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BIO-SIGNAL ANALYSIS IN FATIGUE AND CANCER RELATED 

FATIGUE: WEAKENING OF FUNCTIONAL CORTICOMUSCULAR 

COUPLING  

QI YANG 

ABSTRACT 

Fatigue is a common experience that reduces productivity and increases chance of 

injury, and has been reported as one of most common symptoms with greatest impact on 

quality-of-life parameters in cancer patients. Neural mechanisms behind fatigue and 

cancer related fatigue (CRF) are not well known. Recent research has shown dissociation 

between changes in brain and muscle signals during voluntary muscle fatigue, which may 

suggest weakening of functional corticomuscular coupling (fCMC). However, this 

weakening of brain-muscle coupling has never been directly evaluated. More important 

information could be gained if fCMC is directly detected during fatigue because a 

voluntary muscle contraction depends on integration of the entire chain of events and is a 

complex interaction of different components from the central nervous system to 

peripheral systems. This research, first, evaluated the effect of muscle fatigue on fCMC 

in healthy people by determining electroencephalography (EEG)-electromyography 

(EMG) coherence during two stages of a sustained voluntary muscle contraction, one 

with minimal fatigue and the other with severer fatigue. The obtained results suggest that 

despite an elevation of the power for both the EEG and EMG activities with muscle 

fatigue, the fatigue weakens strength of fCMC between the two signals. Secondly, given 

  vi  



 

the fact that there is larger discrepancy between central and peripheral fatigue in CRF, the 

effect of cancer related fatigue on fCMC was evaluated by comparing EEG-EMG 

coherence during a muscle fatigue task in CRF patients with healthy controls. CRF 

patients showed significantly lower fCMC compared to healthy controls during minimal 

fatigue stage which may be caused by possible pathophysiological impairments in the 

patients. Finally, to better understand dynamic fatigue effect on fCMC, a single trial 

coherence estimation based on Morlet wavelet was developed and applied to investigate 

fatigue effect on fCMC in single trial during repetitive maximal muscle contractions. It 

was revealed that the decreasing pattern of the fCMC varied among the subjects but the 

overall decreasing trend was consistent across subjects. The results from the single-trial 

study suggest it is possible to detect more dynamic fCMC adaptations under acute 

neuromuscular instability conditions, such as muscle fatigue.  

This research reveals that muscle fatigue impairs normal coupling between the 

central and peripheral neuromuscular systems, which could be a major factor contributing 

to worsened performance under fatigue influence. In general, cancer patients with fatigue 

symptom exhibit substantially weakened fCMC, even without influence of muscle fatigue. 

The findings are potentially important in understanding neural mechanisms of muscle 

fatigue and cancer related fatigue, and in guiding development of new methodologies to 

improve diagnosis and treatment of fatigue symptoms in clinical populations. 
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CHAPTER I 

INTRODUCTION 
 
 

 
1.1   Fatigue and Cancer Related Fatigue 

Muscle Fatigue has been defined as “any exercise-induced reduction in the ability 

to exert muscle force or power, regardless of whether or not the task can be sustained.” 

(Bigland-Ritchie and Woods, 1984). It can result from one of the following muscle 

activities: maintaining sustained/repetitive submaximal muscle contractions against a 

given load, or maintaining sustained/repetitive maximal muscle contractions. With 

submaximal (>25% maximal level) voluntary contraction, the progressively increasing 

amplitude and decreasing frequency power of the electromygram (EMG) activity and the 

increasing effort to sustain the same force output are the typical markers of fatigue. In the 

case of maximal muscle contraction, the gradually decreasing amplitude and frequency 

power of the EMG activity, reduction of the force output and eventually inability to 

maintain the maximal force are signs of fatigue (Bigland-Ritchie, 1981, Enoka and Stuart, 
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1992, Taylor et al., 2000). Fatigue reduces productivity, lowers quality of life and 

increases chances of injury. The consequences are more severe in cancer patients with the 

fatigue symptom. Fatigue has been reported as the greatest impact on quality-of-life 

parameters in cancer patients (Dimeo et al., 1997, Stone et al., 1998, Barnes and Bruera, 

2002).  

Different from normal fatigue, cancer related fatigue (CRF) is a persistent 

subjective sense of tiredness that interferes with daily activities (Mock et al., 2000). It 

comes on suddenly, does not result from activity or exertion, and is not relieved by rest or 

sleep. It might continue even after treatment is complete. A universal definition for 

cancer-related fatigue does not exist (Davis, Khoshknabi and Yue 2006).  The National 

Consortium of Cancer Centers’ definition of CRF is “an unusual persistent subjective 

sense of tiredness related to cancer or cancer treatment that interferes with usual 

function” (Mock et al. 2000).  In the US, there are more than 8 million cancer survivors, 

and more than a million new cancers are diagnosed each year (Holley, 2000). Cancer and 

its treatment cause a variety of symptoms such as pain, decreased appetite, mouth ulcers, 

hair loss, nausea and vomiting, shortness of breath, a general deterioration of physical 

condition, and fatigue.  Of these symptoms, fatigue has been ranked the longest lasting 

and most disruptive symptom by cancer patients, affecting up to 70% of the patients after 

chemo- and radiotherapy; fatigue also has the greatest impact on quality-of-life 

parameters (Dimeo et al., 1997; Stone et al., 1998; Barnes and Bruera, 2002).  The 

prevalence of fatigue was as high as 96% when patients received chemotherapy with 

radiotherapy (Irvine et al., 1991).  Although fatigue is a highly prevalent condition among 
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patients with cancer, mechanisms that contribute to CRF are very poorly understood 

(Review: Wu and McSweeney, 2001).  
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Fig.1.1. Illustration of motor pathway of physical activities (Gandevia, 2001, 81:1725-1743).  

Previous studies on muscle fatigue have been focused on all levels of the motor 

pathway (Fig. 1.1), from muscle to brain, before, during and after fatigue motor task. 

Peripheral changes within the muscle associated with fatigue have been thoroughly 

studied, which included measurements made on single fibers, motor units and whole 

muscle (Taylor et al., 2000). The mechanisms of force loss (a major indication of muscle 

fatigue) on excitation-contraction coupling, the buildup of metabolic by-products and 

decreased efficiency of the contractile mechanism (Bigland-Ritchie et al., 1986, Balestra 

et al., 1992, Babcock et al., 1995), impaired sarcoplasmic Ca++ release and reuptake, 
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abnormal changes of the muscle fiber membrane (Abdelmalki et al., 1997) and impaired 

function of neuromuscular junction (Fuglevand et al., 1993) have been reported to be 

related to fatigue. Recently, it was found that these peripheral changes are not the only 

changes associated with the muscle fatigue and do not account for all fatigue-induced 

decreases in maximal voluntary muscle force. Some central factors from spinal and 

supraspinal levels have been reported to associate to or account for muscle fatigue. 

During a sustained submaximal muscle contraction, brain activation level increases 

measured by functional MRI (Liu et al., 2003, van Duinen et al., 2007) and motor-related 

cortical potential (MRCP) (Johnston et al., 2001) as fatigue sets in. The power in some 

frequency bands decreases in EEG signals with fatigue induced by maximal muscle 

contractions (Liu et al., 2005). In addition, shift of brain activation center (Liu et al., 2007) 

and decreased functional connectivity in the motor cortex (Peltier et al., 2005) have been 

found in muscle fatigue. A number of studies applied transcranial magnetic stimulation 

over human motor cortex during sustained maximal or submaximal contractions 

demonstrated reduced excitatory input from the motor cortex to fatiguing muscle (Taylor 

and Gandevia, 2001, Sogaard et al., 2006). Inhibitory interneurons and/or firing of 

fatigue-sensitive muscle afferents that act upon the corticospinal neurons would also 

inhibit voluntary descending drive to muscle during fatigue (Bigland-Ritchie, 1981, 

Leonard et al., 1994, Belhaj-Saif et al., 1996, Taylor et al., 2006). Effects of muscle 

fatigue on almost each site of the motor control pathway from peripheral to central have 

been investigated separately, however, the relationship of these changes on various sites 

has never been directly addressed. A muscle contraction depends on integration of the 

entire chain of events and is a complex interaction of different sites from the peripheral to 
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central systems. Yet, many studies reported discrepancies between fatigue at muscular 

and supraspinal levels. It would be interesting to directly examine functional coupling 

changes between the brain and muscle during fatigue, which would provide additional 

information to the whole picture of fatigue mechanism. For CRF, although fatigue is a 

highly prevalent condition among patients with cancer, there have been no studies to date 

that have reported CRF-related cortical potentials or changes in frequency of EEG-

measured brain signals, or CRF-related brain function adaptations in neuroimaging 

investigation.  

 

1.2 Coherence 
 

Both cortical and muscular oscillatory activities have been known as common 

physiological signals and have been suggested to be the mechanism of synchronizing the 

information related to the same function in different neuronal populations (Mima and 

Hallett, 1999). These corticomuscular oscillatory activities can be quantified by EEG and 

EMG signal analysis in frequency domain. The synchronization of the signals in the brain 

and muscle is suggested as functional corticomuscular coupling (fCMC). This functional 

coupling is frequently measured by cross-correlating EEG and EMG signals in frequency 

domain, known as coherence. Coherence is mathematically bounded between 0 and 1, 

where 1 means two signals are perfectly linearly correlated at a given frequency and 0 

means no correlation at all. A widely used method of calculating coherence is based on 

smoothed cross-spectrum and auto-spectrum of the fast Fourier transform (FFT) averaged 

on numerous non-overlapping signal segments.  
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The strength of fCMC during voluntary motor actions was first systematically 

estimated by calculating coherence between magnetoencephalography (MEG) recorded 

from the scalp and surface EMG of the first dorsal interosseous muscle (Conway et al., 

1995).  It is now generally accepted that corticomuscular coherence reflects 

communications between the brain and muscle, which is considered to be related to 

controlling force (Kilner et al., 1999, Feige et al., 2000, Kilner et al., 2000, Marsden et al., 

2000), and the communications are thought to be mainly mediated by the direct 

corticospinal pathway (Mima and Hallett, 1999). Significant coupling between signals of 

the brain and muscle mainly at beta (15-35 Hz) frequency band during voluntary motor 

performance has been reported in healthy subjects, either in EEG-EMG (Kristeva et al., 

2007) or MEG-EMG coherence studies (Conway et al., 1995, Kilner et al., 2000).  

Abnormal features of fCMC have been reported with the coherence measurements in 

movement disorders, such as stroke (Mima et al., 2001), tremor (Volkmann et al., 1996, 

Hellwig et al., 2000) and Parkinson’s disease (Salenius et al., 2002), suggesting 

impairments in corticomuscular communication in the patients.  

 

1.3 Thesis purpose 
 

Given the significance of the fCMC measurement in understanding motor control 

mechanisms and paucity of knowledge related to neuromuscular mechanisms behind 

fatigue and CRF, it is expected to gain important information by applying coherence 

analysis to neuromuscular signals in fatigue and CRF study. This dissertation had three 

main objectives: to quantify normal fCMC change during voluntary muscle fatigue in 

healthy subjects; to detect abnormal fCMC in patients with cancer-related fatigue; to 
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explore a technique for detecting fCMC in single trial and providing and potentially 

making real time fCMC measurement. The fCMC was quantified by EEG-EMG 

coherence. 

It was hypothesized that fatigue would weaken the strength of the corticomuscular 

coupling based on differential effects of fatigue on the central and muscular systems and 

the coupling would be further weakened due to the larger discrepancy between central 

and peripheral fatigue caused by pathophysiological impairment in CRF patients 

compared to healthy subjects.  

 

1.4 Thesis Organization 

First, since the fCMC during fatigue has never been directly investigated, it was 

evaluated in healthy people to learn the normal pattern of its change with fatigue (Chapter 

2). Based on the normal changing pattern, the fCMC in CRF was assessed to identify the 

pathophysiological effect on the fCMC and its deviation from the normal pattern 

(Chapter 3). Furthermore, the single trial method of estimating fCMC and power 

spectrum based on wavelet transform was explored (Chapter 4) as the methods used in 

the first two studies did not provide satisfactory information regarding dynamic 

adaptation of the fCMC. In addition, this single trial method of estimating power 

spectrum was applied to develop an EEG-based brain computer interface (BCI) prototype 

(Chapter 5). This BCI system could potentially be used to control assisting devices for 

patients who are disabled. The last study (Chapter 5) was not related to fatigue, but the 

project was a one step forward in detecting motor related EEG signal pattern in real time 
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based on the same method described in chapter 4. Finally, Chapter 6 provides 

conclusions of the studies and discussion of future directions. 
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CHAPTER II 
 

WEAKENING OF FUNCTIONAL CORTICOMUSCULAR 

COUPLING DURING MUSCLE FATIGUE 

 
 

2.1 Introduction 

Voluntary motor performance is a result of the cortical command driving muscle 

actions.  Fatigue caused by prolonged voluntary muscle activities can be attributed to 

failure of the central or peripheral system.  Accumulating evidence suggests contributions 

from both systems to muscle fatigue (for a review see Gandevia 2001), yet many studies 

reported discrepancies between fatigue at muscular and supraspinal levels.  For example, 

the level of electromyogram (EMG) of the finger flexor muscles kept increasing during a 

sustained handgrip contraction at 30% maximal level, but the activity level of the primary 

motor cortex (measured by functional MRI) contralateral to the performing hand began to 

decline long before the subjects felt exhausted and terminated the contraction (Liu et al. 

2003).  Similar dissociation between signal alterations at muscular and supraspinal levels 
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has been observed during muscle fatigue induced by maximal voluntary contractions 

(MVC) (Gandevia et al., 1996, Butler et al., 2003, Liu et al., 2005, Liu et al., 2005).  

Furthermore, impairment of neuromuscular junction transmission function, especially 

with fatigue at low-intensity activity levels (Fuglevand et al., 1993, Fuglevand et al., 

1995) and inhibitory feedback from the fatiguing muscle(s) to the output neurons at 

supraspinal levels (Garland, 1991, Garland and Kaufman, 1995) would likely complicate 

the input (from the brain) and output (muscle) relation and may further enlarge the 

corticomuscular dissociation.  The unparallel changes of the signals between the muscle 

and central nervous system suggest decoupling of the two signals.  However, this fatigue-

related weakening of brain-muscle coupling has never been directly investigated. 

Understanding this phenomenon would help better elucidate fatigue mechanisms and 

develop therapies for treating the vast fatigue symptoms in clinical populations.  

