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1. Introduction

We study a novel variation on the classical problem of the buck-
ling of an elastica. The elastica models the cross-section of a nano-
scale sheet that interacts with a rigid substrate by van der Waals 
forces. See Fig. 1. The interaction is modeled as a body force of 
Lennard–Jones type. Specifically, the van der Waals interaction be-
tween a point on the sheet and the substrate is repulsive when the 
point is sufficiently close to the substrate, weakly attractive over 
some intermediate distance, and then essentially zero when the 
point on the elastica is far from the substrate. In our problem, 
the sheet is perpendicular to the substrate prior to buckling. A load 
is applied to the edge of the sheet further from the substrate. That 
the forces on the sheet sum to zero sets the spacing between the 
substrate and the edge of the sheet nearest the substrate. At this 
spacing the load applied to the far edge of the sheet balances the 
van der Waals interaction between the substrate and points on 
the sheet. We study how the sheet buckles from this configuration 
as the applied load varies.

Our study is motivated in part by an interest in the mechanical 
properties of graphene sheets. A graphene sheet is a single-
atom-thick layer of carbon atoms in which each atom is bonded 
to its three nearest neighbors to form a hexagonal lattice. Stacked 
graphene sheets are the building blocks of graphite. Within the last 
decade, mechanical and chemical methods have been developed 
for isolating individual graphene layers (Novoselov et al., 2004,

2005; Schniepp et al., 2006). Numerous studies have demonstrated 
that graphene sheets have remarkable mechanical properties 
(Booth et al., 2008; Geim, 2009; Lee et al., 2008; Suk et al., 2010).

Because of their mechanical as well as electrical properties, 
graphene sheets may be useful components in a variety of poten-
tial nanoscale devices (Bunch et al., 2007; Liao and Koide, 2011; 
Wu et al., 2010). The successful development of such devices 
may entail the precise mechanical manipulation of individual 
graphene sheets. Our problem can be viewed as an idealized con-
tinuum model of the fabrication or operation of a nanoscale device 
in which a graphene sheet is positioned perpendicularly against a 
rigid substrate. It may be important to predict how close to the 
substrate the sheet can be positioned before buckling into a shape 
that is no longer flat and perpendicular to the substrate. We note, 
however, that research has shown that the edges of freely sus-
pended graphene sheets may be wavy or rippled (Lu and Huang, 
2010; Reddy et al., 2009, 2011), a geometry that is not described 
in our idealized continuum model. Also, our continuum model 
ignores thermal fluctuations of the atoms of which a graphene 
sheet is composed.

Although primarily motivated by an interest in the mechanics 
of graphene, our study fits in with a larger effort to understand 
the mechanics of any deformable nanoscale sheet, tube, filament, 
etc. interacting with nearby rigid structures. Areas where such 
problems arise include the operation of MEMS (Jia et al., 2011; 
Zhao et al., 2003), the mechanics of polymers (Aliee and Najafi, 
2008; Smith et al., 2001; Rief et al., 1999; Purohit et al., 2003), 
and the adhesion of fibers and hairs (Autumn et al., 2002; Bico 
et al., 2004; Majidi et al., 2005). Essential for understanding

http://dx.doi.org/10.1016/j.ijsolstr.2012.07.026
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mechanics at this length scale is predicting how bodies deform in
response to the interplay between elasticity and intermolecular
forces (Attard and Parker, 1992; Evans and Lauga, 2009;
Oyharcabal and Frisch, 2005). The straightforward geometry of
our problem makes it a natural one to consider in this context.

The existing work on buckling of graphene sheets (Li and Chou,
2003; Lu and Huang, 2009; Pradhan and Murmu, 2009, 2010;
Sakhaee-Pour, 2009; Wilber et al., 2007a) is based on various
approaches including atomistic simulations, continuum beam
theory, and non-local elasticity. None of these papers considers
the buckling of graphene interacting with a rigid substrate. See
the introduction in Wilber (2010) for more detailed comments.
This paper is complementary to Wilber (2010), which uses a simi-
lar model to explore a buckling problem in an alternative geometry
in which the sheet is parallel to the substrate prior to buckling
(hence yielding a variation on the classical problem of an elastica
on a nonlinearly elastic foundation).

The same continuum model we present here is used in
Oyharcabal and Frisch (2005) to study the adhesion by van der
Waals forces of an elastica to a substrate. The authors study
numerically how the elastica, initially parallel to the substrate at
the equilibrium spacing, peels off the substrate under an applied
load at one end. A closely related study is Strus et al. (2008), in
which the authors use the same model to investigate the peeling
of a carbon nanotube from a substrate. In another related paper,
Evans and Lauga (2009), the authors use linear beam theory to
study how two or several sheets interacting by a van der Waals-
like force adhere to one another.

In Strus and Raman (2009), the model from Oyharcabal and
Frisch (2005) is adapted to predict the deformation of carbon
nanotubes used as probe tips in atomic force microscopy. The
boundary-value problem we formulate in Section 2 is similar
to the ‘perfect slip’ case studied in Strus and Raman (2009), ex-
cept that we use a pinned condition at the top of the sheet
while the authors in Strus and Raman (2009) use a clamped
condition at the top of the tube. In Strus and Raman (2009),
the authors use the model to study post-buckling behavior by
numerically continuing the solution off the trivial branch from
what we call the pulling bifurcation point. They plot the applied
load versus the separation of the top of the nanotube from the
substrate to describe how the nanotube transitions between dif-
ferent configurations as the tube contacts the substrate. Here
we do not consider post-buckling behavior except locally near
bifurcation points. See the remark at the end of Section 3.4 be-
low for an additional comment on how our results compare
with those of Strus and Raman (2009).

We model the cross-section of the sheet as an elastica. We use a
variational approach, in which the energy has two parts, the bend-
ing energy of the elastica and the energy from the interaction of the

elastica with the substrate by van der Waals forces. For the buck-
ling problem described above, we identify a trivial branch, which
corresponds to the elastica remaining straight and perpendicular
to the substrate. Upon linearizing about this trivial branch, we ob-
tain a classical self-adjoint eigenvalue problem. A mix of analysis
and numerical computation is used to study this eigenvalue prob-
lem and determine the stability and bifurcations of solutions along
the trivial branch.

To summarize our main results, we imagine an experiment that
starts with the bottom edge of the sheet far from the substrate. The
van der Waals force between points on the substrate and each
point on the sheet is attractive, and the applied load pulls the sheet
away from the substrate to balance the van der Waals force pulling
the sheet toward the substrate. At this spacing the straight config-
uration is stable. If the applied load is slowly increased, equilib-
rium is maintained by allowing the spacing between the bottom
edge of the sheet and the substrate to increase. If this process is
continued, the bottom edge of the sheet approaches a spacing at
which the total attractive van der Waals force on the sheet is at
a maximum. A further increase in the applied load cannot be bal-
anced by the attractive force of the substrate. The straight config-
uration loses stability, not through buckling, but rather because
after a small displacement away from the substrate, the sheet
keeps moving away from the substrate.

