configuration and in general is difficult to analyze. Instead, using the crucial 
assumption of ergodicity, we replace the time average by an ensemble average with re- 
spect to the steady-state probability distribution PN(r, d) representing a statistically 
stationary state of the suspension

(2.2) 77 = 77 (l + J Si2^’~)pW(r,d)drddj .

Formally, the steady-state PN(r, d) is the limit t —> ∞ of PN (r, d, t) which satisfies 
the Liouville equation
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where r and d are the relative equations of motion for the bacteria. To compute 
the effective viscosity it needs to be shown that the right-hand side of (2.2) is well 
defined as a function of the relative positions and orientations of the particles. The 
existence of a steady-state for (2.3) is not known in general and is the subject of future 
work. Here we take the first step in that direction by demonstrating that (2.3) is well 
defined for all time. To this end we need to analyze the ODE equations of motion 
of the bacteria and establish the long time existence of their solutions, which is the 
main focus of this work.

3. Model. Based on the prior discussion, we introduce the coupled PDE/ODE 
system modeling the bacterial suspension. The bacteria are represented as point force 
dipoles in a fluid. Heuristically, a dipole is the limit of infinitesimal separation of a pair 
of oppositely directed forces, which are equal in magnitude (see Fig. 3.1). One force 
represents the bacterium’s propulsion force (the action of the flagella, for example), 
and the other is the opposing drag exerted on the fluid by the bacterium’s body due 
to the no-slip boundary condition. This is a model of a “pusher”, a swimmer that 
propels itself by pushing the fluid back behind its body as if with a propeller, similar 
to B. subtilis. “Pullers”, which propel themselves with a kind of “breaststroke” by 
pulling the fluid in front of it (not considered here) can be modeled as contractile 
dipoles (Fig. 3.1 (right)). Based on the typical size l0 ~ 1μm and swimming speed 
V0 ~ 20μm/s of a bacterium, as well as the typical dynamic viscosity ~ 10-3Pa . s 
and density ~ 103kg/m3 of the suspending fluid, the typical forces the bacteria exert 
generate flows with the Reynolds number, Re ~ 10-4 << 1. Similarly, inertial effects 
on the particle are negligible due to its small mass. We further assume that a steady- 
state flow is established on a timescale much smaller than that associated with the time 
for a bacterium to swim its length (characteristic timescale). Thus the fluid flow at any 
time is accurately modeled by the steady Stokes equation. It has been experimentally 
verified that the flow due to a force dipole in a Stokesian fluid is a good approximation 
to the flow around a swimming pusher [8], justifying our approximations.

To study effective viscosity we have to model the influence of a prescribed bulk 
background flow, as explained in Section §2. This problem is multiscale by nature: 
the effective properties such as the effective viscosity can only be defined on the 
macroscopic scale on the order of the size of the suspension, but are determined by 
the microscopic behavior on the scale of the particle size, l0. On macroscopic length 
scales the flow in the suspension should be that of the background flow, but on the 
smaller length scales it will vary due the influence of the bacteria. Mathematically 
(see, e.g., [2]) the background flow is imposed on an unbounded system using suitable 
conditions at infinity, so that the result is free of finite boundary effects. This can be 
difficult to achieve numerically, however, as it would require very large computational 
domains. Instead, infinite bulk homogeneous systems are frequently modeled as pe- 
riodic: the space is tiled with a lattice of periodic images of the fundamental cube 
□ , and the velocity and orientation of the fluid and particles in each cube are equal 
to those of their periodic images. If the size of the cube is much larger than the sus- 
pension’s correlation distance, as in experiment [27], the statistics of the interparticle 
interactions will be similar to those in the bulk.

This approach, however, is not suitable for modeling shear flows, since the macro-
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Fig. 3.2. Two-dimensional illustration of Lees-Edwards boundary conditions used to model 
planar shear flow.

scopic fluid velocity obtained by averaging over the cubes, will be constant. In order 
to ensure a linear variation in the velocity characteristic of shear we will employ an 
approach first proposed by Lees and Edwards [16] for molecular dynamics simulations 
of fluids. Assume for concreteness that the size of □ is L, it is centered at the ori- 
gin with the sides parallel to the coordinate axes. Initially there are N periodically 
replicated particles in each cube. A shear of magnitude γ is imposed in the xy-plane 
so that on large length scales the y-component of the flow varies as ~ γx. We model 
this as follows: (a) at time t each yz-layer of cubes is shifted upwards in y by γt 
relative to the preceeding adjacent layer in x, and (b) in each subsequent yz-layer the 
y-component of the bacterial velocity is larger by 7. This way the global character- 
istics of the flow are those of planar shear, while the local interactions between the 
particles are as those in the bulk. In particular, the Lees-Edwards boundary condi- 
tions guarantee (see [6]) that the suspended particles in the image cells satisfy the 
same equations of motion as the particles in the reference cube □, except with the 
velocity modified by the shear. This is not the case for periodic boundary conditions 
where the conservation of momentum may be violated [16]. For a two-dimensional 
illustration see Fig. 3.2.