The strength of corticomuscular signal coupling during voluntary motor actions 

was first systematically estimated by calculating coherence between 

magnetoencephalography (MEG) recorded from the scalp and surface EMG of the first 

dorsal interosseous muscle (Conway et al., 1995).  Although the physiological basis of 

corticomuscular coherence has been far from clear, it is now generally accepted that 

corticomuscular coherence reflects communications between the brain and muscle, which 

is considered to be related to controlling force and modulating fatigue (Kilner et al., 1999, 

Feige et al., 2000, Kilner et al., 2000, Marsden et al., 2000), and the communications are 

thought to be mediated by the direct corticospinal pathway (Mima and Hallett, 1999). 

Significant coupling between signals of the brain and muscle mainly at beta (15-35 Hz) 

frequency band during voluntary motor performance has been reported in healthy 
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subjects, either in electroencephalography (EEG)-EMG (Kristeva et al., 2007) or MEG-

EMG coherence studies (Conway et al., 1995, Kilner et al., 2000).  Abnormal features of 

corticomuscular coupling have been reported with the coherence measurements in 

movement disorders, such as stroke (Mima et al., 2001), tremor (Volkmann et al., 1996, 

Hellwig et al., 2000) and Parkinson’s disease (Salenius et al., 2002), suggesting 

impairments in corticomuscular communication in the patients.   

The purpose of this study was to evaluate the effect of muscle fatigue on functional 

corticomuscular coupling (fCMC) by determining EEG-EMG coherence during two 

stages of a sustained voluntary muscle contraction, one with minimal fatigue and the 

other with more severe fatigue.  It was hypothesized that fatigue would weaken the 

strength of the coupling based on differential effects of fatigue on the central and 

muscular systems. 

 

2.2 Methods 

2.2.1 Subjects 

Nine right-handed healthy subjects (48.2 ± 14.8 years, 3 men) participated in the 

study.  The study was approved by the Institutional Review Board at the Cleveland Clinic.  

All subjects gave informed consent prior to their participation.  All subjects performed a 

sustained contraction of the right-arm elbow flexors at 30% maximal level until 

subjective exhaustion.  Elbow flexion force, surface EMG and multi-channel EEG were 

simultaneously recorded during the sustained contraction. 

2.2.2 Data Recording 

Sustained Contraction 
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The isometric sustained contraction was performed to fatigue the elbow flexor 

muscles (Fig.2.1). A target force of 30% maximal elbow flexion force was displayed on 

an oscilloscope using a horizontal cursor.  (Maximal force was measured at the beginning 

of the experiment.) Participants matched the target with the exerted force in a sitting 

position with the elbow joint at ~100º and maintained the exerted force on the target until 

they felt exhausted and were no longer able to continue the contraction.  Participants 

were verbally vigorously encouraged to continue the sustained contraction as long as 

possible.  The sustained contraction was terminated if the exerted force dropped 10% or 

more for more than 3 s.  The forces (maximal and sustained contraction) were measured 

by a force transducer (JR3 Universal Force-Moment Sensor System, Woodland, CA), 

acquired by a Spike2 data-acquisition system (1401 Plus, Cambridge Electronic Design, 

Ltd., Cambridge, UK), digitized at 100 samples/s, and stored on hard disk of a personal 

computer. The subjects maintained the contraction for an average of 461±45s. But 

during the sustained contraction, the electrical stimulation-evoked twitch force was 

measured every 30 seconds to monitor the voluntary activation level of the biceps brachii. 

Stimulation electrodes were attached to the skin surface overlying the BB muscle. 

Supramaximal-intensity single electrical pulses (1-ms duration) were applied through a 

digital stimulator (Grass S8800) to evoke twitch force. This electrical stimulation was 

designed for another experiment purpose of comparing levels of voluntary activation 

between a group of patients with cancer-related fatigue and healthy controls. The EEG 

and EMG data with artifacts related to electrical stimulation was visually inspected and 

carefully excluded for the coherence analysis. 
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Fig. 2.1. Illustration of experiment setup 

EMG Measurement 

Bipolar surface EMG was recorded from the belly of the biceps brachii (BB), 

brachioradialis (BR) and triceps brachii (TB) muscles using Ag-AgCl electrodes (In Vivo 

Metric, Healdsburg, CA).  Recording diameter of each electrode was 8 mm and center-to-

center inter-electrode distance was ~3 cm.  A reference electrode was placed on the skin 

overlying the lateral epicondyle near the elbow joint.  The EMG signals were amplified 

(X1000); band-pass filtered (3 Hz – 1 KHz), digitized (2000 samples/s), acquired by the 

Spike2 system, and stored on hard disk of the personal computer.  For the EEG-EMG 

coherence analysis, the EMG signals of the three muscles were re-sampled at 250 points/s, 

the same sampling rate applied to the EEG (see below). 

Multi-Channel EEG Measurement 

Scalp EEG signals (referenced to the central electrode [Cz]) were recorded 

continuously during the sustained contraction using a 128-channel EEG data acquisition 

system (Electrical Geodesics, Inc. Eugene, OR, USA).  The 128 electrodes were arranged 
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in a hat-like net and connected to each other by nylon strings.  The electrode net was 

applied to the head after it was soaked in the electrolyte consisted of one liter of distilled 

water added with 1.5 teaspoons of potassium chloride and a few drops of baby shampoo 

(EGI System 200 Technical Manual).  A small piece of sponge in each electrode 

absorbed the liquid and served as connecting media between the scalp and electrode.  An 

impedance map, based on impedance values of all the electrodes, was displayed on a 

computer monitor to inspect the quality of connection.  If a particular electrode showed 

high impedance, adjustment (such as applying pressure or adding more water) was made 

to improve the connection.  The EEG data recording did not begin until the impedance 

for all electrodes settles below 10,000 ohms.  All channels of the signals were amplified 

(X75,000), band-pass filtered (0.01 -100 Hz), digitized (250 sample/s) and recorded on 

hard disk of a dedicated personal computer connected to the EEG acquisition hardware 

and software.  

2.2.3 Data Processing and Analysis 

During offline processing, the EEG signals were re-referenced to the average value 

of the 128-channel signals (excluded the outer-most electrodes) and high-pass filtered at 

3 Hz; the EMG signals were resampled to 250 Hz and high-pass filtered at 10 Hz to 

minimize low-frequency baseline fluctuation before rectification.  All signals, especially 

the EEG were inspected visually.  Recordings with artifacts caused by events such as 

electrical stimulation (see below), eye blinks, head movements, and/or muscle activation 

in and near the head areas were excluded and the corresponding EMG signals discarded.  

The entire duration (148 ± 24 s) of the clean EEG and EMG recordings was then divided 

into the first half (stage 1 with minimal fatigue) and second half (stage 2 with severer 
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fatigue).  Subsequently, the signals in each stage were segmented into artifact-free epochs 

(256 samples in each epoch) without overlapping (mean 148.5 epochs, ranging from 56 

to 264 among the nine participants). (Note that the subjects maintained the contraction for 

461±45 s in the experiment but the duration of the data used for the coherence analysis 

was much shorter. This was because supramaximal electrical stimulation-evoked twitch 

force was measured every 30 seconds during the sustained contraction to monitor the 

voluntary activation level (VAL) of the biceps brachii. The electrical stimulation protocol 

was for a separate project that compared the VAL between a group of patients with 

cancer-related fatigue and healthy controls [subjects of this study]. The high-intensity 

stimuli produced substantial artifacts onto the EMG and EEG data. After removing the 

artifact contaminated data, the total amount of “clean” data analyzed, on average, were 

only 148 ± 24 s, which was too short to be segmented into more than two stages for high-

quality coherence measurements.) 

In each stage, autospectrum and crossspectrum of the EEG and rectified EMG were 

calculated with a 256-point fast Fourier transform with Hamming window. (It has been 

shown that rectification of the EMG alters EMG power spectrum but does not change 

EEG-EMG coherence; further, the rectification makes the coherence peaks more clear 

[Yao et al. 2007].) The coherence of the two signals was obtained from normalization of 

the crossspectrum: ))(*)(/()()(
22 fSfSfSfC yyxxxyxy = , where and 

respectively represented the cross-trial smoothed autospectrum of the EEG and 

EMG signals, 

)( fS xx

)( fS yy

x and y , for a given frequency ; and  was the cross-trial 

smoothed cross-spectrum.  The frequency resolution was 0.98Hz. Significance of the 

f )( fS xy
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coherence was determined based on the 95% confidence level (Rosenberg et al. 1989). 

Due to the volume of information, especially the large number of EEG channels, 

the coherence values of EEG channels overlying sensorimotor function-related brain 

regions with each of the three muscles (BB, BR or TB) were grouped into five scalp areas 

for statistical comparisons (ten electrodes in each scalp area): left, right, frontal, central 

and parietal (Fig. 2.2).  Crossing-stage comparisons were limited to the beta (15-35Hz) 

frequency band since most of the significant EEG-EMG coherence values were detected 

at the beta frequency band in both stages 1 and 2.  The calculated coherence was Z-

transformed by the arc hyperbolic tangent transformation to stabilize the standard 

deviation (Rosenberg et al., 1989). The transformation was as follows:                                     

LChZ 2)(arctan ×=   

Where C is the coherence value and L is the number of epochs.  

right

front

right

front

right

front

Fig. 2.2.  Illustration of five scalp areas used for the statistical analysis of the EEG-EMG coherence: 
left, right, frontal, central and parietal areas. 
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The mean power of the beta band EEG in each scalp area and beta band EMG in 

each muscle at each stage was also calculated and normalized to the total power of stage 

1. The total EEG power was the sum of the power computed from 3 to 50 Hz and the 

total EMG power frequency range was from 10 to 125 Hz (the EMG resampling rate of 

250 points/s allowed 125 Hz as the highest frequency). The rectified EMG was averaged 

in each stage in each subject to quantify the level of activation in each muscle.  A group 

average was then determined. The force was quantified in a similar manner by computing 

the mean force in each stage in each subject and then calculating the group mean in each 

stage.  In addition, force variation in each stage was evaluated by determining standard 

deviation (SD) of the mean relative force. 

2.2.4 Statistical Analysis 

A repeated-measures general linear model was adopted for coherence comparisons 

between the stages and among the areas and muscles using SPSS 12.0 (SPSS Inc., 

Chicago, IL, USA). General linear model is a flexible generalization of ordinary least 

squares regression that incorporates a number of different statistical models: ANOVA, 

ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. In 

addition to analyzing amplitude of the coherence that above the significance level (95% 

confidence), the number of frequency bins reached the significance level was also 

quantified and analyzed.  Since the frequency resolution was about 1 Hz, each 1-Hz step 

from 15 to 35 Hz consisted of one bin. The Z-transformed EEG power and normalized 

EMG power at beta band were also subjected to the analysis of the repeated-measures 

general linear model. The elbow flexion force, force variation (SD), and EMG of the 

relevant muscles were compared between stages 1 and 2 using paired t tests. 
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2.3 Results 

The force and EMG results in the two stages of the sustained elbow flexion 

contraction were plotted as shown on Fig 2.3.  Force was well maintained at about 30% 

maximal level (stage 1, 31.1% ± 2.45%; stage 2, 31.3% ± 2.43%).  There was no 

significant difference in the force between stages 1 and 2 (P > 0.05).  However, force 

variation (SD) in stage 2 (1.19 ± 0.27%) was greater than in stage 1 (0.80 ± 0.13%) (P 

< 0.05), indicating that although the mean force did not change, the force was less steady 

in stage 2 (Fig. 2.2A).  Surface EMG signals of both the agonist (BB, BR) muscles 

increased significantly from less than 30% to near 40% maximal level (P < 0.01, Fig. 

2.2B).  The increase of the EMG of the elbow flexor muscles in stage 2 indicated that 

subjects had to increase their effort to maintain the same force, which was an indication 

of fatigue. 
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Fig. 2.3.  Group averages of sustained force amplitude and variation (A), and surface EMG (B) for 
the two stages.  Force and EMG were normalized to the maximal voluntary contraction (MVC) level.   
Force was maintained at the target level (30% MVC) for both stages, but the force became more 
variable or less steady in stage 2.  The EMG level increased significantly in the fatigue stage (stage 2) 
for the two muscles.  BB, biceps brachii; BR, brachioradialis. *P ≤ 0.05; **P ≤0.01. 
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EEG-EMG coherence decreased significantly in stage 2 compared with stage 1 at 

the beta band.  A typical example of EEG (left scalp area)-EMG (BR muscle) coherence 

spectrum for one subject is shown in Fig 2.4A.  This subject showed substantially 

reduced EEG-EMG coherence in stage 2 in left scalp area with all the muscles at the beta 

band. The subject exhibited significant coherence peaks within the beta band in stage 1.  

In stage 2, however, the coherence peaks either decreased or disappeared almost entirely. 

In contrast, the power of both the EEG and EMG signals increased at beta band in stage 2 

(Fig. 2.4B, 2.4C).   
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Fig. 2.4.  A single-subject example of EEG-EMG coherence spectra between EEG of the left area and 
EMG of the brachioradialis (BR) muscle (A), EEG power spectrum of the left area (B), and EMG 
power spectrum of the BR muscle (C) in the two stages.  On the coherence spectrum (A), a significant 
coherence peak at 30 Hz is clearly seen in stage 1 (thick line).  In stage 2, however, the significant 
coherence peak disappeared (thin line). The horizontal line in A indicates 95% confidence level. The 
EEG power increased in stage 2 (thin line), especially in beta band (B).  The EMG power elevated on 
the entire analyzed spectrum (C) in stage 2 (thin line). 
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Figure 2.5 displays coherence maps (average of the 9 subjects) based on electrodes 

within the five selected scalp areas with EMG of the three muscles for stage 1 (left 

column) and stage 2 (right column) at the beta band (15-35 Hz). Only significant 

coherence values were counted for each subject. The color bar indicates color-coded Z-

transformed coherence values.  The figure shows clearly that the level of coherence 

declined substantially in the fatigued compared to less-fatigued stage. The strongest 

coherence was located in the central-left-parietal areas in stage 1, especially for the two 

elbow flexor muscles (BB and BR). However, the spatial distribution of the coherence on 

the scalp with all the muscles altered dramatically in stage 2 with a majority of EEG 

channels showing weaker coherence and shifted scalp areas demonstrating strongest 

coherence (e.g., strong EEG-BB EMG coherence shifted from central-left [stage 1] to 

central-right [stage 2]; Fig. 2.5, top row).  

Stage 1 Stage 2

1

2

3

4

5

6

7

BB

BR

TB

Fig. 2.5.  Mapping EEG-EMG coherence based on coherence values of electrodes within the five 
selected scalp areas with EMG of the three muscles at beta (15-35 Hz) band in 9 subjects.  The color 
bar indicates Z-transformed coherence values.  The level of coherence declined substantially in stage 2 
(fatigue condition, right column) compared with stage 1 (left column). 
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Statistical analysis of significant coherence values and bin numbers by a general 

linear model of repeated measures showed significantly lower corticomuscular coherence 

for stage 2 compared with stage 1 at beta band. No significant area-muscle-stage 

interaction was observed on the coherence measure, indicating the fatigue-related 

reduction in the coherence was a uniform phenomenon across scalp areas and muscles.  