On the other hand, if at the initial stable spacing, the applied
load is slowly decreased, equilibrium can be maintained by allow-
ing the spacing between the bottom edge of the sheet and the sub-
strate to decrease. If this process is continued, the bottom edge of
the sheet approaches the substrate and the van der Waals force on
points near the bottom of the sheet becomes repulsive, although
the total van der Waals force on the sheet is still attractive. At some
critical applied load, the straight configuration loses stability and
the sheet buckles into a configuration in which the edge of the
sheet closest to the substrate kicks out to one side. See Fig. 7. We
show that at this critical load the total van der Waals force on
the sheet is attractive, so the applied load pulls the sheet away
from the substrate.

This thought experiment summarizes our results on how the
straight configuration of the sheet loses stability. We show that
all additional bifurcation points on the trivial branch occur when
the total van der Waals force on the sheet is repulsive, which
means the applied load is pushing the sheet toward the substrate.
There are a countable number of these additional bifurcation
points that lie on an unstable section of the trivial branch.

We also formulate the boundary-layer problem that arises if the
length of the sheet is large compared to the characteristic length
over which the van der Waals interaction is significant. After intro-
ducing an appropriate small parameter, we perform a straightfor-
ward but illuminating bifurcation analysis of the inner and outer
problems. The first two bifurcations described above—the sheet
continuing to move away from the substrate after a small displace-
ment, and the sheet kicking out to one side—arise in the inner
problem. The countable number of bifurcation points that occur
when the applied load is pushing the sheet into the substrate arises
in the outer problem, which at first order has the form of a classical
Euler buckling problem.

In the next section, we present the variational formulation
of our problem and identify the trivial branch for our bifurca-
tion analysis. In Section 3, by studying the minimization of the
total energy we demonstrate the stability or instability along
different parts of the trivial branch. In Section 3.3, bifurcation
points are identified and the stability analysis is completed.
Section 4 contains a bifurcation analysis for the limiting case
of very long sheets. An Appendix that follows provides further
details on the analysis of the eigenvalue problem studied in
Sections 3.3 and 4.

Fig. 1. Nanoscale sheet deforming above a rigid substrate.



2. Formulation of the model

We use continuum mechanics to model a nanoscale sheet inter-
acting with a rigid substrate. To describe the geometry of our prob-
lem, we let fi; j;kg denote a right-handed orthonormal basis for R3.
The rigid substrate is parallel to the ik-plane, and j points away
from the substrate. See Fig. 2. We assume the deformation of the
sheet is the same in every cross-section defined by a plane perpen-
dicular to k, and hence the configuration of the sheet is determined
by the configuration of a typical cross-section. A cross-section is
described by a curve ½0; L� 3 s # rðsÞ in the ij-plane. Because we
are modeling a graphene sheet, which is only a single layer of
atoms thick, we do not need any additional kinematic variables
to track points off of the ‘centerline’ described by r and we assume
the sheet is unshearable.

We assume the sheet is perpendicular to the substrate prior to
buckling. We shall refer to the edges closest to and farthest from
the substrate as the bottom and top of the sheet. The positions of
the bottom and the top of the sheet correspond to s ¼ 0 and
s ¼ L. We set y0 ¼ rð0Þ � j, which is the distance from the bottom
of the sheet to the substrate. See Fig. 2. We assume that a constant
load mj is applied to the top of the sheet. Hence m > 0 corresponds
to pulling the sheet away from the substrate and m < 0 corresponds
to pushing the sheet toward the substrate.

We use a variational approach to derive governing equations. It
is convenient to introduce components by writing

rðsÞ ¼ xðsÞiþ yðsÞj; ð2:1Þ

from which we see that y0 ¼ yð0Þ. We assume that the sheet is inex-
tensible, so that jr0ðsÞj ¼ 1 for all s 2 ½0; L�. It follows that L is the
length of the sheet and that there is a function h such that

r0ðsÞ ¼ cosðhðsÞÞiþ sinðhðsÞÞj: ð2:2Þ

Note that hðsÞ is the angle between i and the tangent line at rðsÞ and
that h0 is the curvature of r. The pair y0 and h determine the config-
uration of the sheet to within a rigid translation parallel to the
substrate.

The potential energy per unit width of a sheet with configura-
tion ðh; y0Þ interacting with the substrate is

E½h; y0� ¼
Z L

0

b
2

h0ðsÞ2dsþ
Z L

0
F y0 þ

Z s

0
sin hðnÞdn

� �
ds

� m y0 þ
Z L

0
sin hðsÞds

� �
: ð2:3Þ

The first term in (2.3) is the bending energy stored in the sheet.
Because we assume the sheet is inextensible and unshearable,

energy is stored in the sheet only by bending. These assumptions
along with the assumption that the stored-energy is a constant
times the curvature squared are the classical elastica theory. (For
further background on the potential energy for the elastica, see Caf-
lisch and Maddocks (1984) as well as Antman (2005), Chapters IV,-
VII.) The constant b in the first term is the bending stiffness of the
sheet. Values from the literature on the continuum modeling of
graphene and carbon nanotubes suggest that one can choose b in
a range between :13 and :2 nN nm (Kim and Castro Neto, 2008; Rob-
ertson et al., 1992; Sabio et al., 2008; Tersoff, 1992; Tu and Ou-Yang,
2002; Yakobson et al., 1996). To make explicit computations below,
we take b ¼ 0:14 nN nm. The second term in (2.3) is a continuum
approximation of the potential energy of the van der Waals interac-
tion between the sheet and the substrate. The function F in the
second term is the energy per unit area of the van der Waals inter-
action between the substrate and the material point s. Because
yðsÞ ¼ y0 þ

R s
0 sin hðnÞdn, we assume that F depends just on the

distance between the point s and the substrate. We defer until later
the derivation of the exact form of F. The third term in (2.3) is the
work done by the applied load.

As noted above, a graphene sheet is only a single-layer of atoms
thick. Its resistance to bending arises because bending the sheet
requires changing the bond angles between carbon atoms. In clas-
sical linear shell theory, resistance to bending arises because
bending the shell requires stretching or compressing material off
the center surface of the shell. Hence in the classical theory, the
bending modulus is related to the thickness of the shell and Youngs
modulus of the material. In our model, by contrast, we do not need
to assign a thickness to the sheet. See Peng et al. (2008) for an
interesting discussion of this issue in the context of carbon
nanotubes.