We now develop a detailed mathematical description of this model. Observe that 
in the quasiperiodic setting set out above only the relative positions and velocities 
are meaningful. To simplify the presentation, however, we first derive the equations 
of motion for the absolute positions and orientations of the bacteria based on those 
of finite particles, and later convert them to the corresponding relative equations.

3.1. Equations of motion. The equations of motion for a force dipole natu
rally follow from those for an extended particle, which, given negligible inertial effects, 
are a consequence of the balance of forces and torques (see e.g., [11] for a derivation).
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Essentially, the force of self-propulsion is balanced by the hydrodynamic force, re- 
sulting in the Stokes drag law (3.1). In addition, particles interact with the flow as 
infinitesimal spheroids resulting in Jeffery’s precessional equation (3.2) for an axisym- 
metric particle in a linear ambient flow. The semi-dilute assumption is increasingly 
more accurate as the size l of the ellipsoidal bacterium shrinks, since the flow can be 
approximated by an increasingly more accurate linear Taylor expansion. The Stokes 
law determines the translation velocity V0 of an isolated self-propelled spheroid for a 
given magnitude of the dipole moment U0 = f0 . l and eccentricity e (see [11]; here 
f0 is the magnitude of the self-propulsion force), and remains unchanged in the limit 
l —> 0 as long as e and U0 are kept fixed. The law given by Jeffery’s equation, first 
investigated for the case of passive ellipsoids [13] and derived in [15], depends only on 
the eccentricity and remains unchanged in the limit. This dependence of rotational 
motion on the bacterial asymmetry is crucial to the alignment dynamics.

Each particle in a given cube, □, moves in the ambient flow generated by the 
other particles. Because of the infinitesimal size of the dipoles, this ambient flow is 
the sum of flows uj generated by each of the other N — 1 dipoles in □ as well as 
all of its quasiperiodic images. Additionally, we model excluded volume interactions 
or “soft collisions” by implementing Lennard-Jones-like forces Fj defined in Sec. 3.2, 
in contrast to pure hydrodynamic models [22-24,29]. A soft collision is a collision 
where kinetic energy is lost and takes into account excluded volume constraints in the 
sense that there is a radius of exclusion (see Sec. 4.3.1). These forces must balance 
self-propulsion and drag, so they enter into (3.1) but, being centrally-symmetric, 
contribute no torque and, therefore, are absent from (3.2). The Lennard-Jones terms 
have an artificial length scale characterizing the soft collision distance between the 
particles. Beyond this distance, chosen to be smaller than L/2, the LJ forces vanish, 
so each particle interacts with no more than N — 1 of the particles in the same □ or 
its nearest images. Thus, we will interpret FJ(xi) as the force on the dipole i in □ 
from dipole j in the same □ or its closest quasiperiodic image. At most one of these 
particles exerts a nonzero force on i (see Fig. 3.2), resulting in no ambiguity.

With this convention for the sums 23^, the resulting equations of motion are

(3.1) x<=y0d* + g(„l(x<) + j^(x‘))

(3.2) cP = d x ]T_j7(x’) - d' x Bd4 x ^E^x*) • d* .
J/i L

Here, B is the Bretherton constant quantifying the aspect ratio of the particles. For 
a spheroid with eccentricity e (the ratio of the major and minor axes) it is given by 
B = , (B = 0 for spheres, B = 1 for needles), and for B. subtilis B ≈ .9. The
fluid velocity uJ generated by the j-th dipole is determined from the fluid equations 
(Sec. 3.3), and defines the corresponding vorticity uP = V x u' and the strain-rate 
EJ = | (VuJ + (VuJ)T) . The dependence of these terms on the orientation d' of 
the j-th particle is suppressed in the notation. The concentration, (f> ~ ATq/|Vl|, is 
implicitly present in the coupled system due to the fact that the sums depend on the 
number of particles in the suspension, N, and the volume of the fluid domain |Vl|.