The top row in Fig. 2.6 shows the number of frequency bins within the beta band (15-35 

Hz) exhibited significant EEG-EMG coherence for all the scalp areas and muscles.  Each 

displayed bin number for a given area-muscle combination in a given stage (e.g., left [L] 

area EEG with BB muscle EMG in stage 1) was derived by averaging the numbers across 

the EEG electrodes in a (e.g., left) scalp area with EMG of a muscle (e.g., BB) in a 

contraction stage (e.g., stage 1) in each subject first and then across the 9 subjects.  The 

number of significant coherence bins within beta band was significantly smaller in stage 

2 compared with stage 1 in all area-muscle combinations.  Note that the bin number in 

Fig. 2.6 (upper row) was relatively small; this was primarily a result of spatial smoothing. 

For example, if one electrode was found to have 4 significant coherence bins in beta band 

in the left area (10 electrodes in each area), then the significant coherence bin number in 

this area would be only 0.25 (4 bins/10 electrodes). For the Z-transformed amplitude of 

the coherence, the value was also significantly lower in stage 2 vs. stage 1 for all the 

scalp area-muscle combinations (Fig. 2.6, bottom row).  
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Fig. 2.6.  Comparisons of the number of frequency bins with significant EEG-EMG coherence (upper 
row) and Z-transformed EEG-EMG coherence amplitude (lower row) between stages 1 and 2 among 
the five scalp areas and three muscles at beta frequency band.  The data were based on results of nine 
subjects. Both the number of bins and the coherence amplitude significantly decreased with muscle 
fatigue (P < 0.01).  Because there was no significant stage-area-muscle interaction, no post-hoc pair-
wise comparisons were performed.  BB, biceps brachii; BR, brachioradialis; TB, triceps brachii; L, 
left area; R, right area; F, frontal area; C, central area; P, parietal area.   

 

Figure 2.7 shows results of the mean normalized EEG (Fig. 2.7A) and EMG (Fig. 

2.7B) power at beta frequency band in stages 1 and 2. The EEG power increased in every 

scalp area. Statistical analysis of the EEG power revealed significant differences (P<0.01) 

between stages 1 and 2 and significant area effect. The normalized EEG power in the left 

and right areas was greater than that in the central, frontal and parietal areas.  The EMG 

power was also increased in each muscle. Statistical analysis of EMG power by the 

general linear model showed a significant difference between stages 1 and 2 (P<0.01). 

No significant muscle and muscle-stage interaction on the EMG power was detected.  
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Fig. 2.7. Comparisons of the mean normalized EEG power of the five scalp areas and EMG power of 
the three muscles at beta band (15-35Hz) between stages 1 and 2.  Data were based on results of nine 
subjects.  Each normalized EEG power value in each area in each subject was an average of the values 
from all the electrodes in that area at beta band normalized to the total EEG power (3-50 Hz) in stage 
1 of the same area.  Similarly, the EMG power at beta band for each muscle was normalized to the 
total EMG power (10-125 Hz) in stage 1 of the same muscle.  Both the EEG and EMG power 
increased with muscle fatigue (P < 0.01).  Because there were no significant stage-area (EEG) and 
stage-muscle (EMG) interactions, no post-hoc pair-wise comparisons were performed.  BB, biceps 
brachii; BR, brachioradialis; TB, triceps brachii; L, left area; R, right area; F, frontal area; C, central 
area; P, parietal area.  
 

2.4  Discussion 

Muscle fatigue involving voluntary motor activities is associated with acute 

adaptations in both the central nervous and muscular systems (Liu et al. 2003, 2005a and 

b, 2007; Post et al. 2007; van Duinen et al. 2007).  Whether fatigue influences the 

strength of functional coupling between signals of the two systems is unknown.  This 

study examined muscle fatigue effect on the level of corticomuscular coupling by 

computing the EEG-EMG coherence during a sustained voluntary submaximal elbow 

flexion.  The major findings were that the EEG-EMG coherence decreased significantly 

from a stage of minimal fatigue to a stage of more severe fatigue.  
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Force, EMG and Fatigue 

Fatigue-related changes in muscle force and EMG signals during maximal and 

submaximal muscle contractions have been studied extensively (Bigland-Ritchie, 1981, 

Enoka and Stuart, 1992).  In a submaximal muscle contraction, in which a target force is 

sustained for a prolonged time, a major index of fatigue is amplitude of the EMG that 

increases with the level of fatigue (Liu et al., 2003, van Duinen et al., 2007).  As a muscle 

fatigues, its ability to generate force declines (Gandevia, 2001); under this condition, 

additional motor units need to be recruited and/or the active motor units are driven to 

higher activation levels (reflected by augmented EMG) to maintain the same submaximal 

force.  In this study, the EMG level of both the BB and BR, two major elbow flexors, 

increased significantly during stage 2 compared to stage 1 with maintenance of the target 

force across the two stages, indicating substantial muscle fatigue in stage 2. 

Coherence Decreases in Fatigue Stage 

The reduced EEG-EMG coherence during muscle fatigue suggests a fatigue-related 

weakening of functional coupling between cortical and muscular signals.  There is 

general agreement that beta band coupling between the cortex and muscle is related to 

motor behavior (Conway et al., 1995, Kilner et al., 1999, Feige et al., 2000, Kilner et al., 

2000, Kristeva et al., 2007).  The coherence strength at the beta band has been 

demonstrated by systematic changes with motor parameters (Kilner et al., 2000).  It has 

been further suggested that submaximal, low-level voluntary contractions are associated 

with corticomuscular signal coherence at the beta (15~30 Hz) frequency band (Conway et 

al., 1995), whereas strong voluntary contractions are associated with coherence at higher 

frequencies (30~60 Hz) (Brown et al., 1997).  This beta band coherence observation 
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indicates perhaps a diminishing communication between the cortical output centers and 

muscles that received the cortical signals to carry out the intended motor action with 

increasing muscle fatigue.  A number of mechanisms may contribute to the weakened 

coupling.  One likely candidate is inhibitory drive from various sources that act upon the 

spinal alpha motor neurons.  A number of studies applied transcranial magnetic 

stimulation over human motor cortex during sustained maximal or submaximal 

contractions demonstrated reduced excitatory input from the motor cortex to fatiguing 

muscle (Taylor and Gandevia, 2001, Sogaard et al., 2006).  This lessening of descending 

drive has been interpreted as influences by inhibitory interneurons and/or the firing of 

fatigue-sensitive muscle afferents that act upon the corticospinal neurons and inhibit 

voluntary descending drive (Bigland-Ritchie, 1981, Leonard et al., 1994, Belhaj-Saif et 

al., 1996, Taylor et al., 2006).  If the spinal and/or cortical output neurons are inhibited 

with muscle fatigue, their signals may not be as closely coupled with muscle activities as 

in the situation when muscle is less fatigued.   

Impairments of neuromuscular junction (NMJ) transmission by fatigue may also 

contribute to the weakening of corticomuscular coupling.  NMJ transmission function has 

been found to be reduced after muscle fatigue induced by sustained maximal (Bellemare 

and Garzaniti, 1988), submaximal (Fuglevand et al., 1993, Fuglevand et al., 1995), and 

electrical stimulation-evoked (Tanino et al., 2003) muscle contractions. NMJ 

transmission impairment is most significant following low-intensity sustained 

contractions (such as 30% maximal level used in this study) that lead to exhaustion 

(Fuglevand et al., 1993).  If the descending command cannot be efficiently transmitted 
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from the brain to muscle across the NMJ under the condition of muscle fatigue, it is 

expected that the signal coupling between the brain and muscle would be affected.  

Another potential contribution to the weakened corticomuscular signal coupling 

with fatigue is shifting of the cortical output center during prolonged motor activities.  A 

recent study reported that as unilateral muscle fatigue became more severe, the center of 

brain activation shifted to locations more toward frontal, inferior, and ipsilateral 

directions (Liu et al., 2007).  This observation was interpreted as “rotations” of cortical 

centers; as neurons in the original center became fatigued and reduced their activity, 

those in the other center(s) took over the function and maintained the overall level of 

brain-to-muscle drive (Liu et al., 2007). The coherence maps in Fig. 2.5 seem to support 

the “rotation” hypothesis. For example, the center of the peak coherence with BB muscle 

was in the central-left area in stage 1 but it shifted to the central-right area in stage 2 (Fig. 

2.5, top row). The beta band EEG power in the right scalp area in Fig. 2.7A showed the 

largest increase compared to other scalp areas, indicating perhaps augmented activation 

in the ipsilateral sensorimotor regions. Under normal circumstances, voluntary muscle 

contractions are controlled by the primary motor cortex contralateral to the performing 

limb through the direct, monosynaptic corticospinal pathway.  However, as the major 

control center is shifted to other locations with more indirect, polysynaptic pathways to 

the muscles, it is expected that the signals from the new centers would less tightly couple 

with the muscle signals. 

Finally, fatigue-related motor unit firing behavior may also contribute to the 

weakened EEG-EMG coherence. It is a common observation that a person’s hand/arm 

shakes (tremor at ~10 Hz) when he/she is severely fatigued (Ebenbichler et al., 2000). 
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The tremor could be a result of motor unit synchronization under fatigue condition.  

However, the increase in motor unit firing synchrony tends to have an effect in lower 

frequency bands (Arihara and Sakamoto, 1999) rather than the beta band (15-35 Hz), 

especially after applying the Discrete Fourier transform with hamming window for the 

calculation of the power spectrum and coherence. The application of hamming window 

reduces potential leakage or overflow of effects of a given frequency band to the adjacent 

frequency bins by suppressing the side lobes. 

 The change of EEG-EMG coherence could be influenced by increased EMG 

signals from muscles in or near the head areas under the fatigue condition. The increased 

EMG in the head area could easily contribute to the EEG signals and eventually affect the 

EEG-EMG coherence. Although this possibility could not totally be excluded, the chance 

of its occurrence was very low for the following reasons. First, before the data analysis, 

all the signals, especially the EEG signals were visually inspected and segments with 

visually-detected artifacts (e.g., EMG contaminations caused by eye blinks, jaw 

clenching, or tensing facial/neck/shoulder muscles) were discarded. Second, additional 

experiments were performed to further examine whether EEG with influence of EMG has 

an effect on EEG-EMG coherence. Two subjects performed two 2-min sustained elbow 

flexion contractions at 30% maximal level with the EEG (128 channels) and EMG of the 

elbow flexor muscles recorded simultaneously. In one contraction, they concentrated on 

the motor task without activating muscles in facial, neck, shoulder and other areas; in the 

other, they performed the task while slightly clenched the jaw so that the EEG signals 

were contaminated by EMG of the jaw closing muscles in the face. The analysis revealed 

that the power amplitude of the EMG-contaminated EEG had a sharp increase in the 
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gamma band (36-50Hz) compared with the power signal of the clean EEG. This increase 

of gamma power was not seen in the stage-2 EEG in the nine subjects in this study. More 

importantly, the EEG-EMG coherence was not different between the two conditions 

(EEG contaminated by jaw-clenching EMG and clean EEG) or even increased in the two 

subjects. These findings suggest that even if our stage-2 EEG data were contaminated by 

EMG of the near-by muscles after fatigue set in, the contamination did not affect the 

EEG-EMG coherence at the beta band. 

EEG and EMG Power Increases in Fatigue Stage 

It is worth noting that reduced corticomuscular coherence does not necessarily 

accompany a decrease in brain or muscle activation level.  Tecchio et al. (2006) suggest 

that cortical recruitment and corticomuscular coupling are distinct mechanisms.  During a 

sustained submaximal muscle contraction, both muscle (Fuglevand et al., 1993, Yue et al., 

1997) and brain (Fuglevand et al., 1993, Liu et al., 2003, van Duinen et al., 2007) 

activation levels increase as fatigue sets in.  The increased brain and muscle activities are 

thought to be a reflection of increasing descending command that result in recruitment of 

additional motor units and/or increasing activity level of the active motor units to 

compensate for the force loss contributed by those motor units that were recruited early 

but became fatigued (Liu et al., 2003, van Duinen et al., 2007).  The result of the EEG 

and EMG power change in this study (Figure 2.7) was in line with the previous study. 

The mean EEG power at beta band significantly increased in stage 2 vs. stage 1, 

especially in the left and right scalp areas. These scalp areas overlie the major 

sensorimotor regions (i.e., contralatral and ipsilateral sensorimotor cortices that play an 

important role in controling voluntary muscle actions). The mean EMG power in the beta 
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band also significantly increased for all the muscles. The negative relation between the 

strength of corticomuscular signal coupling and amplitude of the signals during muscle 

fatigue suggests that the weakened neuromuscular coupling might be a tradeoff of 

increasing activation level to compensate for muscle fatigue.  Weakened coupling could 

lead to lowering of quality in motor performance, such as increased force variation or 

reduced force steadiness observed with greater muscle fatigue (stage 2) in this study.  The 

negative relation also underscores the likelihood of shifting the control centers during 

voluntary muscle fatigue as centers with less direct pathways to the muscle could 

enhance the level of muscle activation but lessen their functional coupling. 

Summary 

This study is the first to report significant weakening of functional corticomuscular 

coupling during muscle fatigue, which was demonstrated by large reductions in the level 

of EEG-EMG coherence. The weakening could be contributed by fatigue-related 

increases in inhibitory drive to the output centers, a decrease in neuromuscular junction 

transmission function, and shifting of primary output centers in the brain.  The weakened 

coupling could be a potential cause of poor motor performance under fatigue condition. 

In the following chapter the fCMC change during the same muscle fatigue task in patients 

with cancer-related fatigue was investigated and compared to normal fCMC alterations 

exhibited by the healthy controls. 
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CHAPTER III 

CANCER RELATED FATIGUE: FUNCTIONAL 

CORTICOMUSCULAR COUPLING IS WEAKENED 

 

 

3.1 Introduction 

Different from conventional muscle fatigue or fatigue in healthy individuals, 

cancer-related fatigue (CRF) is a persistent subjective sense of tiredness that interferes 

with daily activities (Mock et al., 2000). It comes on suddenly, does not result from 

activity or exertion, and is not relieved by rest or sleep. It might continue even after 

treatment is complete. CRF is widely recognized as the most common symptom and side 

effects of cancer and/or its treatment that exists in 25% to 99% of people with cancer, 

particularly in individuals actively undergoing treatment (Irvine et al., 1991, Donnelly 

and Walsh, 1995, Walsh et al., 2000, Cella et al., 2002, Servaes et al., 2002, Morrow et 
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al., 2005, Sood and Moynihan, 2005). However, research regarding understanding of 

physiological factors contributing to CRF is very limited. 