We obtain the equilibrium equations for our problem by
seeking pairs ðh; y0Þ at which (2.3) is stationary. First we
compute

@

@�
E½h; y0 þ �y1�j�¼0 ¼ y1

Z L

0
F 0 y0 þ

Z s

0
sin hðnÞdn

� �
ds� my1; ð2:4Þ

which must vanish for all y1, so that

m ¼
Z L

0
F 0 y0 þ

Z s

0
sin hðnÞdn

� �
ds: ð2:5Þ

We define N on ½0; L� by

NðsÞ ¼
Z s

0
F 0 y0 þ

Z n

0
sin hðcÞdc

� �
dn; ð2:6Þ

with which (2.5) can be written as NðLÞ ¼ m.
Next we compute

@

@�
E½hþ �h1; y0�j�¼0

¼
Z L

0
bh0ðsÞh01ðsÞdsþ

Z L

0
F 0 y0 þ

Z s

0
sin hðnÞdn

� ��
�
Z s

0
h1ðnÞ cos hðnÞdn

�
ds� m

Z L

0
h1ðsÞ cos hðsÞds; ð2:7Þ

where h1 is arbitrary. Noting that N0ðsÞ ¼ F 0ðy0 þ
R s

0 sin hðnÞdnÞ, we
integrate the first two terms in the right-hand side of (2.7) by parts,
which gives

@

@�
E½hþ �h1; y0�j�¼0 ¼ �

Z L

0
bh00ðsÞ þ NðsÞ cos hðsÞð Þh1ðsÞds

þ bh0h1jL0: ð2:8Þ

The integral in (2.8) must vanish for all h1. Thus we get

bh00 þ N cos h ¼ 0; h0ð0Þ ¼ h0ðLÞ ¼ 0: ð2:9ÞFig. 2. Cross-section of the sheet deforming above the rigid substrate.



From (2.1), (2.2), (2.6), and (2.9), we see that the equilibrium equa-
tions are

h00 ¼ �N
b

cos h; N0 ¼ �f ðyÞ; y0 ¼ sin h; ð2:10aÞ

h0ð0Þ ¼ h0ðLÞ ¼ 0; Nð0Þ ¼ 0; NðLÞ ¼ m; ð2:10bÞ

where f ¼ �F 0.
Recall that F describes the van der Waals interaction between

points on the sheet and the substrate. We describe briefly next
the derivation of the specific form of F—see (Wilber et al., 2007b)
for details. Because we assume that the substrate is formed by a
second rigid graphene sheet, to define F we start with a Lennard-
Jones 6–12 potential for the energy between two non-bonded car-
bon atoms. We multiply this potential by the atomic density of
graphene, denoted r, and integrate over the substrate. Multiplying
the result by r again to get the energy per unit area between the
sheet and the substrate, we arrive at

FðnÞ ¼ 2pr2 c12

10n10 �
c6

4n4

� �
; f ðnÞ ¼ �F 0ðnÞ ¼ 2pr2 c12

n11 �
c6

n5

� �
;

ð2:11Þ

where c12 ¼ 3:859� 10�9 nN nm13, c6 ¼ 2:43� 10�6 nN nm7, and
r ¼ 38:177 nm�2 (Girifalco and Lad, 1956). The graphs of F and F 0

are shown in Figs. 3 and 4. We note that our continuum approxima-
tion of the van der Waals interaction is not accurate near the sub-
strate, where the effects of individual atoms at given positions on
the substrate cause significant variations in the force. Note also that
we model only the van der Waals interactions between atoms on
the sheet and atoms on the substrate and ignore self-interactions
within the sheet.

Now we seek ‘vertical solutions’ to (2.10), i.e., solutions for
which the sheet is straight and perpendicular to the substrate.
For such solutions, hðsÞ ¼ p=2 for all s 2 ½0; L�. Substituting
h ¼ p=2 into (2.10) yields

NðsÞ ¼ �
Z s

0
f ðy0 þ nÞdn; yðsÞ ¼ y0 þ s: ð2:12Þ

By (2.12)1, (2.10b)3, and (2.11)2, we see that a vertical solution ex-
ists if y0 and m satisfy

m ¼ �
Z L

0
f ðy0 þ nÞdn ¼ Fðy0 þ LÞ � Fðy0Þ; ð2:13Þ

which says merely that the applied load at the top of the sheet is
balanced by the force from the interaction of the sheet with the sub-
strate. Fig. 9 shows the set of solutions ðm; y0Þ to (2.13) for a typical
value of L. Note that for a given L, a vertical solution can be identi-
fied by the pair ðp=2; y0Þ describing its configuration or by the pair
ðm; y0Þ satisfying (2.13).

3. Stability and bifurcation

Our goal now is to determine the stability of the vertical solu-
tions identified at the end of the previous section. Exploiting our
variational approach, we define a configuration ðh; y0Þ as stable if
it minimizes locally the total energy E defined in (2.3). Further-
more, we assume that minimizers correspond to pairs ðh; y0Þ at
which the second variation of E is positive definite. For a given
length L, we shall find conditions on y0 such that the vertical solu-
tion ðp=2; y0Þ is either stable or unstable.

3.1. Computing the second variation

We consider the energy of a configuration ðp=2þ �dh0; y0

þ�dy0Þ, which corresponds to a vertical solution ðp=2; y0Þ subject
to a small perturbation �ðdh0; dy0Þ. Note that by (2.13), y0 deter-
mines the applied load m that appears in the following expressions.
Using (2.3), we see that

@

@�
E

p
2
þ �dh0; y0 þ �dy0

h i
¼
Z L

0
bdh00ð�dh00Þ þ F 0 y0 þ �dy0 þ

Z s

0
cosð�dh0Þdn

� ��
� dy0 �

Z s

0
dh0 sinð�dh0Þdn

� ��
ds

� m dy0 �
Z L

0
dh0 sinð�dh0Þds

� �
ð3:1Þ

and that

@2

@�2 E
p
2
þ �dh0; y0 þ �dy0

h i
¼
Z L

0
bðdh00Þ

2 þ F 00 y0 þ �dy0 þ
Z s

0
cosð�dh0Þdn

� ��
� dy0 �

Z s

0
dh0 sinð�dh0Þdn

� �2

þ F 0 y0 þ �dy0 þ
Z s

0
cosð�dh0Þdn

� �
�
Z s

0
dh2

0 cosð�dh0Þdn

� ��
ds

þ m
Z L

0
dh2

0 cosð�dh0Þds
� �

: ð3:2Þ

If we let � ¼ 0, use (2.13), and note thatZ L

0
F 00ðy0 þ sÞdy2

0ds ¼ dy2
0½F
0ðy0 þ LÞ � F 0ðy0Þ� ð3:3Þ

and that

Fig. 3. Graph of F.

Fig. 4. Graph of F 0 .



�
Z L

0
F 0ðy0 þ sÞ

Z s

0
dh2

0ðnÞdnds ¼ �Fðy0 þ LÞ
Z L

0
dh0ðnÞdn

þ
Z L

0
Fðy0 þ sÞdh2

0ðsÞds; ð3:4Þ

we find that the second variation of E at the vertical solution
ðp=2; y0Þ is

G½dh0; dy0� :¼
Z L

0
b dh00ðsÞ
� 	2 þ ½Fðy0 þ sÞ � Fðy0Þ�dh2

0ðsÞ
h i

ds

þ dy2
0½F
0ðy0 þ LÞ � F 0ðy0Þ�: ð3:5Þ

3.2. Preliminary stability results

We analyze (3.5) for fixed L to determine the values of y0 at
which the corresponding vertical solution is stable. Our arguments
are based on Figs. 3 and 4, which depict the graphs of F and F 0.