3.2. Lennard-Jones forces. As mentioned above, collisions between the bacte- 
ria are modeled as soft excluded volume interactions based on forces of the Lennard- 
Jones (LJ) type. Specifically, Fj is the short-range repulsive force due to the j-th



S. D. RYAN, L. BERLYAND, B. M. HAINES, AND D. A. KARPEEV

Fig. 3.3. Lennard-Jones type potential where r = |x| and W(r) is radially symmetric.

particle and derived from the potential given by

see Fig. 3.3. We then define FJ(xi) = —VxW(x)|x=x._x,, where £/,./ ~ (i^o)-1 is a 
constant determining the normalized strength of repulsion defined in terms of the real 
particle size l0. The parameter σLJ determines the equilibrium distance (21/6fσLJ) 
where the net force between two bacteria balances to zero, and is set to reflect the 
real particle size: σLJ ~ l0. The truncation is imposed in order to ensure that this 
force is purely repulsive allowing soft collisions to be present. The truncated potential 
is only C1-smooth (the constant shift £/../. the minimum value of the Lennard-Jones 
6-12 potential, is necessary to maintain continuity). One can still easily show that the 
LJ force FJ(xi) = F(xJ — xi) G [C0’1^ \ {0})]3, where C0,1(Ω) denotes the space of 
Lipschitz continuous functions on Q. This fact will be essential in Section §4.3 where 
the long time existence and uniqueness of particle trajectories is established.

3.3. PDE model for a force dipole in the fluid. To complete the definition 
of the equations of motion laid out in Sec. 3.1 we must define the flow uj(x) generated 
at point x by the j-th dipole and its quasiperiodic images acting on the fluid. The 
total flow at any point is the sum of these individual dipolar flows in keeping with 
the semi-dilute assumption. Each dipole is subjected to an xy planar shear flow 
of strength γ used to define the effective viscosity (see Sec. 2). Shear flows are a 
representative linear flow frequently used in rheological experiments such as in [26]. 
We use the Lees-Edwards boundary conditions adapted to the PDE setting to model 
the effects of the shear. Specifically, the j-th dipole is oriented along dj and located 
at xj in a representative cube of side length L centered at the origin □ := {x G 
R3 | |a;i| < y, for i = 1,2,3}. The fluid around the dipole satisfies the following 
Stokes equation:
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where u is the fluid velocity, p is the pressure, and η is the ambient fluid viscosity. 
The dipole tensor D is given by

where U0 < 0 is the dipole moment. To the best of our knowledge, the use of Lees- 
Edwards boundary conditions in the formulation of a PDE or in the study of bacterial 
suspensions is novel.

3.4. Relative equations of motion. The flow governed by (3.4) is defined only 
up to a constant. Therefore, the right-hand side of the equations of motion (3.1)-(3.2) 
is not well defined. However, the main observable properties of the suspension, such as 
the stress (2.1) used to define viscosity, are only functions of the relative configuration 
of the particles. Therefore in place of (3.1)-(3.2) we reformulate the equations of 
motion for the relative positions := x’ — x-' for 1 < i < j < N and
N orientations di for 1 ≤ i ≤ N. This leads to N ordinary differential
equations

with initial conditions r^,J)(o) = Xq — xj(, dl(0) = djj. Here u(r(i,fc^) solves (3.4) with
d = dk.

The time evolution of the relative positions and orientation associated with ith 
bacterium is completely determined by the relative positions and orientations of all 
other bacteria, and thus the system (3.6) — (3.7) is closed. As is clear from (3.4), 
u(x) is only defined up to an arbitrary constant, but this will cancel out in the 
reformulated equations. Recall from Section §2 that these equations were necessary 
to show the Liouville equation for the probability density is well defined for all time. 
To calculate the effective viscosity, in addition to the probability distribution, we need 
the bulk stress to be well defined. To establish both results the long time existence of 
unique trajectories for the relative particle equations of motion (3.6)-(3.7) must now 
be shown.