Almost all previous studies that investigated fatigue in cancer patients relied on 

patients’ responses to questionnaires (self report [SR] rating) to determine whether 

patients suffered CRF. Thus, although there are many instruments available to evaluate 

CRF, all have some limitations, and no single standard instrument exists for assessing 

overall CRF (review: Wu and McSweeney, 2001).  No single instrument has been shown 

to correlate with a neurophysiological marker reflecting worsened feeling of fatigue in 

CRF.  In fact, such biological/physiological markers of CRF have not been identified. 

And no single study has addressed the CRF with neurophysiological methods. Based on 

the definition that CRF is “an unusual persistent subjective sense of tiredness related to 

cancer or cancer treatment…,” it is reasonable and logical to postulate that CRF involves 

malfunction of the brain, which can be investigated using modern neuroimaging (e.g., 

functional magnetic resonance imaging (fMRI)) and/or electrophysiological methods 

(e.g., electroencephalography (EEG)). Furthermore, CRF has been suggested to be 

related to neuromuscular abnormalities (Sood and Moynihan, 2005). Thus, fatigue 

assessments and studies by methods that could lead to clearer identifications of potential 

brain and muscle system mechanisms of CRF are needed.   

Recently accumulating evidence suggests dissociation of muscle and supraspinal 

level system change during normal muscle fatigue (Gandevia et al., 1996, Butler et al., 

2003, Liu et al., 2003, Liu et al., 2005, Liu et al., 2005). This weakening of brain-muscle 

coupling has been directly evaluated and reported in healthy subjects in Chapter 2 of this 

document. Given that there is a larger discrepancy between central and peripheral fatigue 
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and greater impairment in neuromuscular junction transmission function in CRF than 

controls (Yavuzsen T. et al., submitted), we have reason to believe that corticomuscular 

coupling is weakened in CRF, which could be the results of potential pathophysiological 

impairment. Distinguishing the cortical muscular functional couplings pattern in CRF 

patients with healthy controls would help to better understand the CRF mechanisms from 

neuromuscular perspective and contribute to identification of neurophysiological markers 

of CRF. 

The present study was aimed at assessing potential muscle fatigue-related EEG-

EMG coherence and power spectrum during sustained sub-maximal contractions of the 

elbow flexor muscles in CRF patients compared to healthy controls. We hypothesized 

that the level of fCMC (EEG-EMG coherence) in CRF patients would be lower than that 

in healthy controls due to the weakening of corticomuscular binding caused by 

pathophysiological impairment in the patient population. 

 

3.2 Methods 

3.2.1 Subjects 

Eight cancer patients (62.9±12.3 years old, 5 men) and nine healthy subjects (48.2

±14.8 years old, 3 men) participated in the study. No patients received chemotherapy or 

radiation therapy within four weeks prior to the study and all had to be postoperative for 

at least 4 weeks.  Eligible patients had a hemoglobin concentration >10 g/dl, and no 

clinical evidence of polyneuropathy, amyotrophy, or a myasthenic syndrome by history 

and physical examination.  Significant pulmonary compromise as determined by oxygen 

dependence was an exclusion criterion for both groups.  Patients and controls who were 
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depressed or currently on psychostimulants or antidepressants were excluded.  A single 

question “are you depressed” was used to exclude significant depression.  Patients with 

weight loss greater than 10% of pre-illness body weight were excluded. The study was 

approved by Institutional Review Board at the Cleveland Clinic. All subjects gave 

informed consent prior to their participation. All subjects performed a sustained 

contraction of the right-arm elbow flexion at 30% maximal level until subjective 

exhaustion. Elbow flexion force, surface EMG and multi-channel EEG were 

simultaneously recorded during the sustained contraction. 

3.2.2 Data Recording 

Please refer to Chapter 2 Data Recording section for details  

3.2.3 Data Processing and Analysis 

During offline processing, the EEG signals were re-referenced to the average value 

of all 128-channel signals (exclude the outmost electrodes) and high-pass filtered at 3 Hz; 

the EMG signals were resampled at 250 Hz and high-pass filtered at 10 Hz to minimize 

low-frequency baseline fluctuation before rectification.  All signals, especially the EEG 

were inspected visually.  Recordings with artifacts caused by events such as eye blinks or 

head movements were excluded and the corresponding EMG signals discarded.  The 

entire duration of the EEG and EMG recordings was then divided into the first half (stage 

1 with minimal fatigue) and second half (stage 2 with severer fatigue). And subsequently 

the signals in each stage were segmented into artifact-free epochs of 256 samples without 

overlapping (mean = 98.5 epochs, ranged from 44 to 153 for CRF and mean = 148.5 

epochs, ranged from 56 to 264 for controls).  

Due to the volume of information, especially the large number of EEG channels, 
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the coherence values of EEG channels overlying sensorimotor function-related brain 

regions with each of the three muscles (biceps brachii [BB], branchioradialis [BR] or 

triceps brachii [TB]) were grouped into five scalp areas for statistical comparisons (ten 

electrodes in each scalp area): left, right, frontal, central and parietal (see Fig. 2.2).  

Crossing-stage comparisons were limited to the beta (15-35Hz) frequency band since 

most of the significant EEG-EMG coherence values were only detected at the beta 

frequency band in both stages 1 and 2.  The calculated coherence was Z-transformed by 

the arc hyperbolic tangent transformation to stabilize the standard deviation (Rosenberg 

et al., 1989). The transformation was as follows:                                     

LChZ 2)(arctan ×=   

Where C is the coherence value and L is the number of epochs.  

The coherence estimation method was the same as that described in the last chapter. 

3.2.4 Statistical Analysis 

A repeated measures general linear model was used to statistically compare the 

coherence between CRF patients and controls among different stages, muscles and areas 

with a covariate of age by SPSS 12.0 (SPSS Inc., Chicago, IL, USA). The EMG 

amplitude of CRF patients and controls were also compared using repeated measures 

general linear model. 

 

3.3 Results 

The elbow flexion force was well maintained at about 30% maximal level and 

there was no significant difference of force between stage 1 and stage 2 in the patient or 
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control group. The EMG results in the two stages of the sustained elbow flexion were 

plotted on Fig 3.1. The amplitude of surface EMG signals from the elbow flexor muscles 

(BB, TB) increased significantly (P<0.01) in both groups. The normalized EMG 

amplitude was not different either between the groups or muscles. The increase of the 

surface EMG of the involved elbow flexor muscles in stage 2 indicated that subjects had 

to increase their effort to maintain the same force level, which was an indication of 

fatigue. 
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Fig. 3.1.  The EMG amplitude of patients and controls in the two stages of the sustained elbow flexion 
for each agonist muscle. BB: biceps brachii, BR:brachioradialis 
 
 

EEG-EMG coherence of CRF patients decreased significantly in stage 2 compared 

with stage 1 at the beta band.  A typical example of EEG (left scalp area)-EMG (BB 

muscle) coherence spectrum for one subject is shown in Fig 3.2A.  The subject exhibited 

significant coherence peaks within the beta band (15-35 Hz) in stage 1.  In stage 2, 

however, the coherence peaks had an obvious reduction. In contrast, the power of both 

the EEG and EMG signals increased at beta band in stage 2 (Fig. 3.2B, 3.2C).  This 
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coherence reduction in beta band was consistent with the results of the healthy controls 

(Fig. 3.2).  
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Fig 3.2.  A single-subject example of EEG-EMG coherence spectra in CRF patients between EEG of 
the left area and EMG of the biceps brachii (BB) muscle (A), EEG power spectrum of the left area (B), 
and EMG power spectrum of the BB muscle (C) in the two stages. The horizontal line in A indicates 
95% confidence level. 

 

Figure 3.3 shows the number of frequency bins within beta band (15-35 Hz) 

exhibited significant EEG-EMG coherence for all the scalp areas and muscles of each 

group.  Each displayed significant bin number for a given area-muscle combination in a 

given stage (e.g., left [L] area EEG with BB muscle EMG in stage 1) was derived by 

averaging the numbers across the EEG electrodes in a (e.g., left) scalp area with EMG of 

a muscle (e.g., BB) in a contraction stage (e.g., stage 1) in each subject first and then 

across the 9 subjects. The statistical analysis of coherence bin numbers showed 

significant group difference (P<0.01) with significant group-stage interaction (P<0.01). 

Subsequently, further comparison based on general linear model within each stage was 
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performed. In stage 1, the bin number in CRF patients was significantly smaller (P<0.01) 

than healthy controls and the number was not significantly different between the groups 

in stage 2. The statistical analysis also showed significant stage effect (P<0.01) with 

significant scalp area × stage interaction (P<0.01), which means the coherence was 

significantly reduced from stage 1 to stage 2 for both groups and the degree of reduction 

was significantly different among the areas. The coherence in the left scalp area of CRF 

patients obviously did not decrease substantially from stage 1 to stage 2. For the Z-

transformed coherence amplitude, the statistical results were almost the same as the bins 

number of significant coherence, but the trends (Fig. 3.4) was clearer than that of the bins 

number (Fig. 3.3). The covariate age was not significant in any of these statistical 

analyses. 
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Fig 3.3. Comparisons of the number of frequency bins with significant EEG-EMG coherence between 
stages 1 and 2 among the five scalp areas and three muscles at beta frequency band.  The data were 
based on results of eight CRF patients and nine controls. The number of bins in CRF patients was 
significantly lower compared to the controls  (P < 0.01) and both group exhibited significantly 
decreased number of bins with muscle fatigue (P < 0.01).  See details in Results.  BB, biceps brachii; 
BR, brachioradialis; TB, triceps brachii. 
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Fig. 3.4. Comparisons of the Z-transform significant EEG-EMG coherence values with between stages 
1 and 2 among the five scalp areas and three muscles at beta frequency band.  The data were based on 
results of eight CRF patients and nine controls. The coherence values in CRF patients was 
significantly lower compared to the controls  (P < 0.01) and both group exhibited significantly 
decreased coherence values with muscle fatigue (P < 0.01).  See details in Results.  BB, biceps brachii; 
BR, brachioradialis; TB, triceps brachii; L, left area; R, right area; F, frontal area; C, central area; P, 
parietal area. 
 

Figure 3.5 displays coherence maps (average across subjects in each group) based 

on the 128 EEG channels with EMG of the three muscles for stage 1 (first and third 

columns) and stage 2 (second and fourth columns) at the beta band (15-35 Hz) for CRF 

patients (first two columns) and controls (last two columns). Only significant coherence 

values were counted for each subject. The color bar indicates color-coded Z-transformed 
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coherence values.  The figure shows clearly that the level of coherence declined 

substantially in the fatigued compared to less-fatigued stage and the overall level of 

coherence in CRF patients was higher than controls in stage 1. The strongest CRF 

coherence with BB and BR muscle was located in the left-parietal area in stage 1, which 

was more parietal compared to the spatial distribution map of controls. And in stage 2 the 

spatial distribution of the coherence on the scalp altered dramatically with a majority of 

EEG channels showing weaker coherence in both groups and shifted scalp areas 

demonstrating strongest coherence in control group (e.g., strong EEG-BB EMG 

coherence shifted from central-left [stage 1] to central-right [stage 2]; Fig. 3.5, top row of 

last column).   

 

Fig.3.5. Mapping EEG-EMG coherence based on significant coherence values of the selected 128 
EEG channels with EMG of the three muscles at beta (15-35 Hz) band in CRF patients (left two 
columns) and  healthy subjects(right two columns).  The color bar indicates Z-transformed coherence 
values.  The level of coherence declined substantially in stage 2 (fatigue condition, 2nd and 4th 
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columns) compared with stage 1 (1st and 3rd columns). The coherence values in CRF patients were 
significantly lower compared to the controls. 
 

Figure 3.6 shows results of the mean normalized EEG power at beta frequency 

band in stages 1 and 2. The EEG power was significantly larger in CRF patients in every 

scalp area (P<0.01). And each group showed a significant increase from stages 1 to stage 

2 (P<0.01). Since the area factor was significant (P<0.01), further multiple comparisons 

between each area were performed. The left and right scalp areas were significantly 

different from other areas (P<0.05). No significant interactions were detected. 
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Fig.3.6. Comparisons of the mean normalized EEG power of the five scalp areas at beta band (15-
35Hz) in stages 1 and 2 between the CRF patients and healthy controls.  The data were based on 
results of eight CRF patients and nine controls.  Each EEG normalized power value in each area in 
each subject was an average of all values from all the electrodes in that area at beta band normalized 
by first stage total power value.  The EEG power increased with muscle fatigue (P < 0.01).  And the 
CRF patients showed significant higher values of EEG power compared to the controls (P < 0.01). See 
details in Results.  L, left area; R, right area; F, frontal area; C, central area; P, parietal area. 
 
 

The mean normalized EMG power at beta frequency band was shown in Figure 3.7. 

Within each group there was a significant increase from stage 1 to stage 2. Statistical 

analysis of EMG power by the general linear model showed a significant difference 
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between stages 1 and 2 (P<0.01). But there was no significant difference between the 

CRF patients and healthy controls, although there was a trend that the EMG amplitude 

was lower in CRF patients compared to controls in the severe fatigue stage. 
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Fig.3.7.  Comparisons of the mean normalized EMG power of the five scalp areas at beta band (15-
35Hz) in stages 1 and 2 between the CRF patients and healthy controls.  The data were based on 
results of eight CRF patients and nine controls.  Each EMG normalized power value in each area in 
each subject was an average of all values from all the electrodes in that area at beta band normalized 
by first stage total power value.  The EMG power increased with muscle fatigue (P < 0.01).  See 
details in Results.  BB, biceps brachii; BR, brachioradialis; TB, triceps brachii. 
 

3.4 Discussion 

This study, for the first time, showed that the level of EEG-EMG coherence was 

significantly lower for CRF patients compared to healthy controls within minimal fatigue 

stage despite the fact that the EEG power was higher in CRF patients. The coherence 

significantly decreased from minimal to more severe fatigue stages for both patient and 

control groups. 