First we show that there is a positive number yþ0 such that any
vertical solution ðp=2; y0Þ with y0 > yþ0 is unstable. Let dþ be the
point at which F 0 attains its maximum and let d be the zero of F 0.
See Fig. 4. Define yþ0 to be the unique point such that
F 0ðyþ0 Þ ¼ F 0ðyþ0 þ LÞ. Note that d < yþ0 < dþ and that yþ0 depends on
L. Suppose y0 > yþ0 . Then F 0ðy0 þ LÞ < F 0ðy0Þ. In the right-hand side
of (3.5) we choose dy0 – 0 and dh0 ¼ 0. It follows that
G½dh0; dy0� ¼

dy2
0

2 ½F
0ðy0 þ LÞ � F 0ðy0Þ� < 0, and hence for any y0 > yþ0 ,

the corresponding vertical solution is unstable. The physical inter-
pretation of these observations is that the vertical configuration of
the sheet, if the sheet is sufficiently far from the substrate, is unsta-
ble with respect to small perturbations corresponding to transla-
tions perpendicular to the substrate.

We next show that there is a positive number y�0 such that any
vertical solution with y0 < y�0 is unstable. Let d� be the unique zero
of F. From Fig. 3, we see that d� < d. For y0 > 0, define

Kðy0; LÞ :¼
Z L

0
½Fðy0 þ sÞ � Fðy0Þ�ds: ð3:6Þ

If y0 < d, then

@Kðy0; LÞ
@y0

¼ Fðy0 þ LÞ � Fðy0Þ � LF 0ðy0Þ > 0; ð3:7Þ

where the last inequality follows because F is concave up on ð0;dÞ.
Also, Kðd�; LÞ < 0 and Kðd; LÞ > 0. Hence there is a unique point y�0
between d� and d such that Kðy�0 ; LÞ ¼ 0 and Kðy0; LÞ < 0 if
0 < y0 < y�0 . If we choose dy0 ¼ 0 and dh0 ¼ k, where k – 0 is a con-

stant, then G½dh0; dy0� ¼ k2Kðy0; LÞ < 0, confirming that for any
0 < y0 < y�0 , the corresponding vertical solution is unstable. Physi-
cally, if the bottom edge of the sheet is sufficiently close to the sub-
strate, then the vertical configuration is unstable with respect to
small perturbations corresponding to tilting the sheet.

Next, from Fig. 4, we see that dy2
0

2 ½F
0ðy0 þ LÞ � F 0ðy0Þ�P 0 for any

separation y0 with d 6 y0 6 yþ0 . From Fig. 3 we see that
Fðy0 þ sÞ � Fðy0Þ > 0 for d 6 y0 and s > 0. Therefore, because all
three terms in G are non-negative and at least one is positive for
any choice of dh and dy not both 0, we conclude that vertical solu-
tions corresponding to y0 with d 6 y0 6 yþ0 are stable.

3.3. Bifurcation

Summarizing the results of the previous subsection, we know
that for a given L there are numbers y�0 and yþ0 with y�0 < d < yþ0
such that a vertical solution ðp=2; y0Þ with either y0 < y�0 or
y0 > yþ0 is unstable and a vertical solution ðp=2; y0Þ with
d 6 y0 6 yþ0 is stable. Next we determine the stability of a vertical
solution with y0 between y�0 and d. We use basic ideas from bifur-

cation theory to demonstrate that, for a given L, there is a unique
bifurcation point at a vertical solution ðp=2; y�0Þ where y�0 satisfies
y�0 < y�0 < d. From this we deduce the stability of vertical solutions
ðp=2; y0Þ with y0 between y�0 and d. Also we identify additional
bifurcation points outside the interval ðy�0 ; dÞ.

We proceed by taking as our trivial branch the family of vertical
solutions parametrized by y0 for y0 > 0. We seek parameter values
at which the linearized equations have nontrivial solutions. We as-
sume that these values are bifurcation points. To linearize (2.10)
around a typical solution (2.12) on the trivial branch, we define

N0ðsÞ :¼ �
Z s

0
f ðy0 þ nÞdn ð3:8Þ

substitute

N ¼ N0 þ �N1; y ¼ y0 þ sþ �y1; h ¼ p
2
þ �h1 ð3:9Þ

into (2.10), take a derivative with respect to �, and set � ¼ 0 to
obtain

h001 ¼
N0

b
h1; N01 ¼ �f 0ðy0 þ sÞy1; y01 ¼ 0: ð3:10Þ

Likewise we linearize the boundary conditions to obtain

N1ð0Þ ¼ N1ðLÞ ¼ 0; h01ð0Þ ¼ h01ðLÞ ¼ 0: ð3:11Þ

To discover where problem (3.10) has non-trivial solutions, we
first note that y1 is constant by (3.10)3. Next, integrating (3.10)2

from 0 to s and using (3.11)1 yields

N1ðsÞ ¼ �
Z s

0
f 0ðy0 þ nÞy1dn: ð3:12Þ

We then apply (3.11)1 again to obtain

0 ¼ �
Z L

0
f 0ðy0 þ nÞy1dn ¼ y1 F 0ðy0 þ LÞ � F 0ðy0Þ

� 	
: ð3:13Þ

Eq. (3.13) implies that either y0 ¼ yþ0 (see Fig. 4) or y1 ¼ 0. If y0 ¼ yþ0 ,
then choosing y1 – 0 yields a non-trivial solution to (3.10) and
(3.11). Hence yþ0 is a bifurcation point. We know from the previous
subsection that the stability of the trivial branch changes at yþ0 .

On the other hand, if y1 ¼ 0, then (3.12) implies N1ðsÞ ¼ 0 for all
s 2 ½0; L�. Hence for y0 – yþ0 , (3.10) and (3.11) has a non-trivial solu-
tion if and only if (3.10)1 and (3.11)2 has a non-trivial solution. Eq.
(3.10)1 is a linear non-constant coefficient equation in which the
parameter y0 appears nonlinearly, and with (3.11)2 it is in the form
of a classical, self-adjoint two-point boundary-value problem. We
organize our results about (3.10)1, (3.11)2 by considering the set
of eigencurves in the Ly0- plane, i.e., curves defined by combina-
tions of L and y0 at which (3.10)1 and (3.11)2 has a non-trivial solu-
tion. We use the shooting method as well as the numerical
bifurcation software AUTO (Doedel et al., 2006) to locate these
eigencurves numerically. See Fig. 5. We divide the first quadrant
of the Ly0- plane into two regions R1 and R2 above and below the
line y0 ¼ d�. In R1, there is a unique eigencurve, which can be de-
scribed as the graph of a function L # c0ðLÞ. The function c0 is
strictly decreasing, c0ðLÞ ! d as L! 0þ, and c0ðLÞ converges to a
constant D as L!1, where D > d�. The proofs of these observa-
tions are discussed in Appendix A.

Some numerical values of the bifurcation points are presented
in Table 1. The numbers in Table 1, as well as Fig. 5(b), indicate that
for each L; y�0 ¼ c0ðLÞ is the unique bifurcation point between y�0
and d. Adopting a standard point of view in the study of structural
stability, we interpret y�0 as the value at which solutions on the
trivial branch lose stability. Hence, we assume that the stable re-
gion d 6 y0 6 yþ0 identified in Section 3.2 extends to y�0 < y0 6 yþ0
and that the unstable region y0 < y�0 identified in the previous sec-
tion extends to y0 < y�0.