4. Global Solvability of the equations of motion. We now turn to the 
central question of this paper — the existence of a unique solution to the equations 
of motion (3.6)-(3.7) for all time. There are two essential difficulties here. First, the 
right-hand side of (3.6)-(3.7) features u and its derivatives w, E. As a solution of the 
PDE (3.4) with a singular right-hand side and quasiperiodic boundary conditions, 
the velocity u might not be unique or have enough a priori regularity to have well 
defined pointwise values and derivatives. Second, under the best circumstances the 
regularity of u cannot extend to the collision set, xi = xj, where the flow due to the 
j-th dipoles is expected to diverge. Thus, in order to show long time existence, we 
have to establish the dynamics result that particle trajectories remain separated for 
all times, so that (3.6)-(3.7) remains Lipschitz.

We now examine the fluid velocity in greater detail. To establish the existence, 
uniqueness, and regularity of solutions to (3.4) we reduce it to the periodic case and
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later show how the general solution with Lees-Edwards boundary conditions can be 
obtained from the periodic case by a linear coordinate transformation.

4.1. Incompressible Stokes equation with periodic boundary condi- 
tions. We first define a few spaces which will be used throughout the remainder of 
this work. Denote the space of test functions, infinitely differentiable functions with 
compact support, as P(R3). We denote its dual space, the space of distributions, 
as D'(R3). A dual pairing between a distribution f G D'(R3) and a test function 
cf> G P(R) will be denoted by (/,<(>). It is natural to consider solutions to (3.4) in 
the space of distributions due to the singularity on the right-hand side. We begin by 
considering the special case of a periodic flow. A periodic flow due a single dipole 
with orientation d at the origin satisfies the following equation in the distributional 
sense (i.e., as a pairing with arbitrary test functions).

in x G □. The space of periodic distributions on R3 is denoted by Pg where the sub- 
script □ identifies the periodicity cell. Note here that divergence is to be understood 
in the distributional sense, (u, V<^>) = 0 for all (/> G P(R3). We begin by establishing 
the existence and regularity of the solutions to (4.1).

THEOREM 4.1. (Existence and Regularity of u(x) Given d G S2, there exists a 
solution u(x) G Pg to (4.1) and furthermore, u(x) G [C00^ \ {0})]3.

Proof. A periodic distribution is completely determined by the set of its Fourier 
coefficients [32]. Thus, we expand u.p, and f := V • [D(d)<5(x)] in Fourier series

analogous to [31] understood as distributions. Using the incompressibility condition 
k • uk = 0 one finds

Since f is a periodic distribution, its Fourier series converges to f in <S'(R3) C P'(R3), 
the space of tempered distributions on R3. In addition, for k^O, |pk| < |fk|. |uk| < 
|fk|. Thus, the Fourier series (4.2) converge to u and p in S' and each is a peri- 
odic distribution (i.e., (u, p) G ([Pg]3, Pg))• Thus a solution to (4.1) exists in the 
distributional sense.

Next we establish the regularity of the solution outside the origin. The intuitive 
idea is that the solution (u, p) will only have singularities at the same points the right- 
hand side of (4.1) does. For this we appeal to a result for hypoelliptic equations [32]. 
Namely, a linear differential operator with constant coefficients C, is hypoelliptic if 
and only if for any open set O every solution u(x) in P'(C>) of the equation Cm = /, 
where f G C'°°(O) belongs to C'°°(O).

Apply the divergence free condition to Stokes equation in (4.1) to find

-Ap = V • f
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in the distributional sense. Since all elliptic operators are hypoelliptic and V • f G 
C∞(n \ {0}), we find that p G C∞(n \ {0}). Now we consider Stokes equation for 
each component

d
~/\ui =--—p +fi, «= 1,2,3.

OXi

Applying the same result for Laplace’s equation where the right-hand side belongs to 
C∞ (□ \ { 0}), we conclude that u G [C∞ (□ \ {0})]3 proving the regularity of solutions 
to (4.1) outside the origin. □

An explicit construction of the solution u(x) to (4.1) can be found in Appendix A. 
Now that we have demonstrated the existence and regularity of a solution to equation
(4.1), we prove that (u(x),p) is the unique solution pair up to a constant.

Theorem 4.2. (u(x),p(x)) G (['Dg]3.'Dg) is the unique solution to (4.1) up to 
a constant.

Proof. Assume there exists two solutions to (4.1), denoted (u(x),p(x)) and 
(v(x),q(x)) in([P(-|]3, Pq). Define w(x) := u(x) — v(x) and the associated pressure 
<Xx) :=p(x) -q(x). Then (w(x),^(x)) G ([Dq]3,£>□) solves

?|Aw(x) = V<^>(x) for x G □
V • w(x) = 0, for x G □.