The novel finding that EEG-EMG coherence was significantly weaker in CRF 

patients in minimal fatigue stage suggests the weakened or impaired corticomuscular 

coupling in CRF patients. The voluntary muscle contraction activity is dependent on 

smooth and ordered flow of nerve impulses in major motor and sensory systems. The 

components in the whole process include cognitive processing, the generation of motor 

commands from the cortices, motor output from spinal cord, neuromuscular junction 
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(NMJ), muscle contraction and sensory feedback. Since EEG-EMG coherence value 

reflects the degree of the oscillatory activity binding between the central nervous system 

(CNS) and muscle (Kilner et al., 2000), impairment in any of the components or block of 

the link at any level during the process would increase the dissociation of the signals in 

the brain and muscle systems. The decrease in EEG-EMG coherence in CRF is a 

reflection of the dissociation. Several factors or mechanisms could contribute to the 

decreased EEG-EMG coherence. One likely candidate is defects in neuromuscular 

junction (NMJ) transmission, which has been suggested in the previous study in our 

laboratory (Yavuzsen et al. 2007). The M-wave amplitude was 50% lower in CRF than 

controls, both before and after muscle fatigue. The M-wave measures muscle response 

evoked by an electrical stimulus applied to the motor nerve proximal to the NMJ and the 

measurement was made on the muscle distal to the NMJ; thus, it is a gross assessment of 

efficiency of NMJ transmission. If the central signals can not be efficiently transmitted 

across the NMJ, muscle will not be fully recruited into contraction, which would possibly 

prevent muscle activation and weaken the binding between the CNS and muscle. In a 

similar manner NMJ propagation efficiency decreased and fatigue increased in prostate 

cancer patients undergoing radiation therapy which improved 5 to 6 weeks after radiation 

(Monga et al., 1997).  

Another possible reason is the reduced central drive from cortex to muscle. Our 

previous study has suggested CRF is centrally-mediated fatigue. This was supported by 

the facts that CRF patients exhibited greater subjective fatigue (higher BFI score and 

feeling exhaustion sooner during the sustained muscle contraction) but physiological 

indices indicated they experienced less muscle fatigue at the end of the sustained 
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contraction. The current pathophysiological changes found in CRF patients may also 

explain the weakened binding of CNS and muscles, such as cytokine change, 

neuromuscular abnormalities and neuroendocrine changes (Sood and Moynihan, 2005). 

Among these factors, the increased pro-inflammatory cytokines in CRF patients may 

indicate the immune process is switched on by cancer or cancer treatment, which can 

signal the brain, leading to a variety of effects including fatigue (Bower, 2006). But 

exactly how and where these factors take effect is still unknown. It is unlikely that this 

coherence difference of CRF patients and controls was due to their age difference. The 

statistical analysis has shown the coherence value was not correlated with age. And none 

of the studies has shown fCMC was correlated with age. 

The significant decrease of EEG-EMG coherence from non-fatigue to fatigue stage 

in patients was consistent with the coherence changes in healthy controls doing the same 

motor task. This decrease may be due to fatigue-related increases in inhibitory drive to 

the output centers (Bigland-Ritchie, 1981, Leonard et al., 1994, Belhaj-Saif et al., 1996, 

Taylor et al., 2006), a decrease in neuromuscular junction transmission function 

(Bellemare and Garzaniti, 1988, Fuglevand et al., 1993, Fuglevand et al., 1995), and 

shifting of primary output centers in the brain (see chapter 2 for details). All these 

changes are physiologically induced by a fatiguing motor task, which can be recovered 

by rest or sleep, while those changes that contribute to the lower coherence value in CRF 

patients compared to the controls in both stages of fatigue motor task may be mainly due 

to the pathophysiological reasons induced by cancer or cancer treatment, which may not 

be recovered just by rest (Chaudhuri and Behan, 2004, Sood and Moynihan, 2005).  
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It is interesting to see that the EEG-EMG coherence was not significantly different 

between the CRF patients and healthy controls in stage 2. That means the coherence 

value reduction from minimal fatigue to severe fatigue stage was less in CRF patients 

than that in healthy controls. As one can see from Figure 3.3 and Figure 3.4, the beta 

band coherence of the left scalp area EEG with all the muscles was not significantly 

different between two stages of the fatigue motor task in patient group compared to 

control group.  This is understandable. The reduction of coherence from stage 1 to stage 2 

was likely induced by muscle fatigue-related physiological changes in each group. Since 

the CRF patients experienced less muscle fatigue than controls when exhausted 

(Yavuzsen et al. submitted), less reduction of coherence value would be taken from the 

CRF patients. So in stage 1 due to pathophysiological impairment, CRF patients 

exhibited lower coherence value than controls. While in stage 2, less reduction of 

coherence value induced by physiological changes of muscle fatigue in CRF patients was 

balanced by the greater reduction of coherence resulted from pathophysiological 

conditions, leading to the insignificant coherence change in the patient group. 

During a sustained submaximal muscle contraction, both muscle (Fuglevand et al., 

1993, Yue et al., 1997) and brain (Fuglevand et al., 1993, Liu et al., 2003, van Duinen et 

al., 2007) activation levels increased as fatigue sets in.  The increased brain and muscle 

activities are thought to be a reflection of increasing descending command that results in 

recruitment of additional motor units and/or increasing activity level of the active motor 

units to compensate for the force loss contributed by those motor units that were recruited 

early but became fatigued (Liu et al., 2003, van Duinen et al., 2007). The CRF EEG 

power was significantly increased from stage 1 to stage 2 in each scalp area to 
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compensate for the fatigue effect, which was the same as the EEG power changes in 

controls. But the EEG power in CRF patients throughout the fatigue motor task was 

significantly higher compared to the controls. This suggests that the CRF patients had to 

try harder to sustain the same level of relative force. The fact that the EMG power change 

was not significantly different between two groups indicates that the greater voluntary 

effort (greater EEG power) in CRF patients did not translate into higher muscle power. 

This phenomenon could be explained by the finding of reduced NMJ transmission 

function in CRF (part of brain signal is blocked by the NMJ). 

In conclusion, this study uses objective neuromuscular index: the EEG-EMG 

coherence to directly evaluate the corticomuscular coupling in CRF patients. The results 

indicate significant weakening of corticomuscular coupling in CRF patients. Because 

CRF patients experienced less muscle fatigue during the sustained contraction, the level 

of corticomuscular coupling does not decline as much as healthy individuals at the times 

of more severe feeling of fatigue (e.g., stage 2).  In Chapters II and III, EEG-EMG 

coherence was calculated by averaging many epochs of the EEG and EMG data, which 

yielded only two values: EEG-EMG coherence in stage 1 and the coherence in stage 2.  

This approach has apparent limitation of poor time resolution.  In the following chapter, 

procedures and results of single-trial EEG-EMG coherence in a handgrip motor task were 

described.  
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CHAPTER IV 

DETECTING FUNCTIONAL CORTICOMUSCULAR 

COUPLING DURING FATIGUE IN SINGLE TRIAL 

 

 

4.1   Introduction  

The experimental design used in the study of fatigue is either intermittent 

submaximal/maximal muscle contraction or sustained submaximal/maximal muscle 

contraction to exhaustion. The common practice in data analysis is to detect physiological 

and muscle output differences between the pre-fatigue and after-fatigue measurements 

(Tecchio et al., 2006) or compare block results after dividing the whole fatigue data into a 

number of blocks (Gandevia et al., 1996, Butler et al., 2003, Liu et al., 2005, Liu et al., 

2005). However, different from other conditions, fatigue is a progressive process: the 

ability of a muscle to generate force declines progressively by time. It would be more 

interesting to see how fatigue progresses trial-by-trial in an intermittent-muscle-

   47  
 



 

contraction design or how fatigue is induced by time in a sustained muscle contraction. 

Compared with the traditional coherence estimation method used in chapter 2 and chapter 

3, the single trial analysis can provide more detailed and useful information such as 

whether different subjects behave in the same trend in a trial-by-trial basis. Furthermore, 

the single trial analysis permits a real-time quote of the coherence and frequency power 

spectra.  

Coherence is a tool to analyze the linear relationship between two signals in 

frequency domain using normalized cross-spectrum. The well-established coherence 

analysis based on fast Fourier Transform (FFT) does not allow an accurate estimate of 

coherence in single trial, because it smoothes the spectrum by averaging multiple trials. 

The FFT method assumes each trial has the same physiological activities repeated at the 

same latency, which is at least not applicable to all the cases and has not yet been 

validated. An alternative method is to smooth the spectrum across time based on the 

assumption of stationarity of the signal. When a signal is non-stationary as most of the 

physiological signals are, traditional Fourier analysis is not adequate. The time-frequency 

analysis where coherence can be estimated as a function of time is recommended for 

analyzing non-stationary signals. Although several successful attempts have been brought 

to adapt Fourier-based methods to shorter time signals (Lovett and Ropella, 1997, Xu et 

al., 1999, Perez et al., 2005), this project proposed to estimate EEG-EMG coherence of 

single trial based on time-frequency analysis of wavelet transform. Wavelet transform 

provides the optimal time and frequency concentration which makes it a good candidate 

to capture the rapidly changing spectra of non-stationary signals (Lachaux et al., 2002, 

Issartel et al., 2006, Klein et al., 2006).  
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This study proposed the single trial coherence estimation based on time-frequency 

wavelet analysis and applied this to investigate fatigue effect on the coherence trial by 

trial during repetitive maximal muscle contractions in eight healthy subjects. It was 

hypothesized that the EEG-EMG coherence and signal energy would decrease with 

muscle fatigue; each subject would show a unique dynamic pattern with time when more 

detailed information was revealed by single trial analysis. 

 

4.2 Methods 

4.2.1 Wavelet Coherence 

The wavelet that has been used in neuroscience field (Tallon-Baudry et al., 1997) is 

the complex Morlet wavelets. Complex Morlet’s wavelets have a Gaussian shape both in 

the time domain (SD      ) and frequency domain (SD       ) around its central 

frequency     :  

τ

                                                                                                                                     (4.1)                        

σ fσ

0f

)exp()2/), 22 τπσττ Afw t= 2exp(( 00 fi−
 

                                                                                                                                     (4.2) τπσσ 21=f f Nf =σ/
 

Nco is the number of cycles of Morlet wavelets that determines the compromise between 

time and frequency. The wavelet transform of a signal is the result of the convolution of 

the complex wavelet with the signal and the time-varying energy of the signal in a 

frequency band is the square norm of the result of the wavelet transform.  

The wavelet cross-spectrum between signal x and signal y around time t and 

frequency f can be defined from the wavelet transform (Wx(τ,f) and Wy(τ,f) ) (Lachaux 

et al., 2002): 

/ co
2)(= πστA /1−

0
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* indicates the complex conjugate and δ is a scalar that depends on frequency.   

Then the wavelet coherence Wco(t,f) at time t and f is defined as followings, 
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This wavelet coherence estimate smoothes the power spectrum (auto-spectrum 

and cross-spectrum) across a short interval [t-δ/2, t+δ/2]. The difference between this 

wavelet coherence estimate and Fourier-based short time coherence estimate is that δ is 

constant for all frequencies in Fourier-based method, while δ varies with frequency in 

wavelet-based method. Lower δ values correspond to higher frequencies, which provide 

the advantage of being able to track the dynamically changing coherence. The δ is time 

resolution of the time-

frequency wavelet coherence 

estimation. If the smooth cycle 

in the integration window [t-δ/2, 

t+δ/2] is defined as Ncy, the δ 

can be determined as Ncy/f. So 

when using a window of 

integration of Ncy cycles at 

frequency f, the wavelet spectra 

are smoothed or averaged over 

the interval [t-δ/2, t+δ/2], 

 
Fig.4.1. Definition of parameters Ncy and Nco . For each 
frequency, the wavelet coherence averages the wavelet 
coefficients over an interval of size δ that adapts to f. δ 
corresponds to a constant number of oscillations cycles: δ = 
Ncy/f. The wavelet-coefficients are computerd by 
convoluting the signals with successive Nco –cycle Morlet 
wavelets. Lachaux et al. Neurophysiol Clin 32: 157-174, 
2002. 
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where δ = Ncy/f. The wavelet spectra at t-δ/2 result from a segment of data in [t-δ/2-w/2, 

t-δ/2+w/2], where w is the width of the wavelet at frequency f, w = Nco/f (please refer to 

Fig. 4.1).  The total data window needed for each wavelet coherence value calculation at 

frequency f is δ+w = ( Ncy+ Nco) / f  (Fig. 4.1). 

The significance level was obtained from an average of 100 pairs of independent 

random white-noise signals running 20 times. The significance level acquired by this 

method has been compared with a trial-shifted surrogates method. The results from these 

two methods are nearly identical (Lachaux et al., 2002).  

4.2.2 Simulation 

4.2.2.1   Simulation Datasets 

The wavelet coherence between two simulated signals was tested on two sets of 

simulation data. The first simulated data set was to test if the wavelet coherence could 

track the dynamic coherence changes within single trial. One signal (Fig. 4.2a) was the 

25Hz sine from 1.67s to 3.3s buried in Gaussian distributed random signals (mean=0, σ

=1). The other signal set (Fig.4.2b) contained the 25Hz sine from 1s to 3s buried in 

Gaussian distributed random signals (mean=0, σ=1). Both signals had a signal-to-noise 

ratio of 1. The time varying wavelet coherence was calculated with Nco= 6 and Ncy= 8. 

Then the local non-stationary components (amplitude modulation) was added to the first 

signal (Fig.4.2e). The time varying wavelet coherence was calculated again between this 

amplitude modulated signal and the second sine signal (Fig.4.2f).  
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Fig. 4.2. Simulation results of time-frequency wavelet coherence for dataset 1. (a) 25Hz sine wave 
from 1.67s to 3.33s that was included in the simulation signal 1 (SNR=1); (b) 25 Hz sine signal from 
1s to 3s that was included in the simulation signal 2 (SNR=1); (c) The time-frequency distribution of 
the wavelet coherence of signal 1 and signal 2; (d) 25Hz sine signal from 1.67s to 3.33s with 
amplitude modulation that was included in the simulation signal 3 (SNR=1); (e) 25 Hz sine signal 
from 1s to 3s that was included in the simulation signal 2 (SNR=1); (f) The time-frequency 
distribution of the wavelet coherence of signal 3 and signal 2. 
 

Further simulation was tested on two 150-trial (2s/trial), signals (Fig.4.3 simulation 

dataset 2) to verify its ability to track dynamic coherence changes within a single trial and 

across a small number of trials. Each trial of signal B was a 25Hz sine from 0.28s to 

1.71s buried in Gaussian distributed random signals (mean=0, σ=1). Signal A in each 

trial also included the 25Hz sine started from 0.28s buried in random signals (mean=0, σ

=1). The duration of 25Hz sine signal was linearly increased from 0.01s to 1.43s from 

trial 1 to trial 75 and decreased from 1.43s to 0.01s from trial 76 to trial 150. The signal-

to-noise-ratio of signals A and B in each trial was 1. Both single trial wavelet-based 
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coherence and FFT-based coherence for two blocks (block1: trial 1-trial 75; block2: trial 

76-trial 150) were calculated and compared. 
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Fig. 4.3. Simulation dataset 2: signal B, 25Hz sine from 0.28s to 1.71s buried in Gaussian distributed 
random signals (mean=0, σ=1) with SNR=1 for each trial; signal A, each trial also included 25Hz sine 
started from 0.28s and random signal (mean=0, σ=1) with SNR=1 for each trial, but the duration of 
25Hz sine signal was evenly increased from 0.01s to 1.43s from trial 1 to trial 75 and decreased from 
1.43s to 0.01s from trial 76 to trial 150. 
 