Additional bifurcation points lie in R2 on a countable number of
eigencurves L # ckðLÞ for k ¼ 1;2; . . .. See Fig. 5. For each k, the
function ck is strictly increasing and ckðLÞ ! d� as L!1. Also,
for any fixed L; ckðLÞ > ckþ1ðLÞ for k ¼ 1;2; . . .. An eigenfunction cor-
responding to a point on the graph of ck has exactly k zeros. See
Appendix A for comments on the proof of these observations.

3.4. Buckled configurations

Next we compute the buckled configurations corresponding to
bifurcation points on different eigencurves. We first introduce
some useful terminology. Using (2.13), for any bifurcation point
y0 we can find the corresponding applied load m. If the load corre-
sponding to y0 is positive, then this load is pulling the sheet away
from the substrate. In this case, we shall refer to y0 as a ‘‘pulling
bifurcation point’’ and the associated non-trivial solutions as ‘‘pull-
ing solutions’’. Likewise, we use ‘‘pushing bifurcation point’’ and
‘‘pushing solutions’’ if the load corresponding to y0 is negative.

Whether a given bifurcation point is pulling or pushing is deter-
mined by whether the right-hand side of (2.13) is positive or neg-
ative. The level curve Fðy0 þ LÞ � Fðy0Þ ¼ 0 in the Ly0- plane lies
between the curve c0 and the line y0 ¼ d� in Fig. 5 with
Fðy0 þ LÞ � Fðy0Þ > 0 above this level set and Fðy0 þ LÞ � Fðy0Þ < 0
below this level set. (This level set is not depicted in Fig. 5(b) be-
cause it would lie essentially on top of the line y0 ¼ d�.) It follows
that bifurcation points on c0 are pulling (see also the last column in
Table 1) and that bifurcation points on ck for k ¼ 1;2; . . . are
pushing.

The pulling solutions corresponding to pulling bifurcation
points on c0 for several different lengths are depicted in Figs. 6

and 7. Sheets of smaller lengths tilt in relation to the substrate.
For longer sheets, only the bottom 25 nm or so deflect or kick
out to one side, while the rest of the sheet remains vertical. All
additional bifurcation points for (3.10)1 and (3.11)2 are pushing
bifurcations. Hence in particular y�0 and yþ0 are the only pulling
bifurcation points. (We do not show plots of ‘buckled’ configura-
tions corresponding to yþ0 —such configurations are straight lines.
See (3.9) and the paragraph containing (3.12).).

In Fig. 8 we show buckled configurations for the first several
pushing bifurcation points for L ¼ 6 and L ¼ 60. Additional pushing
bifurcation points have corresponding buckled solutions that in-
crease in mode number, i.e., increase in the number of half sine
waves in the buckled configuration. This is analogous to what
one observes in the classical Euler buckling of a beam with, say,
hinged boundary conditions. Note, however, that for the pushing

(b)

(a)
Fig. 5. (a) Distribution of eigencurves in the Ly0- plane. (b) The inset shows the curve c0 in relation to the curve Kðy0; LÞ ¼ 0 that defines y�0 as a function of L. K is defined in
(3.6).

Table 1
Bifurcation points for various lengths L. We let m� denote the load corresponding to y�0.
See Fig. 9. Numbers in the first 4 columns have units of nm. Numbers in the final
column have units of nN/nm.

L y�0 y�0 ¼ c0ðLÞ d m�

5 0.293841 0.29429120361 0.341569 .016433694
25 0.293322 0.29415195334 0.341569 .014405597

150 0.293215 0.29415195200 0.341569 .014405591

Fig. 6. Buckled configurations corresponding to the pulling bifurcation points for
sheets of lengths L ¼ 6;8;10, and 14.



bifurcations the bottom of the sheet does not sit directly below the
top of the sheet but rather is shifted horizontally.

Remark. The expression for the van der Waals interaction force
used in Strus and Raman (2009) is derived for a carbon nanotube,
rather than a sheet, interacting with a substrate and hence has the
same form as our expression (2.11)2 but with different constants.
Our analysis and computations would yield the same qualitative
results if the parameters in our problem were changed to the val-
ues appropriate for a carbon nanotube used in Strus and Raman
(2009). The authors in Strus and Raman (2009) study a ‘pinned’
case that describes how the nanotube transitions between differ-
ent configurations when the tip sticks to the surface rather than
sliding along the surface as in their perfect slip case. They model
sticking by changing the boundary condition from (2.10b)2 to
Nð0Þ ¼ Kxð0Þ, where K is a constant (cf. (4) in Strus and Raman
(2009)). Hence to model sticking they explicitly assume that the
tip has stuck by introducing a force in addition to the van der

Waals interaction. If one retains (2.10b)2, then the model used here
and in Strus and Raman (2009) predicts deformations that look like
sticking, which we call the pushing solutions. Compare Fig. 8 above
to Fig. 1(b) in Strus and Raman (2009). It is interesting to note,
however, that the pushing solutions occur only after the pulling,
or sliding, solution at bifurcation points on an unstable section of
the trivial branch.

3.5. Validation

Here we note available experimental results from the literature
that validate the predictions of our model. In Strus and Raman
(2009), the authors perform experiments in which atomic force
microscopes with carbon nanotube tips are pushed into and then
retracted from rigid surfaces of several different materials. Based
on force-distance data, these authors deduce that the nanotube
at certain distances assumes a configuration corresponding to
our pulling solution. Likewise, the nanotube at certain distances
assumes a configuration corresponding to our first pushing bifur-
cation. See Fig. 3 in Strus and Raman (2009). Similar experimental
results are presented (Yap et al., 2007). In Evans and Lauga (2009),
the authors describe a macroscale experiment with charged adhe-
sive tape and a flat surface. As the tape is moved toward the sur-
face, a transition occurs similar to our pulling bifurcation—see
Fig. 1 in Evans and Lauga (2009)–although we note that the bound-
ary condition at the top of the tape does not appear to match the
condition we use at the top of the sheet. We are unaware of any
experiments with graphene sheets that validate our theoretical
results.

3.6. Summary of stability and bifurcation results

The results of this section are summarized in Fig. 9, which
shows for a typical value of L the pairs ðm; y0Þ at which a vertical
solution exists (i.e., pairs satisfying (2.13)). The dashed lines in
Fig. 9 indicate points ðm; y0Þ where the corresponding vertical solu-
tion ðp=2; y0Þ is unstable, while the solid line indicates points
where the corresponding vertical solution is stable. Vertical solu-
tions lose stability as the parameter y0 is decreased from above
y�0 to below y�0. Likewise, vertical solutions lose stability as y0 is in-

Fig. 7. Buckled configurations corresponding to the pulling bifurcation points for
sheets of lengths L ¼ 25;40, and 60.

(a) (b)
Fig. 8. The first five buckled configurations for (a) L ¼ 6 and (b) L ¼ 60.



creased from below yþ0 to above yþ0 . We identified additional
bifurcation points, all of which lie on the part of the curve in
Fig. 9 to the left of the y0-axis. Recall that in Section 1 we described
an experiment that places a physical interpretation on these
results. Note that any point on the stable section of the curve in
Fig. 9 can serve as the starting point for the experiment described
in Section 1.