Expand both w(x) and </>(x) in a Fourier series analogous to the proof of Theorem 
4.1 and [31]. Using equation (4.3) with fk = 0 and (uk-Pk] replaced by {wk,^ 
one immediately concludes that for k y fi, ©k = U and Wk = 0. Therefore, w(x) and 
</>(x) are constants. Since a periodic distribution is uniquely determined by its Fourier 
coefficients, u(x) = v(x) and p(x) = g(x) is the unique solution pair to (4.1) up to 
an additive constant. □

4.2. Incompressible Stokes equation with Lees-Edwards conditions. In
this section we will define a linear coordinate transformation, which will provide a 
relation between the solution to (3.4) and the solution to the periodic problem (4.1) 
for which we have already established an existence and uniqueness result. Recalling 
the purpose of these time-dependent quasiperiodic boundary conditions, which was 
to account for the shear in the xy-plane, we then introduce the map
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We are now able to precisely formulate and prove the desired result.
THEOREM 4.3. Given t € (0, oo) and d G S2, the PDE (3.4) has a unique

solution u(x) G [^'(R3)]3,’ moreover. u(x) G [C'OO(D \ {0})]3.
Proof. Let u(x, t) be the velocity of the fluid which occupies position x at time

t. Let v(x,t) be the unique solution (up to a constant) to the periodic problem (4.1) 
at a given time t, which has already been shown to exist. By using the Lagrangian 
description, v(x, t) = j^X(f) such that at time t, X(t) = x. We now consider the 
relationship between u and v. Define u in the following way

Since (0, yx, 0) G [C'°°(n)]3 and it was proven that for a fixed time t, v(x) G
[P'(R3)]3 n [C∞(n \ {0})]3, then u(x) G ['D'(R3)]3 n [G∞(n \ {0})]3.

What remains to be shown is that u defined in this way satisfies (3.4).

Au(x, t) - Vp(jt, t) + V • [D(d)<5(x)] =
J* {Av(Jt_1x,f) — Vp(Jt_1x,f) + V ■ [D(d)<5 (Jt_1(x))] } = 0.

since v satisfies (4.1). Therefore, u satisfies Stokes equation. Next, we verify the 
incompressibility condition

V • u(x, t) = Jt [V ■ v(Jt 3x, P)] = 0.

Consider the boundary condition in the a;—direction

u(-|> V-^,z,t) + (0, |, 0) = Jtv(-|, y, z, tf 

= Jt^^,y,z,t)

= + ~

Similarly, u(a;, — = u(a;, j, z,t) and u(a;, y, — f) = u(x,y,-^,t). Thus, u satis- 
fies (3.4). □ “

Due to the 1-1 correspondence between solutions to the fluid equations with Lees- 
Edwards boundary conditions (3.4) and solutions to the periodic problem (4.1) via 
the map (4.5), we have proven that the solution to (3.4) is unique up to a constant. 
We next establish the main result of the paper, namely the global solvability of the 
ODE equations of motion. As mentioned earlier, these equations contain the solution 
u to (3.4). The fact that the solution is only unique up to a constant does not effect 
the global solvability of (3.6)-(3.7).

4.3. Global solvability for the relative equations of motion. In this sec
tion we will show the long time existence of the solution to the relative equations of
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motion (3.6)-(3.7). The first step to proving long time existence is using the Picard- 
Lindelof Theorem to show the short time existence of a unique solution.

THEOREM 4.4. Given a distinct set of initial relative positions (0) = Xq — Xq 

for 1 < i < j < N and orientations dJ(0) = dg fori = 1,..., N, there exists a constant 
T > 0 such that the relative equations of motion (3.6)-(3.7) have a unique solution 
for times t G [0, T).

Proof. In order to invoke the Picard-Lindelof Theorem we must establish that 
the right-hand side of (3.6)-(3.7) is Lipschitz continuous. This is an immediate conse
quence of the regularity result proven in Section §4.2 in Theorem 4.3. Namely, for all 
£ > 0, u(x) G [C'°°(n \ Be(0))]3 and consequently w(x), E(x) G [C'OO(D \ Be(0))]J. 
Also, by the definition of the short-range potential (3.3), F(x) G [C0’1^ \ Be(0))]3. 
Thus, as long as the particle trajectories remain separated, |r^,J)[ = |x’ — x-' > e, 
then the right-hand side of (3.6)-(3.7) is smooth. Therefore, outside the collision set, 
]x' = x-7}, (3.6)-(3.7) has a Lipschitz continuous right-hand side and is bounded on 
□ . Thus by the Picard-Lindelof Theorem [30], there exists a T > 0 such that a unique 
solution to (3.6)-(3.7) exists for all t G [0,T). □