4.2.2.2    Simulation Results 

The third row of Fig. 4.2 shows the results of the time-frequency distribution of the 

wavelet coherence for simulation Dataset 1. The wavelet coherence correctly tracked the 

coherence changes with time, especially when one of the signals was added with non-

stationary component (Fig. 4.2f).  

The simulation results of dataset 2 are shown in Fig. 4.4. Fig. 4.4a was the FFT-

based coherence spectra of two blocks (block 1: trials 1-75; block 2: trials 76-150). There 
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was no difference in the coherence for the two blocks. Fig. 4.4b shows results of single 

trial wavelet coherence values at 25 Hz plotted as a function of trial. The single trial 

wavelet coherence value at 25 Hz was determined by averaging coherence values over 

time points throughout the trial. The single trial wavelet analysis correctly detected the 

coherence of the individual trials which could not easily be seen by using traditional FFT-

based methods. 
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Fig. 4.4. Simulation results of simulation dataset 2. (a) FFT-based coherence spectra for two blocks 
(block 1: blue, block 2: red); (b) results of single trial wavelet coherence values at 25Hz plotted 
against trial. 
 

4.2.3 Experiment   

Eight healthy subjects participated in the study (7 men and 1 woman, age = 32.7 ± 

7.7 years, all right-handed). The experimental procedures were approved by the 

Institutional Review Board at the Cleveland Clinic. All subjects gave informed consent 

prior to their participation. Each subject performed 200 intermittent maximal handgrip 

contractions of the right arm in a single session (Fig. 4.5). Each contraction lasted 2s 

followed by a 5s rest period. To maintain the correct timing of a contraction, subjects 

followed visual cues that were displayed on an oscilloscope screen. The visual cues were 
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a series of traveling rectangular pulses (Fig. 4.5a), each of which was 2 s with a 5-s 

interval between pulses. The height of the pulses represented the amplitude of the 

maximal handgrip force of the subject, which was measured at the beginning of the 

experiment. Subjects performed each trial by following the shape of the rectangular pulse. 

They were asked to exert the maximal force while avoiding unnecessary body 

movements. The force, EMG, and EEG data (Figs. 4.5b, c, and d, respectively) were 

recorded simultaneously. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5. Illustration of the experimental protocols. (a) The visual cues that were displayed on an 
oscilloscope screen to guide the handgrip contractions. Each contraction lasted 2 s, and the rest period 
between two contractions was 5 s. (b) A sample period of force time course, which showed a close 
match between the visual cues and the actual performance by the subject. (c) The corresponding raw 
EMG data in one channel. (d) The corresponding raw EEG data in one channel. J.Z. Liu et al. / Brain 
Research 1057 (2005) 113– 114 126 
 

Subjects gripped a bottle-like soft plastic device that was connected to a pressure 

transducer (EPX-N1 250 PSI, Entran Devices, Inc., Fairfield, NJ) by a nylon tube filled 
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with distilled water (Liu et al., 2000, Liu et al., 2002). The force applied by the hand was 

sensed and converted to a voltage signal by the pressure transducer located in a sealed 

hydraulic environment. The output of the transducer was directed to a custom-built 

amplifier and then to an input channel of the Spike 2 data acquisition board (version 3.05, 

Cambridge Electronic Design, Ltd., Cambridge, UK), which transferred the voltage data 

to a computer. The sampling rate for the force data was 100 Hz. A sampled time course 

of the force is displayed in Fig. 4.5b. 

Surface EMG signals were recorded using the Neurodata Amplifier System (Model 

15A, Grass-Telefactor, West Warwick, RI) from the following 10 muscles, including 

both the prime and non-prime movers and their antagonists: flexor digitorum superficialis 

(FDS), flexor digitorum profundus (FDP), extensor digitorum (ED) of the right arm, and 

FDS, ED, and BB of the non-performing left arm. The reason for recording the EMG 

from the non-prime movers in the right arm (BB, DT, and TB) and muscles of the left 

arm (FDS, ED, and BB) was to monitor possible fatigue-induced activities in these 

muscles. The muscles were identified by palpating the muscles, while subjects moved the 

appropriate joints. Bipolar electrodes (Ag–AgCl, 8-mm recording diameter, In Vivo 

Metric, Healdsburg, CA) were attached on skin overlaying each muscle. A reference 

electrode was placed on the skin overlying the lateral epicondyle near the elbow joint of 

the right arm. The EMG data were amplified (x1000), band-pass filtered (1–1000 Hz 

bandwidth), and recorded at a sampling rate of 2000 Hz to the computer by the Spike 2 

data acquisition system.  

EEG signals were recorded from the scalp using a 64-channel NeuroSoft 

SYNAMPS system (version 4.2, Neuro-Scan, El Paso, Texas, USA). The subjects were 
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seated in a position that allowed them to perform the handgrip task comfortably. The 

electrode cap that holds the 64 Ag–AgCl electrodes was placed onto each subject’s head, 

based on the International 10–20 positioning method. Conducting gel (Electro-gelTM, 

Electro-Cap International, Inc., Eaton, OH, USA) was injected into the electrodes to 

connect the recording surface of each electrode with the scalp. The impedance of the 

EEG channels was maintained below 10 KV. One of the 64 electrodes (O2) was used to 

record the handgrip force. All the remaining 63 electrodes were referenced to the linked 

mastoids (M1 and M2). The EEG signals were band-pass filtered (0.05–50 Hz), amplified 

(x75,000), and recorded on the hard disk of the computer at a sampling rate of 250Hz. 

The subjects were required to concentrate on the task performance and minimize 

distractions as much as possible. They were asked to maintain a stable body position and 

avoid eye blinks, teeth biting and head movements during the handgrip contractions, 

whereas minimal eye blinks and body adjustment were allowed during the relaxation 

periods. Possible sources of distraction or noise, such as sound or light, were minimized. 

In Fig. 4.5d, sample EEG data in one channel corresponding to the force/EMG data in 

Figs. 4.5b–c are displayed. 

4.2.4 Data Analysis 

Although subjects were advised not to blink eyes, clench teeth, move head, or tense 

muscles other than those involved in the handgrip contractions, these activities 

occasionally occurred, and the trials associated with these activities were excluded from 

further analysis. These trials were identified by visually inspecting all raw EEG data. On 

average, each subject has 174±7 trials EEG data (ranged from 152 to 197 trials) that were 

artifact-free. To facilitate the further data analysis, only first 150 artifact-free trials of 
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each subject were subjected to subsequent analysis.  

Two measurements were made for each trial of the EEG and EMG data: the EEG-

EMG wavelet coherence and wavelet energy spectra of the EEG and EMG signals during 

the 2s sustained phase of the muscle contraction. For each trial, the time varying wavelet 

coherence was acquired and the number of frequency bins that had significant EEG-EMG 

coherence was summed up as a function of time (1Hz per bin), which means that the time 

effect within the 2s trial was ignored because the study was more interested in comparing 

coherence of a later trial with that of an earlier one rather than doing that within the trial. 

Two parameters are needed to be determined in calculating wavelet coherence. Nco, the 

number of cycles of Morlet wavelets, was selected as 6 and Ncy, the smooth cycles in the 

integration window was 8, which defined the time resolution of the wavelet coherence as 

Ncy / f. (For example, when f = 15, time resolution was 0.53 s; when f = 30, time 

resolution was 0.27 s.) The number of bins with coherence above significance level was 

then summed in each frequency band (alpha (8-14Hz), beta (15-35Hz) and gamma (36-

50Hz). Since the coherence at beta (15-35Hz) frequency band was more prominent, only 

coherence and wavelet energy spectrum at this frequency band were further analyzed. 

The wavelet energy spectrum in each trial was calculated at each time point and averaged 

across time at each frequency within the trial. The summed wavelet energy at beta band 

was subsequently normalized by the total energy summed from 1-50Hz and averaged 

across trials in each subject. The wavelet energy spectrum was calculated for each of the 

five motor related EEG channels located at five distinct motor function-related cortical 

areas (C3, C4, Cz, Fz and Pz) and two major finger flexor muscle EMG channels (FDS, 

FDP). The wavelet coherence was determined for each pair of EEG and EMG channels 
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among the five EEG and two EMG electrodes. 

Following determination of the EEG-EMG coherence in each trial, a mean 

significant coherence bin number for each of the two blocks (75 trials in each block), five 

blocks (30 trials in each block) and ten blocks (15 trials in each block) was calculated, 

which allowed to detect fatigue effect on the coherence at different time scales.  At each 

scale, a general linear model of repeated measures was fitted to determine how muscle 

fatigue affected EEG-EMG coherence. 

  

4.3    Results 

4.3.1 Muscle Fatigue indicated by Force and EMG Reductions 

The subjects performed 200 trials of maximal voluntary handgrip contractions 

while the handgrip force and EMG of the finger flexor and extensor muscles were 

recorded. The amplitude of the force and EMG of each muscle was quantified across 

each block of 20 trials to yield 10 data points (Fig 4.6). Both the force and EMG declined 

significantly as more trials were performed, indicating significant muscle fatigue (Fig. 

4.6). 
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Fig. 4.6. Normalized force and EMG signals averaged over the eight subjects. (a) Handgrip force; (b–
d) EMG signals from the prime movers (i.e., FDS, FDP) and the antagonist (ED) of the right 
(performing) arm; Each data point represents the averaged results over 20 consecutive handgrip 
contractions. Each numeral number within plot a, b, c, or d above a given data point indicates a 
significant difference (P<0.05) between this data point and the one corresponding to the numeral 
number. For example, the numeral ‘‘1’’ above block 2 in Fig. 4a indicates a significant decrease in the 
force of block 2 from the value of block 1. Similarly, the numeral ‘‘4’’ above block 7 suggests a 
significant force decrease in block 7 from that in block 4, and so on. J.Z. Liu et al. / Brain Research 
1057 (2005) 113– 114 126 
 

4.3.2 EEG-EMG Coherence and Energy Spectra 

Fig. 4.7 shows trial-frequency distribution of the EEG (C4) and EMG (FDP) 

wavelet energy spectrum, and the EEG-EMG (C4-FDP) coherence spectrum in a typical 

subject. The highest EEG-EMG coherence (Fig. 4.7a) was found mainly at the beta band 

(15Hz-35Hz). The EEG-EMG coherence at the beta band decreased during the later trials 

(trials 90-150). The EEG wavelet energy declined gradually throughout the 150-trial data 

set with the highest value occurred around the 30th trial (Fig. 4.7b). The EMG wavelet 

energy increased a little at the very beginning, maintained the highest level of energy 
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from the 25th to 60th trials and decreased sharply thereafter (Fig. 4.7c). The EEG and 

EMG wavelet energy change as a result of muscle fatigue were consistent with previous 

reports of the effect of muscle fatigue on EEG and EMG FFT power spectra adaptations 

(Liu et al., 2005). 
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Fig. 4.7. The trial-frequency distribution of the EEG (C4) (b) and EMG (FDP) (c) wavelet energy 
spectra with color bars indicating the normalized wavelet energy value; the EEG-EMG (C4-FDP) (a) 
coherence spectrum in one of the typical subjects with color bars indicating the coherence value. 
 

Figure 4.8 shows normalized wavelet energy spectra of the EEG (upper row) and 

EMG (lower row) signals based on group results. All the EEG channels had a similar 

trend of energy reduction across the trials. EMG energy in the FDS and FDP, the primary 

finger flexion muscles also had sharp reduction after about 30 (FDS) or 60 (FDP) trials of 

the contractions. Fig. 4.9 shows group results of the EEG (left column) and EMG (right 

column) energy spectra at beta band quantified and averaged across trials in 2 blocks (top 

row), 5 blocks (mid row) and 10 blocks (bottom row). For n blocks, the result of each 
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block was based on the average results of the 1/n total 150 trials (for example, 75 trials in 

each block for 2 block setting). Both the EEG and EMG energy decreased significantly in 

the 2 block setting and decreased gradually in the 5 and 10 block settings. Apparently, the 

5- and 10-block results provided more information regarding the EEG and EMG signal 

responses to muscle fatigue. 
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Fig. 4.8. Trial-frequency distribution of the EEG (C3 and C4), EMG (FDS, FDP and ED) normalized 
wavelet energy spectra averaged across the eight subjects. The wavelet energy was normalized by the 
corresponding total energy summed from 1-50Hz and averaged across trials in each subject. 
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Fig. 4.9. The average results of the beta band (15-35Hz) EEG (left row) and EMG (right row) energy 
spectra quantified in 2 blocks (first row), 5 blocks (second row) and 10 blocks (third row). The results 
were the summed normalized energy in beta band and averaged across trials and subjects within each 
block. 
 

Fig. 4.10 shows group results of the beta band (15-35Hz) single trial EEG-EMG 

coherence averaged across trials in 2 blocks (first row), 5 blocks (second row) and 10 

blocks (third row). Comparing results between the two blocks, the coherence (number of 

frequency bins having significant EEG-EMG coherence between the specified EEG 

electrodes and EMG of the FDP muscle) decreased significantly (P<0.01). In the five-

block setting, the coherence hit the lowest in block 4 for both the muscles but the trend of 
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decrease was clearer for the coherence of FDS EMG with the selected EEG channels. In 

the ten-block setting, the change pattern of EEG-EMG coherence was similar to that in 

the 5-block setting for both the muscle except that more detailed information was 

revealed in the 10-block data. Two trial-frequency distribution maps of EEG-EMG 

coherence in two subjects are shown in Fig. 4.11. Each map showed a decreasing trend of 

in the coherence, but the pattern of change was different from one subject to the other. 
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Fig. 4.10. The average results of the beta band (15-35Hz) EEG (C3, C4, Cz, Fz, Pz)-EMG (FDP (left 
column), FDS) wavelet coherence quantified in 2 blocks (first row), 5 blocks (second row) and 10 
blocks (third row). The results were the summed normalized energy in beta band and averaged across 
trials and subjects within each block.  
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Fig. 4.11. The trial-frequency distribution of the C4 EEG-FDP EMG wavelet coherence spectra of two 
subjects. 
 

4.4 Discussion 

This study demonstrated feasibility of quantifying single-trial EEG-EMG 

coherence to detect muscle fatigue effect on functional corticomuscular coupling. 

Although the gross (2 block) analysis showed that the coherence decreased significantly 

from the first trial-block to the second trial-bock. The single trial coherence analysis 

revealed substantially more information regarding the timing of the coherence change 

with muscle fatigue and variation of the measurement among the subjects.    