4. Bifurcations for long sheets

In this section, we study our problem for long sheets. Because
the van der Waals force decays quickly to zero, if L is large, only
a relatively small part of the bottom of the sheet interacts with
the substrate. We introduce a small parameter � to treat the inter-
acting bottom part of the sheet as a boundary layer. We show that
if the applied load is Oð�2Þ, the pushing bifurcations appear in the
outer problem as solutions to a classical Euler buckling problem.
However, if the applied load is Oð1Þ, then only the two pulling
bifurcations arise, and these occur in the inner problem.

To rescale (2.10), we use

ŝ ¼ s
L
; ĥ ¼ h; v̂ ¼ dv; bN ¼ N

�m
; ð4:1Þ

ŷ ¼ y
L
; b̂ ¼ b

�md2 ; f̂ ðnÞ ¼ f ðdnÞd
�m

; m̂ ¼ m
�m
: ð4:2Þ

Recall that d ¼ :3416 nm is the unique zero of f. Also, we take as our
characteristic load �m ¼ �FðdÞ ¼ :2452 nN nm�1. We apply these
rescalings to get the non-dimensional system

�v̂ 0 ¼ �
bN
b̂

cosðĥÞ; �ĥ0 ¼ v̂ ; ð4:3Þ

�bN 0 ¼ �f̂ ðŷ=�Þ; ŷ0 ¼ sinðĥÞ; ð4:4Þ

bNð0Þ ¼ 0; bNð1Þ ¼ m̂; v̂ð0Þ ¼ v̂ð1Þ ¼ 0; ð4:5Þ

where � ¼ d=L is our small parameter.
In the usual way, to study the outer problem we introduce

expansions v̂ ¼ v̂0 þ �v̂1 þ �2v̂2 þ � � �, etc. In particular we expand
the applied load as m̂ ¼ m̂0 þ �m̂1 þ �2m̂2 þ � � �. Substituting these
expansions into (4.3)–(4.5) and enforcing only the boundary condi-
tions at the top of the sheet, we find at Oð1Þ that

v̂0 ¼ 0; �
bN0

b̂
cosðĥ0Þ ¼ 0; ŷ00 ¼ sinðĥ0Þ; ð4:6Þ

bN0ð1Þ ¼ m̂0; v̂0ð1Þ ¼ 0; ð4:7Þ

and at Oð�Þ that

v̂ 00 ¼ �
1
b̂
ðbN1 cosðĥ0Þ � bN0 sinðĥ0Þĥ1Þ; ĥ00 ¼ v̂1; ð4:8Þ

bN 00 ¼ 0; ŷ01 ¼ cosðĥ0Þĥ1; ð4:9ÞbN1ð1Þ ¼ m̂1; v̂1ð1Þ ¼ 0: ð4:10Þ

Suppose the applied load is Oð1Þ, so that m̂0 – 0 and m̂j ¼ 0 for j P 1.
Eq. (4.6)1 tells us that v̂0 � 0. Also, (4.9)1 and (4.7)1 imply thatbN0 � m̂0. We choose the straight configuration ĥ0 � p=2 as the base
state, so that (4.6)2 is satisfied. Then (4.8)1 implies that ĥ1 � 0. Eq.
(4.9)2 implies that ŷ1 is constant, and matching shows that this con-
stant is 0. Hence if the applied load is Oð1Þ, the outer problem yields
no bifurcation points.

On the other hand, suppose the applied load is smaller than
Oð1Þ. Then m̂0 ¼ 0 and hence (4.7)1 with (4.9)1 imply that bN0 � 0.
In this case, (4.8)1 gives no information on ĥ1. If the applied load
is of Oð�2Þ, so that m̂0 ¼ m̂1 ¼ 0 and m̂2 – 0, we discover by comput-
ing the Oð�2Þ problem that ĥ0 satisfies

ĥ000 ¼ �b̂�1m̂2 cos ĥ0; ĥ00ðLÞ ¼ 0: ð4:11Þ

Again we take ĥ0 ¼ p=2 as our base state. By computing the Oð�3Þ
problem, we further discover that

ĥ001 ¼ �b̂�1m̂2ĥ1; ĥ01ðLÞ ¼ 0: ð4:12Þ

Upon supplementing each of (4.11) and (4.12) with an additional
boundary condition obtained by matching, we see that there are a
countable number of bifurcation points m̂2 > 0. These correspond
to the pushing bifurcations found in the previous section. Eq.
(4.11) is a version of the classical Euler buckling problem.

To write down the inner problem, we introduce the additional
rescalings

g ¼ ŝ=�; y ¼ ŷ=�: ð4:13Þ

From (4.3)–(4.5), we get

v 0 ¼ �N

b̂
cosðhÞ; N0 ¼ �f̂ ðyÞ; ð4:14Þ

y0 ¼ sinðhÞ; h0 ¼ v ; ð4:15Þ
Nð0Þ ¼ 0; Nð1=�Þ ¼ m̂; vð0Þ ¼ 0; vð1=�Þ ¼ 0: ð4:16Þ

Introducing expansions for the inner variables yields the Oð1Þ
inner problem

v 00 ¼ �
N0

b̂
cosðh0Þ; N00 ¼ �f̂ ðy0Þ; ð4:17Þ

y00 ¼ sinðh0Þ; h00 ¼ v0; ð4:18Þ
N0ð0Þ ¼ 0; v0ð0Þ ¼ 0: ð4:19Þ

Note that this is the original nonlinear boundary-value problem
(2.10) without the boundary conditions at the top of the sheet. As
we did for (2.10), here we can identify a base-state solution, namely,
v0 � 0; y0ðgÞ ¼ Y0 þ g, N0ðgÞ ¼ �

R g
0 f̂ ðY0 þ nÞdn, and h0 � p=2. We

assume the applied load m̂ is Oð1Þ. Matching in the usual way im-
plies that N0ðg!1Þ ¼ �

R1
0 f̂ ðY0 þ nÞdn ¼ m̂0, which determines

the constant Y0.
At Oð�Þ, we have

v 01 ¼
N0

b
h1; N10 ¼ �f̂ 0ðY0 þ gÞy1; ð4:20Þ

y10 ¼ 0; h10 ¼ v1; ð4:21Þ
N1ð0Þ ¼ 0; v1ð0Þ ¼ 0: ð4:22Þ

Fig. 9. Stability of vertical solutions for typical length L. The curve is the set of pairs
ðm; y0Þ that satisfy (2.13). For each point on the curve, dashed versus solid indicates
the stability of the corresponding vertical solution ðp=2; y0Þ.