4.3.1. Long-time existence — energy approach. To prove long time ex- 
istence we need to show that the interval of time guaranteed by Theorem 4.4 can 
be extend to all time, (i.e., T = ∞). T can only be finite if the solution to (3.6)- 
(3.7) blows up in finite time. This occurs only if two particles collide, a?(f) = x^ft) 
for t = T. However, heuristically, when |x4 — xJ| < 21/6oxj, the particles begin to 
strongly repel one another due to the short-range potential (Fix' —xJ) ~ 1 / |x'— x-7|13) 
and thus should remain apart for all time. If not the potential energy of the system 
will blow up. The following theorem will establish this intuitive idea rigorously and 
prove the main result of this work.

THEOREM 4.5. Given a distinct set of initial relative positions (0) = Xq — Xq 

for 1 < i < j < N and orientations d’(0) = dg for i = 1,..., N, there exists a unique 
solution to the relative equations of motion (3.6)-(3.7) for all time t G [0,oo).

Proof. The main idea of the proof is to show that the particle trajectories avoid 
the collision set

C:={r = (r(1’2),...,r(JV-1>JV)) GR3JV(JV_1)/2 | r(i’7) = 0 forsome l<i<j<N}.

Consider the unique maximal trajectory of all relative positions r’ft) G T = ]R3Ar(Ar_1)/2\ 
C starting at 7% G T, which exists by Theorem 4.4 for t G [0, T). We need to establish 
that T = ∞ to prove the result.

Begin by defining a function representing the potential energy at time t

N N

(4.7) E(f):=££lF(rWW
i=l j>i

where E : [0,T) —> R and IF(r) is the short-range potential (3.3) defined in Sec- 
tion §3.2. As mentioned in Section §3.1, TV(r^l,J) (t)) js unambiguously defined as the 
interaction between the ith particle and the nearest image of the jth particle at time 
t.

Assume, by contradiction, that T < ∞. T can only be finite if the solution to 
(3.6)-(3.7) blows up as t -> T. This can only occur if as f —> T, a collision occurs 
between a pair of particles in the following sense: dist(T'(t), C) := min;j |r(*d)(t)| —>• 0.
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As —> 0 for any I < i < j < N, then W(r(l’J) (f)) —> ∞ and thus E(t) —>■ ∞.
In addition to E(t), we compute its derivative

using the equations of motion for relative positions (3.6). As dist("r*(t), C) —> 0, 
then ~ —> —oo (since r(lb) ~ F = —VIU). Recall that \7W = —F is
Lipschitz continuous outside the origin.

Thus by the continuity of 4A for / g [q, T), there exists a 6 > 0 such that if 
dist(T>(t), C) < <5 for any t G [0,T), then 4A(f) < 0. Since a collision occurs as time 
t T, there exists a To G (0, T) such that for any t > To, dist(T>(t), C) < 6. So for 
any t G (To, T] we have

ft J-p pTq 7771
(4.9) E(f) = T(0) + jf -^)dT < T(0) + jf — (r)dr = E(To) < 00

since "f^To) C. This is a contradiction since E(t) ^00 as i —> T.
The key observation is that as dist(T>(t), C) —> 0, E(t) —> 00, but —> —oo.

This leads to the contradiction by appealing to the continuity of E(t). Thus, T = ∞ 
and there exists a unique maximal trajectory defined for t G [0, ∞) given any initial 
relative configuration of positions 4% G T. As a result the relative positions of 
particles remain bounded away from the collision set by S > 0. Note that the right- 
hand side of the equations of motion consists of elements of C'00(D \ B^(0)). Since the 
arguments of each function remain in the compact set □ \ Bg(0), then the right-hand 
side remains Lipschitz continuous for all time. Thus by extending Theorem 4.4 we 
have a unique solution to (3.6)-(3.7) for all time. □

5. Conclusions. In this work the coupled PDE/ODE model for a semi-dilute 
suspension of self-propelled microscopic particles, first introduced in [20], was shown 
to possess a unique solution for all time given non-overlapping initial data. Using this 
result we define a kinetic theory, in the form of the Liouville equation, which governs 
the time evolution of the system in phase space. This work was motivated by consid- 
ering the macroscopic phenomenon, specifically the change in the effective viscosity, 
observed in experiments on bacterial suspensions. Previous works studying the effec- 
tive viscosity have yet to establish that this quantity is a well defined macroscopic 
quantity for a semi-dilute bacterial suspension. By proving the kinetic theory is well 
defined, we begin to justify the explicit formula for the effective viscosity derived in 
our prior work [20].