Functional corticomuscular coupling in beta band that measures binding strength 

between the brain and muscle, has been suggested to be directly related to the motor 

parameters of the performed tasks (Kilner et al., 2000). Functional corticomuscular 

coupling is frequently quantified by brain and muscle signal coherence. It has been found 

that the EEG-EMG coherence decreased significantly from less-fatigue stage to severe-

fatigue stage in a submaximal sustained muscle contraction (see chapter 2). However, 

only one FFT-based coherence spectrum was calculated for the data in each stage of a 

relatively long time span, which made it impossible to learn the time course of the 
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coherence change on a much finer scale. In this study, the multiple trials (150) of 

maximal handgrip contractions were performed by human subjects and single trial 

coherence between the EEG collected from motor and sensory cortical regions and EMG 

of the finger flexor muscles was calculated. The single-trial results confirmed the 

previous findings: the EEG-EMG coherence declines significantly with fatigue (from 

less-fatigue stage to severe-fatigue stage) (Fig.4.10 top row). The EEG and EMG wavelet 

energy decreases with fatigue as well (Fig.4.9 top row). Weakening of functional 

corticomuscular coupling could be due to fatigue-related increases in inhibitory drive to 

the descending motor passway, a decrease in neuromuscular junction transmission 

function, and shifting of primary output centers in the brain, which has been explained in 

the previous chapter. 

In addition to the above findings, more information was revealed from single-trial 

coherence analysis. The change pattern of the coherence quantified within five blocks 

(Fig.4.10 mid row) or ten blocks (Fig.4.10 bottom row) showed that the lowest coherence 

did not occur at the last block but at an earlier time. Also the decreasing EEG and EMG 

wavelet energy plateaued at the last two or three blocks. It has been reported that during a 

sustained isometric maximal contraction, motor evoked potential elicited by transcranial 

magnetic stimulation increased at the first 10-15s of the contraction and leveled off later 

(Taylor and Gandevia, 2001). The flattening of the EEG wavelet energy reduction may 

be explained by plateau of motor unit firing rate or recruitment after the initial rapid 

decline (Gandevia, 2001). However, whether the plateau of EEG-EMG coherence was 

related to the EEG energy plateau is unclear. It was noticeable that the EEG-EMG 

coherence increased to the highest level at the middle block of the muscle contractions, 
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which was not seen in the EEG or EMG wavelet energy time course. The other additional 

information that can be obtained from the single trial coherence analysis is that each 

subject showed a unique pattern of dynamic coherence adaptation as a function of fatigue 

although the overall change trend was the same. The coherence variation among subjects 

was relative big across the trials within each block; for this reason the difference in the 

coherence in the 5-block or 10-block conditions was not significantly different among the 

blocks.  

Wavelet analysis, the alternative of the Short-Time Fourier Transform (STFT), has 

been known to provide a better compromise between time and frequency resolution 

(Tallon-Baudry et al., 1997) and may be a useful approach in investigating non-stationary 

signals, such as EEG (Senhadji et al., 1995, Samar, 1999, Goelz et al., 2000, Merzagora 

et al., 2006, Chen et al., 2007) and EMG (Xiao and Leung, 1997, Flanders, 2002, Leao 

and Burne, 2004). It is particularly useful for short-duration signals commonly seen in 

neuroscience research. In this case, STFT method is with limitation of losing accuracy in 

the frequency component. In the recent years, a number of studies have applied the 

wavelet-based coherence analysis to address neurophysiological issues (Lee, 2002, 

Ayoubian Markazi et al., 2005, Li et al., 2005, Klein et al., 2006, Zhan et al., 2006). The 

wavelet coherence acquired by smoothing multiple trials (Zhan et al., 2006) has been 

tested as comparable to the STFT based coherence. However, single-trial wavelet 

coherence is considered more suitable for fatigue studies with intermittent trials of 

muscle activation. This is because the assumption of each repeated trial having the same 

physiological activity at the same latency apparently does not hold for progressive muscle 

fatigue. Physiological responses during fatigue change substantially even in a short time. 
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Smoothing within a trial allows wavelet coherence to be estimated for the given trial 

(Torrence, 1999, Lachaux et al., 2002, Brittain et al., 2007). Three methods, smoothing 

by time (Lachaux et al., 2002), scale-dependent 2-D smooth operator (Torrence, 1999) 

and multiwavelet (Brittain et al., 2007) have been proposed to estimate the time-

frequency wavelet coherence in single trial. It is unclear in what direction the smoothing 

should be done (Torrence and Compo, 1998). We chose the method of smoothing in time 

within each trial: the 2 second holding period of the muscle contraction. This method was 

first tested using simulated data, and found that the method could correctly track the 

dynamical coherence changes within the trial and across the trials. Since this method 

requires the data to be smoothed within time, it needs a minimal duration of time in each 

trial. A two-second duration is adequate for 8 Hz and higher frequency wavelet coherence 

estimation under the current parameter setup. If lower frequency wavelet coherence is of 

interest, longer duration trials are needed. Adjusting the current parameters (integration 

window number and number of cycles of Morlet wavelets) would not help because the 

integration window number parameter is unlikely to decrease. Alternatively, the 

multiwavelet smoothing method can be considered. The single trial coherence estimation 

can be further implemented in real time application for detecting the coherence and 

power spectra. 

In conclusion, single trial wavelet coherence and wavelet power spectrum were 

useful to analyze muscle fatigue effect on functional corticomuscular coupling (EEG-

EMG coherence): both wavelet coherence and power spectrum decreased with fatigue. 

However, different subjects and muscles exhibited different reduction patterns. The 
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single-trial analysis also provided more information regarding dynamic adaptation of the 

brain signal and functional corticomuscular coupling during muscle fatigue. 
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CHAPTER V 

TIME-FREQUENCY TEMPLATE MATCHING METHOD 

FOR CLASSIFYING MOTOR IMAGERY IN BRAIN 

COMPUTER INTERFACE 

 

 

5.1 Introduction  

The brain-computer interface (BCI) is ‘a real-time communication system that does 

not depend on normal output pathways from the brain to muscle through corticospinal 

and peripheral nerve connections’(Wolpaw et al., 2002). It provides ‘locked-in’ patients a 

new channel of communication (Fig 5.1). Various invasive and non-invasive BCI 

approaches have been developed. However, noninvasive BCI is preferable among the 

users, considering many practical application reasons. Among various non-invasive BCI 

systems, one category of BCI is based on surface EEG pattern recognition of different 

cognitive tasks. It assumes that differentiated cognitive tasks, especially motor imagery 
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tasks, would lead to distinct and detectable distribution of EEG spatial and spectral 

patterns over the scalp. Motor imagery tasks usually lead to a frequency power decrease 

in mu (8-14Hz) and beta (15 -35Hz) rhythms (event-related de-synchronization: ERD) in 

brain hemisphere contralateral to the movement (Fig 5.2). Event-related synchronization 

(ERS) occurs after movement when muscles are relaxing, which is prominent in the 

contralateral motor cortex (Pfurtscheller et al., 1996). A series of studies by 

Pfurtscheller’s group have shown that mental imagery of specific movements of arms, 

fingers or legs led to different EEG frequency patterns, which could be used to control a 

BCI system (Kalcher et al., 1996).  

 

 

SSiiggnnaall  
AAccqquuiissiittiioonn 

FFeeaattuurree  
EExxttrraaccttiioonn 

SSiiggnnaall  
TTrraannssllaattiioonn  

CCoommppuutteerr  
OOuuttppuutt  

FFeeeeddbbaacckk  

OOppeerraattiinngg  PPrroottooccooll  

OOuuttppuutt  DDeevviicceess e.g. 

Fig.5.1. BCI system basic components 
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Fig.5.2. Event-related de-synchronization (ERD) difference between left and right hand movement 
imagination. Left part line figures: Grand average ERD/ERS curves recorded over left and right 
sensorimotor cortices during motor imagery. The ERD/ERS time courses were calculated for the 
selected bands in the alpha and beta range. Positive and negative deflections, with respect to the 
baseline, represent a band power increase (ERS) and decrease (ERD), respectively. The gray bar in 
each plot indicates the time period of cue presentation. Right part brain images: illustration of 
localization of upper-alpha band ERD of the left and right hands (Neuper et al., 1999). 

Various methods have been developed to extract and classify the ERD and ERS 

patterns. Autoregressive (AR) model based spectrum (Pfurtscheller et al., 1998), band 

powers combined with distinction sensitive learning vector quantization (DSLVQ) 

(Scherer et al., 2003), common spatial patterns (CSP) (Lemm et al., 2005) and phase 

synchronization (PS) (Brunner et al., 2006), source location (SL) (Qin et al., 2004, 

Kamousi et al., 2005), time-frequency (TF) analysis (Qin and He, 2005, Ince et al., 2006), 

or feature combination are the feature extraction methods that have been investigated. 

These feature extraction methods have been combined with different types of classifiers, 

including linear discriminant analysis (LDA), k-nearest-neighbor (kNN), support vector 

machine (SVM) and various neural networks to achieve good classification results. Many 

studies have shown that sophisticated signal processing algorithms are superior to simpler 
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techniques in offline analyses for potential BCI applications. However, the more complex 

the analysis is, the less amenable it might be for online BCI control involving real-time, 

continuous feedback and adaptation. Until now only four feature extraction methods (AR, 

DSLVQ, CSP, and PS) and LDA classifier have been implemented online. The AR 

method used a two-dimension-feature vector that formed by the AR coefficients of EEG 

data segment along the time to distinguish the different EEG pattern. The DSLVQ is a 

feature selection algorithm to identify the optimal band of frequencies that bear the 

largest difference between imageries of left and right hand movements. The CSP can be 

used for identifying the electrodes that provide better discriminatory information. The 

degree of phase synchronization between two EEG signals by calculating phase locking 

value was extracted in PS method. However, none of these online methods used time and 

frequency features simultaneously for the classification. However, the features of the 

ERD and ERS are apparently time, frequency and space related. This makes time 

frequency analysis based on wavelet transform a potentially useful approach to extract 

features of the ERD and ERS. Several TF methods have been developed and their 

applications on offline BCI have been reported (Bostanov, 2004, Qin et al., 2004, 

Glassman, 2005, Ince et al., 2006). 

Here a modified time frequency template matching strategy based on method of 

Qin and He (Qin and He, 2005) was described. Offline and pilot online experiment 

results were reported. It was hypothesized that wavelet based time frequency extraction 

method would lead to higher accuracy and less user-training time for offline and online 

distinguishing signal patterns of the left and right hand movement imageries. 
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5.2    Methods     

5.2.1 Algorithm 

    Step 1: EEG data from two channels (C3 and C4) were used (electrodes C3 and C4 

overlay the left and right side of primary motor cortex). These data were first 

preprocessed by the laplacian spatial filter to enhance local activity (Hjorth, 1975). 

Assuming that the distances from the four surrounding electrodes to the electrode of 

interest are approximately equal, the surface Laplacian can be calculated as following: 

 

                                                                                                                                     (5.1) 

where Vj was the potential of the jth electrode, and Sj was an index set of the four 

surrounding electrodes. 

Step 2: For each task (left and right hand movement imagery) and each channel 

(C3 and C4), the time-frequency (TF) distribution map was acquired through Morlet 

wavelet transform from each trial of the laplacian spatial filtered training EEG data. 

Complex Morlet’s wavelets have a Gaussian shape both in the time domain 

(SD      ) and frequency domain (SD       ) around its central frequency      (Tallon-Baudry 

et al., 1997):  

                                                                                                                                     

                                                                                                                                   (5.2) 

 

The time-varying energy of the signal in a frequency band was the square norm of 

the result of the convolution of the complex wavelet with the signal. 
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The ERD and ERS patterns were detected by averaging training data across trials. 

The C4 averaging TF map was subtracted from C3 averaging TF map; the subtraction 

outcome was dramatically different between the left hand movement imagery and the 

right hand movement imagery task. This C3-C4 TF energy distribution map was served 

as a template for each task. 

Step 3: Training template matching indices based on un-normalized correlation 

coefficient from training data was calculated.  

 

                                                         

                                                                       (5.3) 

i: time index; j: frequency index; x represented the single trial data, and y was the 

averaging template data. 

Step 4: Testing template matching indices from testing data were calculated in the 

same way. 

Step 5: Linear discriminant analysis classifier (LDA), which transforms the data by 

maximizing the ratio of between-class variance to the within-class variance, was used to 

classify these features to see if the testing trial TF pattern was more closely matched to 

the left or right template based on the input of the training template matching indices. 

 

                                                                       (5.4) 

D was the distance: the magnitude of the value indicates the confidence of the 

classification; the sign indicates the class; x was the classified data; w, and w0 were 

transforming weights obtained from the training data. 
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The whole algorithm flow chart is shown in Fig. 5.3. 
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5.2.2 Offline Experimental Protocol  

So far no consensus exists on how to evaluate and compare the algorithms either 

online or offline. Several competitions have been organized so that algorithms from 

various groups could be applied to a given data set and evaluated by the same criteria 

(Sajda et al., 2003, Blankertz et al., 2004). Scalp EEG data of nine subjects from NIPS 

2001 (conference of Neural Information Processing Systems competition) were provided 

by Dr. Allen Osman at the University of Pennsylvania (Parra et al., 2002) and were 

analyzed in this study. The signals were acquired using 59 electrodes positioned on the 

scalp according to the International 10/20 system with a sampling rate of 100 Hz. The 

data were recorded during performance of a total of 180 trials of an imagery hand 
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movement (imaging right/left hand movement without actual doing it), 90 trials for the 

left hand and 90 for the right hand. Each trial (6 s) began with a blank screen lasting for 2 

s. After 1.75s preparation time, at t=0 s, a preparation cue of letter ‘L’ or ‘R’ (lasting 250 

ms) appeared on the screen indicating which hand movement should be imagined; at 

t=1.25s an execution cue ‘X’ (lasting 50 ms) appeared, telling the subject to make the 

requested imagery for 1s. The experimental paradigm described above is shown in Fig. 

5.4.  

2s 0.5s 1s 1s 1s 2s 

0.25s 0.25s

‘L’ or ‘R’: display 0.25s

 ‘X’: display 0.05s 

t=0s t=2s t=3s 

Imagination End

Blank screen Preparation

Fig. 5.4. Offline experiment paradigm 
 

Time-frequency (TF) distribution map was acquired through Morlet wavelet 

transform for the interested time period (0-3s) and channels (C3 and C4) of the Laplacian 

spatial filtered training EEG data signal. Clear ERD and ERS patterns could be detected 

by averaging all left/right training data. This averaging TF energy distribution map was 

served as a left/right template. One typical subject’s TF distribution map is shown in Fig. 