Values of m̂0 (which appears implicitly in (4.20)–(4.22) through the
constant Y0) at which the Oð�Þ problem has a non-trivial solution
correspond to bifurcation points that arise from the inner problem.
By (4.21)1, y1 is a constant. Integrating (4.20)2 and using (4.22)1

yield

N1ðgÞ ¼ �
Z g

0
f̂ 0ðY0 þ nÞy1dn: ð4:23Þ

Then by matching we obtain

0 ¼ N1ðg!1Þ ¼ �
Z 1

0
f̂ 0ðY0 þ nÞy1dn ¼ y1 f̂ ðY0Þ ð4:24Þ

from which it follows that either y1 ¼ 0 or Y0 ¼ 1. (For the last
equality in (4.24), recall (4.2)3 and recall that f ðnÞ ! 0 as n!1).
If Y0 ¼ 1, then f̂ ðY0Þ ¼ 0 and y1 is arbitrary, and hence the Oð�Þ prob-
lem has a non-trivial solution. We conclude that Y0 ¼ 1 is a bifurca-
tion point. If y1 ¼ 0, then N1 � 0 and hence for a given value of Y0,
(4.20)–(4.22) has a non-trivial solution if and only if (4.20)1, (4.21)2,
and (4.22)3,4 has a non-trivial solution.

We write (4.20)1, (4.21)2, and (4.22)2 as the second-order
problem

h001 �
N0

b̂
h1 ¼ 0; h01ð0Þ ¼ 0; ð4:25Þ

in which

N0ðgÞ ¼ �
Z g

0
f̂ ðY0 þ nÞdn ¼ bF ðY0 þ gÞ � bF ðY0Þ; N0ðg!1Þ ¼ m̂;

ð4:26Þ

where bFðyÞ ¼ �m�1FðdyÞ. We use matching to derive for (4.25) the
additional conditions

h1ðg!1Þ ¼ 0; h01ðg!1Þ ¼ 0: ð4:27Þ

Next we show that there is a unique value of Y0 at which (4.25),
(4.27) has nontrivial solutions. For this argument, the reader may
wish to consult the earlier Figs. 3 and 4, which depict the graphs
of F and f. These graphs are qualitatively the same as those of bF
and f̂ . Note that in the current scalings, Y0 ¼ 1 and Y0 ¼ d�=d cor-
respond to y0 ¼ d and y0 ¼ d� in Figs. 3 and 4.

First we show that there are no values of Y0 in ½1;1Þ at which
(4.25), (4.27) has nontrivial solutions. Let h1 be a solution to
(4.25). Multiplying both sides of (4.25)1 by 2h01 yields
2h01h

00
1 � 2b̂�1N0h1h

0
1 ¼ 0, which implies that

ðh01Þ
2


 �0
� N0

b̂
h2

1

 !0
¼ �N00

b̂
h2

1 ¼
1
b̂

f̂ ðY0 þ gÞh2
1: ð4:28Þ

We then integrate both sides of (4.28) from 0 to1 and use (4.25)2,
(4.26)1, and (4.27) to discover

0 ¼
Z 1

0

f̂ ðY0 þ nÞ
b̂

h2
1ðnÞdn; ð4:29Þ

which implies that h1 � 0 since f̂ ðY0 þ nÞ < 0 for all n > 0 if Y0 P 1.
Therefore, for Y0 P 1, the function h1 � 0 is the only solution of
(4.25), (4.27).

Likewise, there are no values of Y0 in ð0; d�=d� at which (4.25),
(4.27) has nontrivial solutions. In this case, N0ðgÞ < 0 for all
g > 0, and if n > 1� Y0, then f̂ ðY0 þ nÞ < 0. Now we integrate both
sides of Eq. (4.28) from 1� Y0 to 1 and use (4.25)2 and (4.26)1 to
discover

� h01ð1� Y0Þ
� 	2 þ N0ð1� Y0Þ

b̂
h2

1ð1� Y0Þ

¼ �
Z 1

1�Y0

f̂ ðY0 þ nÞ
b̂

h2
1ðnÞdn: ð4:30Þ

Note that the left-hand side of (4.30) is non-positive and the
right-hand side is non-negative. Hence both sides must be zero,
which is possible only if h1 � 0. Thus, for Y0 2 ð0; d�=d�, there are
no bifurcation points.

Lastly we consider Y0 2 ðd�=d;1Þ. Here we note merely that by a
shooting method one discovers numerically a unique value Y�0 be-
tween d�=d and 1 at which (4.25) and (4.27) has nontrivial solu-
tions. Further details are provided in Appendix A. Because we
have shown that no bifurcation points exist outside of ðd�=d;1Þ,
we conclude that Y�0 is the unique bifurcation point for (4.25)
and (4.27). The point Y�0 2 ðd

�
=d;1Þ, hence the applied load

m̂� ¼ �bFðY�0Þ is positive, so that Y�0 is a pulling bifurcation point.
In fact Y�0 equals lim

L!1
c0ðLÞ=d, where c0 is described in Fig. 5. I.e.,

Y�0 is the limiting value as L!1 of the unique pulling bifurcation

point that exists for any finite L. (The factor d�1 appears in the limit
because of the rescaling used for the inner problem.).

4.1. Summary of bifurcation results for large L

The boundary-layer approach of this section reveals that for
large L the pulling and pushing bifurcations arise by different
mechanisms. The two pulling bifurcations arise in the inner prob-
lem if the applied load is leading order. These bifurcations are no-
vel and are tied to the van der Waals interaction between the sheet
and the substrate. The countable number of pushing bifurcations
arise in the outer problem if the applied load is Oð�2Þ, in which case
the outer problem is a version of the classical Euler buckling
problem.
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Appendix A. The properties of the eigencurve c0

In Section 3.3, we describe the properties of the curve c0,
justifying our claims by referring to Fig. 5, in which the curve is
constructed numerically. Here we comment on the proofs of these
claims. The problem (3.10)1, (3.11)2 can be studied by introducing
the change of variables

h ¼ r sin w; h0 ¼ r cos w: ð5:1Þ

(We are using ideas from the proofs of comparison theorems for
ordinary differential equations. See, for example, Chapter 8 in
Coddington and Levinson (1955).) One checks that r and w satisfy
the system

w0 ¼ cos2 wþ g sin2 w; r0 ¼ rð1� gÞ sin w cos w; ð5:2Þ

where

gðs; y0Þ ¼ �b�1N0ðsÞ ¼ b�1
Z s

0
f ðy0 þ nÞdn: ð5:3Þ

Solutions to (3.10)1 and (3.11)2 correspond to solutions w to the ini-
tial value problem (5.2)1, wð0Þ ¼ p=2 for which there exists an L > 0
with wðLÞ ¼ ð2kþ 1Þp=2 for some integer k.

To study this latter problem, we note the basic properties of the
vector field for (5.2)1. In Fig. 10(a), the curve H1 is a subset of the
horizontal isocline for the vector field. So onH1 the tangent vectors
are horizontal. In the region outside this curve, the tangent vectors



have positive slope, so that w is increasing. Conversely, inside the
curve, the tangent vectors have negative slope and w is decreasing.