While we have shown that the Liouville equation is well defined, many important 
questions remain. One of the primary difficulties was the time-dependent quasiperi- 
odic boundary conditions on the fluid equation imposed by the planar shear back- 
ground flow. It has yet to be investigated how other ambient background flows lead- 
ing to different boundary conditions on the fluid equation effect the solvability of the 
coupled system. Also, in order to define the effective viscosity we illustrated the two 
components necessary. The bulk stress needs to be well defined for all time, which has 
been shown in this work, and there must exist a steady-state solution to the Liouville 
equation. Unlike the Fokker-Planck equation, where the existence of a steady-state 
probability distribution is known [19], we cannot appeal to such a result for the Li- 
ouville equation. Future work may establish this fact and allow the effective viscosity
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to be well defined as a macroscopic quantity. Nevertheless, the development of the 
kinetic theory in this work could lead to the study of other effective properties, in 
addition to the effective viscosity, experimentally observed in semi-dilute suspensions.

Appendix A. Construction of an explicit (series) solution to the prob
lem (3.4).

We begin as in Section §4.1 by first constructing a solution to the periodic problem
(4.1). Then as before we can obtain the solution to the problem (3.4) with Lees- 
Edwards conditions by a linear coordinate transformation outlined in Section §4.2. 
We construct such a periodic flow to (4.1) from similar solutions in R3 by adapting 
the periodization technique as explained, for example, in [14] or [4]. To that end we 
take the distributional solution of

The intuitive idea here is that we expect ui defined in this way to be periodic. Here 
Djfc(d) is the dipole tensor as in (3.5) and <7(x) is the Oseen tensor (see [15]) with 
derivatives

11 3
^ij,fe(x) '— |x|3 A |^.|3 (fiikKj T djk-Ei') |x|5

The decay inherited from Qij^k is too slow, «j(x + z) ~ l/|z|2, as the above series 
for ui does not converge. The essential idea, however, is sound: if a function decays 
sufficiently fast, the series of its translates will converge absolutely and uniformly to 
a periodic limit. To achieve the convergence of a series of translates, its terms can 
be modified by arbitrary elements of the kernel of the homogeneous Stokes operator 
(e.g., constants or suitable linear functions), namely

(A.2) Ui(x) := Mi(x) + [uj(x + z) - ftj(z) - MijP(z)a;p].
zez3\{o}

which converges absolutely and uniformly due to each summand being ~
Besides convergence, the sum must be periodic. To this end we can ensure periodicity 
by enforcing that the derivatives of the constructed solution Uj,fc(x) integrate to zero 
over periodic contours C-7, which connect x and x + e' avoiding any point in Z3 for 
j = 1,2,3. Here cJ denotes the unit vector in the jth direction. Thus we need to 
modify the sum by an additional linear term to ensure periodicity.

(A.3) Ui(x) . — Ui(x) -j- ] [vzi(x -(- z) Ui(z) Ui p(z)xpj TlijXj.
zez3\{0}
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where

(A.4)n.y= [ L,(x) + £ Kfc(x + z)-«i,fc(z)]La;fc = Si(x + e^-n.i(x).

'C’ \ zgZ3\{0} /

It will be shown that Πij is a constant matrix independent of x and that Πii = 0. 
Once, proven we conclude that is in the kernel of the homogeneous Stokes
operator. We now proceed to prove this construction of u indeed gives a solution to 
the periodic problem (4.1).

THEOREM A.l. Given d G S2, u(x) solves (4.1) and furthermore u(x) € [T’g]3 O
[C°°(Q\{0})]3

Proof. We begin by showing that u(x) in (A.3) is a well defined periodic function 
for all x Z3. This requires further understanding of Πij, namely we prove that it is 
a constant matrix independent of x.

It can be easily shown, (e.g., see Appendix B) that «i,m(x) defined in (A.2) is 
k-periodic for all k G Z3. Thus, in particular, + cJ) — Mi,m(x) = 0. Since the
gradient of Πij is equal to zero, we find that Πij = Cij a constant matrix independent 
of x. Now that each component is understood, u(x) is a well defined function as a 
uniform limit of partial sums for x Z3.