5.5, which shows distinct ERD and ERS patterns for the imagery movements of the left 

and right hand. Template matching technique based on correlation coefficient was used to 

extract coefficient feature by comparing the testing trial with the average left and right 

template. LDA classifier was used to classify these features to see if the testing trial TF 
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pattern was more closely matched to the left or right template. This classifier result was 

compared to the original test data tag. If they matched, the classifier result was accurate. 
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Fig. 5.5. TF energy distribution map of one typical subject, averaged across 90 imagery 
trials of the left hand and 90 imagery trials of the right hand movements. Red means higher 
amplitude and blue means lower amplitude of the signal wavelet energy. 
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5.2.3 Online Experimental Protocol 

Four subjects (1 female and 3 male, average age: 32.3±3.2 years) took part in the 

online experiment. One subject had four sessions of a previous version BCI training 

experience. The other three subjects had no prior experience or knowledge of BCI 

experiment. One subject reported that he could not concentrate and perform the imagery 

well. For this reason, this subject’s data were excluded from the analysis. The EEG 

signals were acquired by a 64-channel Neuroscan system (version 4.2, NeuroScan, El 

Paso, Texas, USA) and bandpass filtered at 0.05-50 Hz. The sampling rate was 200 Hz. 

Subjects sat in a comfortable chair with both arms placed on the table or armrests, facing 

the screen. The subjects were given verbal instructions for correct metal practice after 

having several trials of actual hand movement practice (Sidaway and Trzaska, 2005).  
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The whole task performed in the online experiment was a basket game. In each 

trial, the initial screen was blank. After 800 ms, one of two rectangle targets (left and 

right) appeared at the bottom left or right of the screen, which was the preparation cue 

lasting several seconds (preparation time) depending on the individual subject. The side 

of the target was randomly selected. The cursor then appeared at the middle of the screen, 

which served as the execution cue. The cursor moved down at a fixed rate until it reached 

the bottom (feedback time). The horizontal movement of the cursor was controlled by the 

transplanted EEG signal. If the cursor hit the target, the target turned to yellow (hitting in 

the middle, no target turned to yellow). The whole run lasted a fixed time of 3 minutes. 

However, the number of trials in each run depended on moving speed of the cursor on 

vertical axis. Fig.5.6 illustrates screen setting of the basket game. Fig.5.7 shows the 

experiment protocol in training and testing sessions.    

 

 
Fig. 5.6. Basket game performed in the online experiment. 
Subjects controlled horizontal position of the cursor to 
guide its downward movement to hit one of the two 
targets at bottom of the screen at a constant speed.  

The online experiment consisted of one training session without feedback and one 

testing sessions with feedback. The number of runs included in one session was different 
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among the subject. The experiment setup was the same for the training and testing 

sessions except that there was no horizontal cursor movement in trials of the training 

session. A 960-ms data segment was picked offline from the averaged training data by an 

investigator and used to extract the individual TF template and calculate the LDA 

classifier parameters. In the testing session, the cursor was updated every 80 ms to a new 

horizontal position (p) according to the following formula:        

Pt1 = Pt0+ S*Clt1                                                                                          (5)  

S was the scaling factor that controlled speed of the cursor horizontal movement. 

Cl was the classifier output. 
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Execution Cue 

Accurate Wrong 

Hit Target Miss Target 

Result 

Fig. 5.7. Online experiment protocol for one trial in training and testing session. 

 

In the testing session, at the time (silence time) during initial phase of the feedback 

period, the cursor horizontal movement was set to 0. The feedback time was the time 

starting from when the cursor had both horizontal and vertical movements till it hit the 

bottom. The preparation time, silence time and feedback time were specifically adjusted 

in each subject according to the actual performance and his/her own choice. We adopted 

the BCI2000 software (Schalk et al., 2004) infrastructure to build the entire online BCI 

system and developed our own signal processing module with the time-frequency 

   81  
 



 

template matching algorithms into the signal processing module. The three subjects’ 

experiment parameters are shown in Table I. 

 Preparation 
Time (ms) 

Feedback 
Time (ms)

Trials 
per Run

Training 
Session 

runs 

Testing 
Session 

runs 

S(scaling 
factor) 

Subject1 800 1600 25 3 5 500 
Subject2 1600 2000 21 3 5 400 
Subject3 3200 2640 16 6 5 300 

TABLE I: ONLINE EXPERIMENT PARAMETERS 
 

5.3 Results 

5.3.1 Offline Results 

The template matching index was acquired according to the described method for 

the interested time period. Tenfold cross-validation was used to examine the performance 

of this procedure on nine subjects. Therefore, the data set of each subject was randomly 

divided into ten sets. The training set (9 out of 10 data sets) was used to get the time-

frequency template. The test set (1 out of 10 data sets) was used to calculate the final 

classification accuracy. This procedure of splitting up the data set, doing the training, and 

testing the classification accuracy was done ten times on each subject. 

The average accuracy was 81.3% for a 4-s EEG data set (0s-4s) and 79.6% for a 3-

s time period (0s-3s) (see Table II), better than the results reported in the literatures (Qin 

and He, 2005, Ince et al., 2006). The average accuracy was 76.8% if only a 2-s data (0s-

2s) segment was analyzed, which was still better than the previously reported accuracy. 
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Accuracy 
(%) S1 S2 S3 S4 S5 S6 S7 S8 S9 AVG

0-4s 85 92.8 75 69.4 83.3 85 91.1 70.6 79.4 81.3 
0-3s 83.3 91.7 75 65 83.9 83.3 88.9 67.8 77.8 79.6 
0-2s 81.1 90 72.8 55 79.4 82.8 84.4 66.7 67.2 75.5 

0-3s(Qin and 
He 2005) 72.8 91.7 69.4 68.3 73.9 72.8 81.7 56.7 85.7 74.8 

0-4s(Ince et 
al. 2006) 83.6 92.6 70 70.7 77.8 87.2 89.7 70 83.7 80.6 

TABLE II. OFFLINE EXPERIMENT RESULTS 
 

5.3.2 Online Results 

The percentage of the accurate trials (the trials that cursor hit the target in the end) 

out of the total trials in each run of the testing session was used to quantify each subject’s 

performance. The accuracy of each run for each subject was shown on Table III. All the 

three subjects reached a level of accuracy above 70% at the end of the testing session. 

Each session included five 3-min runs. The non-feedback training time for each subject 

was actually quite short. Two subjects had 3 runs of the non-feedback training that lasted 

totally 9 minutes if the inter-run rest time was not included. One subject had 6 runs of 

non-feedback training time.  

 

Accuracy Run 1 Run 2 Run 3 Run 4 Run 5 
Subject1 92% 96% 96% 84% 89% 
Subject2 52% 67% 62% 71% 71% 
Subject3 69% 56% 69% 69% 75% 

TABLE Ш. ONLINE EXPERIMENT RESULTS 
 

5.4 Discussion 

This study utilized both time and frequency information to real-time classify 

surface EEG signals in an online BCI experiment. The results of the offline and pilot 
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online experiments demonstrate that the time-frequency features from only two 

electrodes could discriminate information of motor imaging from non-feedback training 

to feedback training. In addition, the time-frequency features are robust and efficient 

discriminators that only need a relatively short period of non-feedback training. 

This study employed both time and frequency information to distinguish the left 

and right hand movement imagery. This method preserves all useful information 

simultaneously in one time-frequency distribution template for classification. And it is 

not necessary to pick up any particular frequency bands as several studies used to do 

(Wolpaw et al., 1991, Wolpaw et al., 2002, Scherer et al., 2003). Specifying the 

frequency band information may not only require extra complex and reliable algorithm 

(Scherer et al., 2003) but also lose some useful information in other related frequency 

bands. The time information of ERD/ERS was usually neglected in real time BCI in the 

previous real time BCIs. One possible consideration may be that using time information 

in the real time BCIs may induce big time delay in response to the subject’s intention. In 

our online experiment, 960 ms template was used. So there was 960 ms delay for every 

feedback update. However, the delay of about one second is not crucial for the simple 

task when the accuracy is high. The BCI based on AR coefficients of motor imagery EEG 

data also had one second delay (Pfurtscheller et al., 1998). And the features across 960ms 

were more reliable than that from tens milliseconds. The possible false trigger caused by 

the artificial signals could be avoided in this way. Using one second time delay to 

exchange for more distinguishable and reliable information is worthwhile.  

Compared with previous studies, this study achieved more than 70% accuracy only 

after no more than 18-minutes non-feedback training and 15-minutes feedback testing 
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time. It is reported that using mu- and beta-frequency components usually need several 

months to develop high-accuracy cursor control (i.e.,> 90%) (Wolpaw et al., 1991). Using 

motor imagery based features, an accuracy of 80%-95% can be achieved after 6-10 of 20 

minutes training (Pfurtscheller et al., 1998, Guger et al., 1999, Guger et al., 2001). It is 

noticed that classification accuracies of subject 2 and subject 3 continuously increased as 

the feedback testing session went on, which indicates a progressive adaptation. Actually, 

the adaptation is a two-way avenue: user adapting to system and system automatically 

adapting to the user too.  In this study, the users adapted to system via feedback training, 

which led to more accurate and efficient communication between users and BCI system. 

If more sessions were tested, the time-frequency template and coefficients of the 

classifier would be updated with the newest data. In this way the system also adapts itself 

to each user.  

EEG data from only two fixed electrodes was used to detect the motor imagery 

pattern in this study. The spatial information was limited. While ERD/ERS features are 

time, frequency and spatial information related. ERD/ERS may be localized in different 

electrode with motor cortical area in different subject. If the spatial information could be 

specified for each subject, the classification accuracy would be greatly increased. 

A number of personal factors, such as consistent concentration, fatigue, mood, and 

motivation, can have considerable effect on the training result and should be carefully 

treated to maximize their positive or minimize negative effects on the result.  

Future work will test effects of longer-term feedback training on improving 

accuracy and information transformation rate. Improving classification accuracy by real 

time updating template with the newest feedback session data and LDA classifier weights 
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and incorporating spatial information will be tested. Another important direction of future 

work includes combining the single trial coherence estimation method described in 

Chapter 4 into this real time system. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

 

This dissertation includes two major parts. The first part reports findings of three 

studies that examined effects of voluntary muscle fatigue on functional neuromuscular 

coupling. The aims of the three studies were: 

1. To quantify functional corticomuscular coupling change during voluntary 

fatigue in healthy individuals (Chapter 2). 

2. To detect functional corticomuscular coupling impairment in cancer patients 

with fatigue symptoms (Chapter 3). 

3. To explore a technique for detecting functional corticomuscular coupling in 

short single trial duration (Chapter 4). 

An objective neuromuscular index, EEG-EMG coherence, was estimated as a 

representation of strength of functional corticomuscular coupling during voluntary 

muscle fatigue. The studies showed a significant reduction of EEG-EMG coherence 
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during sustained sub-maximal contraction of the elbow flexor muscles in both CRF 

patients and healthy controls. Another significant result of the study was the weakening 

of corticomuscular coupling in CRF patients compared to healthy controls within the 

minimal fatigue stage. The reduction of the coherence do demonstrate the dissociation of 

brain and muscle signals during fatigue and cancer related fatigue, which provides a new 

perspective to understand fatigue and cancer related fatigue mechanisms at the system 

level. The coherence reduction by muscle fatigue in healthy controls is related to the 

physiological differential effects of fatigue on the central and muscular systems, while 

the lower coherence level in CRF patients may be caused by the differential effects of 

central and muscular systems induced by additional pathophysiological impairment in the 

patients. This explains why normal fatigue can be recovered by rest in healthy people 

while CRF is a persistent symptom. Given the fact that this is the first report of the 

coherence reduction, it could be an important addition to the current understanding of 

neural mechanisms underlying muscle fatigue and CRF and may stimulate interests to 

pursue the issue further by other investigators. Although significant weakening of the 

EEG-EMG coherence was detected during muscle fatigue in healthy individuals and in 

CRF patients in the minimal-fatigue stage (compared with the controls), further 

information such as whether weakening of the fCMC is a consequence of central or 

peripheral fatigue could not be revealed by the current coherence analysis. Therefore, 

many directions of the future research based on findings of this study can be launched, 

include detecting directional coherence changes to further elucidate weather it is the 

weakening communication of brain to muscle or muscle to brain during muscle fatigue, 
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quantifying phase difference of brain signal and corresponding muscle signal during 

muscle fatigue, and detecting fCMC changes before and after treatment in cancer patients. 

The third aim of the first part of the dissertation demonstrated successful use of the 

wavelet-based single trial coherence estimation method for detecting the fatigue effect on 

functional corticomuscular coupling in repeated maximal muscle contractions. The 

coherence decreased significantly from the first half of the repeated-maximal-muscle-

contraction task to the second half of the task. The single-trial coherence revealed more 

detailed information: different subjects have different patterns of coherence reduction 

with consecutive trials and more detailed dynamic fatigue-related EEG-EMG coherence 

changes are seen with improved time resolution.  This single-trial coherence estimation 

method also provides the possibility of real time power spectrum and coherence detection 

that might be used in the future as a cancer related therapy indicator or muscle training 

index for athletes. A major limitation of the single-trial coherence estimation described in 

this dissertation is that the time duration of each single trial can not be too short (the time 

duration requirement is different for different target frequency band analysis, for example, 

in chapter 4, at least a 2-s data set is needed for 8 Hz and higher frequency wavelet 

coherence analysis).  

The second part of the dissertation describes a real time system that successfully 

classified surface EEG signals in online BCI experiments utilizing wavelet-based time 

frequency features. The classified signals can be used to control assisting devices to aid 

function of patients who are disabled. Future work includes combining this coherence 

estimation into the online system described in chapter 5 which eventually allow for real 
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time quantifying coherence and power spectrum of brain and muscle signal changes 

before, during and after fatigue. 
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Appendix A 

Abbreviations: 
 

ALS: Amyotrophic lateral sclerosis 
AR: Autoregressive model  
BB: Biceps brachii 
BCI: Brain-computer interface 
BR: Brachioradialis 
CRF: Cancer related fatigue 
CSP: Common spatial patterns 
DSLVQ: Distinction sensitive learning vector quantizier 
ED: Extensor digitorum 
FDP: Flexor digitorum profundus  
FDS: Flexor digitorum superficialis  
EEG: Electroencephalography 
EMG: Electromyography 
ERD: Event-related de-synchronization 
ERS: Event-related synchronization  
ERP: Event-related potential  
FFT: Fast Fourier transform 
fMRI: Functional Magnetic Resonance Imaging 
fCMC: functional corticomuscular coupling 
ICA: Independent component analysis 
IIR: Impulse response filter  
kNN: k-nearest-neighbor 
LDA: Linear discriminant analysis 
MEG: Magnetoencephalography 
MRCP: Motor cortical related potential  
MRI: Magnetic Resonance Imaging 
MVAR: Multivariate autoregressive coefficients  
MVC: Maximal voluntary contraction 
PSD: Power spectral density 
SNR: Signal to noise ratio 
SSVER: Steady-state visual evoked response  
SVM: Support vector machine  
TB: Triceps brachii 
TF: Time-frequency  
VEP: Visual evoked potential 
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