Fig. 10 (a) also shows the solution w to (5.2)1, wð0Þ ¼ p=2 for
y0 ¼ :2955. The solution increases initially, until it crosses the iso-
cline, after which it decreases to approach the lower half of H1 as
s!1. The graph of w must cross the line w ¼ p=2 at some unique
s value, which we label bLðy0Þ in the figure. As y0 increases from the
value corresponding to Fig. 10 (a), the left end of H1 moves to the
left. The solution w to (5.2)1, wð0Þ ¼ p=2 is qualitatively the same
as the solution in Fig. 10(a)—in particular, w crosses the horizontal
line through p=2 at some unique value of s—until, at y0 ¼ d, the iso-
cline H1 touches the w-axis at w ¼ p=2. For y0 > d, the solution in-
stead decreases monotonically from p=2 to a constant between 0
and p=2. See Fig. 10(b). In particular, w never crosses an odd multi-
ple of p=2 and hence (3.10)1 and (3.11)2 has no non-trivial solu-
tions for y0 > d. On the other hand, as y0 decreases from the
value corresponding to Fig. 10(a), the left end of H1 moves to the
right. The solution w to (5.2)1, wð0Þ ¼ p=2 is qualitatively the same
as the solution in Fig. 10(a) up to some critical value D of y0. For
d� < y0 < D;w no longer hits H1 and instead increases and ap-
proaches the lower branch of the curve H2, another piece of the
horizontal isocline. See Fig. 10(c). It is again the case that w never
crosses an odd multiple of p=2. One checks numerically that
D > d�.

For D < y0 < d, we let bLðy0Þ denote the s value at which the
graph of w crosses the line w ¼ p=2. That bL depends continuously
on y0 follows from a standard theorem on the continuous depen-
dence of a solution to an ordinary differential equation on param-
eters in the equation. Next, one checks that D < y1

0 < y2
0 < d implies

that gðs; y1
0Þ > gðs; y2

0Þ for all s > 0. An appropriate comparison the-
orem for ordinary differential equation—for example, Theorem 1.2
in Chapter 8 of Coddington and Levinson (1955)—implies that
wðs; y1

0Þ > wðs; y2
0Þ for all s > 0, where here we show the explicit

dependence of w on y0. Therefore bL is a decreasing function of y0.
Now we define L! c0ðLÞ as the inverse of bL. The observations in

the previous two paragraphs imply that c0 is decreasing as function
of L and that all the eigenvalues greater than d� correspond to
points on c0 in R1. Lastly, we note by (5.2)2 that r has no zeros if

rð0Þ – 0. It follows that h has no zeros if the graph of w looks like
the solution depicted Fig. 10(a).

A.1. The Properties of the Eigencurves ck for k ¼ 1; 2; . . .

We consider (5.2)1 with wð0Þ ¼ p=2 for 0 < y0 < d�. In this case,
the horizontal isocline does not intersect the right half s > 0 of the
sw- plane, the right-hand side of (5.2)1 is positive for all s > 0, and
hence the solution w is always increasing.

Fig. 11 depicts solutions for two different values of y0. The graph
of a typical solution wð�; y0Þ crosses each of the lines
w ¼ ð2kþ 1Þp=2 for k ¼ 1;2; . . .. The unique s value of each such
crossing is denoted bLkðy0Þ. In Fig. 11, the first 3 crossings for each
solution curve are labeled. As discussed in the previous subsection,
we know that the function bLk depends continuously on y0. Next,

(a) (b) (c)
Fig. 10. Solid curves in (a) to (c) are solutions to (5.2)1 with wð0Þ ¼ p=2 for different values of y0. (a) y0 ¼ :2955, (b) y0 > d, and (c) d� < y0 < D.

Fig. 11. Solutions to (5.2)1 with wð0Þ ¼ p=2 for different values of y0.



one can check that if 0 < y1
0 < y2

0 < d�, then gðs; y1
0Þ > gðs; y2

0Þ for all
s > 0. An appropriate comparison theorem for ordinary differential
equation implies that wðs; y1

0Þ > wðs; y2
0Þ for all s > 0, where here

we show the explicit dependence of w on y0. Therefore bLk is an
increasing function of y0.

Now we define L! ckðLÞ as the inverse of bLk for k ¼ 1;2; . . .. The
observations in the previous paragraph imply that ck is increasing
as function of L and that all the eigenvalues in ð0; d�Þ correspond to
points on the curves ck in R2. Lastly, we note by (5.2)2 that r has no
zeros if rð0Þ – 0. By (5.1)1, the zeros of h are the values of s at which
w crosses a horizontal line through a multiple of p. It follows that a
point on ck corresponds to a solution h of (3.10)1 and (3.11)2 with
exactly k zeros.

A.2. The existence and uniqueness of Y�0 in Section 4

For (4.25), we introduce the same change of variables as (5.1).
Then w; r satisfy (5.2) where here g is defined by

gðg;Y0Þ ¼ �b̂�1N0ðgÞ ¼ b̂�1
Z g

0
f̂ ðY0 þ nÞdn: ð5:4Þ

Fig. 12 shows the solutions to (5.2)1 with wð0Þ ¼ p=2 for three
different values of Y0. The two curves labeled H1 and H2 are sub-
sets of the horizontal isocline for (5.2)1. Outside these two curves,
the tangent vectors have positive slope and w is increasing, while
inside these two curves, the tangent vectors have negative slope
and w is decreasing. Fig. 12(a) shows the solution for a value of
Y0 in ðd�=d;1Þ and close to d�=d. The solution w increases initially,
and this initial increase is sufficient for w to pass above the curve
H1, after which w increases rapidly until it approaches the lower
half of the curve H2. This behavior is typical for any value of Y0

close to d�=d. Fig. 12(b) shows the solution for Y0 in ðd�=d;1Þ
and Y0 close to 1. For this value of Y0 the curve H1 is wider from
top to bottom and its left endpoint has moved closer to the w-axis.

Although w again increases initially, it fails to clear the isocline.
Upon crossing H1;w decreases and approaches the lower half of
H1. This behavior is typical for any value of Y0 close to 1.

By a straightforward argument based on the continuous depen-
dence of the solutions of (5.2)1 on the parameter Y0, on an appro-
priate comparison theorem (for example, Chapter 8, Theorem 1.2
in Coddington and Levinson (1955)), and on the details of the vec-
tor field, one can show that there exists a unique value Y�0 of Y0 be-
tween d�=d and 1 such that the solution of (5.2)1 with wð0Þ ¼ p=2
behaves as indicated in Fig. 12(c). In this case, w approaches the
upper half of H1.

In Fig. 12(a) and (b), the graph of w approaches the lower half of
either H1 or H2 and hence w is converging to a constant that is
either between p and 3p=2 (Fig. 12(a)) or between 0 and p=2
(Fig. 12(b)). In either case, sin w cos w converges to a positive num-
ber as g!1. Now we consider (5.2)2. Noting that gðg;Y0Þ < 0 for
g sufficiently large, we see that ð1� gÞ sin w cos w P �c > 0 for g
sufficiently large for some positive constant �c. Hence r !1 if
rð0Þ > 0 and r ! �1 if rð0Þ < 0. From (5.1), it follows that in either
case h1 will not satisfy (4.27).

In Fig. 12(c), the graph of w approaches the upper half of H1,
which implies that w is converging to a constant between p=2
and p and hence that ð1� gÞ sin w cos w 6 �c < 0 for g sufficiently
large for some negative constant �c. Hence from (5.2)2 it follows
that r ! 0 if rð0Þ– 0. Therefore (5.1) implies that h1 and h01 satisfy
(4.27). We conclude that Y�0, which corresponds to Fig. 12(c), is the
unique value of Y0 for which (4.25) and (4.27) has a non-trivial
solution.
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