We next establish the regularity of u(x) outside the origin. Since u(x) is the uni- 
form limit of functions in [C'°°(n\ {0})]3, then we conclude that u(x) G [C'(D\{0})]3. 
Furthermore, by the uniform convergence of the partial sums of kth derivatives, 
u(x) G [Ck (□ \ {0})]3, Vfc > 0 and the regularity result follows.

It remains to show that the derivatives, integrate to zero over all periodic 
contours.

I (x)-f- (x+z) (z)]c&Cfc I Tl^tlx^ — Hq H-q — b
J Ci J ci J ci

Thus, u(x) is periodic with periodicity cell □, the unit cube.
To summarize we have shown above that u(x) is pointwise defined in □ outside the 

origin. The distributional solution to (A.l), u G [L|OC(R3)]3. Since u(x) is the uniform 
limit of [L3OC(R3)]3 functions over any compact set, then it is also in [L^OC(R3)]3 and 
defines a regular distribution (u(x) G [^'(R3)]3). In addition, the periodicity of u(x) 
as an [L/1OC(R3)]3 function implies its periodicity as a distribution. Therefore, we 
conclude that u(x) G [T’q]3 Gl [C'°°(D \ {0}]3.

Now we must show that u(x) is divergence free in the distributional sense. Since 
u(x) is a solution of the incompressible Stokes equation (A.l), it is divergence free, 
and thus

^i,i(x) — ^z,«(x) T ' [iq,j(x T z) iq^(z)] 11 ? ?; — H?'i-
zgZ3\{0}

Therefore, it must be shown that Πii = 0. The following lemma will provide the 
result.

LEMMA A.2. For Πij, w(x), and □ defined above the following relation holds

(A.5) IIy|n| = / Ui(xfnjd2x
J aa

where u is the unit normal to the surface.
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REMARK A.3. The proof is similar to the corresponding lemma in [4], where a 
solution is constructed to the periodic Laplace equation. This is a technical lemma 
proven in Appendix C.

Using this lemma, a short computation using the definition of u and u directly 
shows that in fact Πii|E]| = fgaUifxfi/jd?x = 0. Since |D| > 0, we conclude that 
Πii = 0 and therefore u(x) is divergence free. Since the partial sums each solve the 
incompressible Stokes equations and the sum converges in distribution, then u(x) also 
solves the incompressible Stokes equations in the distributional sense. □

By the uniqueness result proven in Theorem 4.2, this is the unique solution to
(4.1) up to a constant. We then apply the linear coordinate transformation (4.5) 
from Section §4.2 to find the unique solution to (3.4). This construction provides 
additional insight to the problem. Namely, we recover additional information that 
the solution found in Section §4.1 is not only a periodic distribution, but is also a 
regular distribution. In addition, this explicit construction could be used for further 
analysis of properties associated to solutions of (3.4) in future work.

Appendix B. Periodicity of ui,k(x).
Periodicity for a series of translates, u^k, can be established as follows. If a 

smooth function decays at infinity as ϕ(x) = C^-j^p-), then

^(x) = 12 [^(x+z)_ ^(z)]
zEZ

converges absolutely and uniformly, since the terms in the series decay as 
Then, for any k £ Z3 we can rearrange the two series in iffx + k) — ^(x) and resum 
over expanding balls |z| < K of radius K:

iffx. + k) — iffx) = lim [<^>(x + k + z) — <p>(x + z)].
K—>∞-—'

|z|<K

For sufficiently large K most terms within the above sum cancel, except those in the 
thin “boundary” shell defined by the symmetric difference An := {z € Z : |z — k| < A'} A 
{z £ Z : |z| < K}. The sum of these, however, decays rapidly. Indeed, let Bn := {z :
A' — < |z — k| < K + -y} be an annular region covering AK as illustrated in
Fig. B, and thus the number of points in the sets satisfy |Ak| < \Bk\ < CK2 , where 
C > 0 is a constant. Thus, we have the following estimate
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Proof. Let FI, F+ denote the opposing faces of □ in the s direction (normal to 
es) and let denote the unit normal. First we establish the following equality:

3

(C.2) / Uifxfi/jdI 2x =
Van S=1 Jr°+

Let y = x + es, under this change of variables F_ —> F+ and v —■ —v. Thus,
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