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1. Introduction

Fresh fruits and leafy green vegetables are an essential part of a
healthy diet. However, produce carries a risk of pathogen
contamination, which may result in food-borne illness (Lynch et al.,
2009; Park et al., 2012; Sivapalasingam et al., 2004). Increased
globalization and complexity of the supply chain indicates the need
for sophisticated methods of monitoring to ensure fresh produce
safety (Beuchat et al., 2004; Lynch et al., 2009). To address these
needs, particularly at the processing juncture, recent years have
witnessed numerous studies in fresh-cut produce washing (Barrera
et al,, 2012; Beuchat et al., 2004; Gil et al., 2009; Luo et al., 2011,
2012; Shen et al., 2013; Van Haute et al., 2013). In terms of chlo-
rine sanitization, (Beuchat et al., 2004; Gomez-Lopez et al., 2014;

Luo et al., 2011; Shen et al., 2013), studies have shown that the
residual FC concentration in conjunction with sufficient contact
time are essential factors for controlling pathogen inactivation and
preventing cross-contamination. However, despite widespread use
of chlorine, the underlying mechanisms that govern pathogen and
FC dynamics during rapidly changing wash water conditions are
not completely understood. One reason for this is that the re-
lationships between washing control parameters and pathogen
levels in wash water and on produce have only been described via
experimental and correlative approaches or by risk models that are
difficult to parameterize accurately (Barrera et al., 2012; Beuchat
et al,, 2004; Chen and Hung, 2016; Gémez-Lépez et al., 2014; Luo
et al,, 2011; Pirovani et al., 2001; Rodriguez et al., 2011; Shen
et al., 2013; Van Haute et al., 2013). While these results are
important and have clear value, they have limited use for making
precise predictions or elucidating real-time corrective measures.
To address such issues, an HEKF for state estimation of a produce
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Abbreviations

COoD chemical oxygen demand

CSH concentrated sodium hypochlorite
PC E. coli concentration

P E. coli level

FC free chlorine

HEKF hybrid extended Kalman filter

MPN most probable number
PSO particle swarm optimization
RMSE  root mean square error
ORP oxidation reduction potential

wash system is designed based on pilot-plant experiments (Luo
et al., 2012), a mathematical model (Munther et al., 2015), and
noise statistics optimization using PSO. State estimation has not
been applied to produce washing prior to this research, but will
soon be an essential component of wash systems for the following
reasons: (1) state feedback controllers require accurate estimates of
the system states; (2) real-time measurements (for instance, of
surrogate water quality parameters such as ORP, turbidity, total
dissolved solids, etc.) that inform chlorine control contain errors
due to inaccurate sensors; (3) sensors may be expensive and prone
to failure; and (4) there are time delays between the sensor mea-
surements and their availability for real-time control.

State-of-the-art chlorine control relies on feedback informed by
ORP and pH measurements in the wash water (Zhou et al., 2014).
While such online systems provide better control than manual
dosing, the most crucial issue is that chlorine dosing based on ORP
measurements is limited since it does not exploit dynamic system
information. Furthermore, in light of rapidly changing organic loads
in the wash water, correlations used to link ORP to dosing needs
may not be dynamic enough to maintain a desired level of FC.

This paper takes the state-of-the-art to the next level with state
estimation of a dynamic system model that captures the funda-
mental kinetics of wash water chemistry and pathogen dynamics
(Munther et al.,, 2015) and that is informed by discrete-time mea-
surements (Luo et al., 2012) during a commercial wash process.
This approach provides a predictive capacity beyond what correl-
ative approaches can offer and is a first step toward improved
control of FC. Although FC control is not the focus of this paper, the
state estimation presented here will enable future research in state-
based control of FC, pathogen concentration in the water, and
pathogen on the lettuce, all while minimizing the FC input.

In general, state estimation algorithms can exploit real-time
measurements to provide optimal estimates and predictions of
the system states (Simon, 2006; Fakoorian et al., 2016, 2017). For
example, the states of general constrained nonlinear systems have
been estimated using moving horizon estimation and Carleman
linearization (Hashemian and Armaou, 2015, 2016). The EKF con-
tinues to be the most popular state estimation technique for
nonlinear systems (Bellantoni and Dodge, 1967). In addition, HEKF
performance is heavily dependent on the noise model; the esti-
mator performance may degrade or even diverge if the noise is
incorrectly modeled. Various approaches have been used to iden-
tify unknown noise characteristics to achieve accurate estimation.
In Kontoroupi and Smyth (2016), an adaptive method for online
process and measurement noise identification during joint state
and parameter estimation of nonlinear systems was presented.
Identification of the noise covariance matrices using an autoco-
variance least-squares method for linear systems was implemented

in (Kost et al., 2015).

In this research, system noise is identified from experimental
system measurements, which is then used in the system simula-
tion. However, since the system and the estimator are nonlinear,
noise covariance matrices in the estimator are different than the
true covariance matrices. Therefore, PSO is used to optimize the
covariance matrices to use in the estimator to obtain the best
possible estimation performance. In summary, the system noise is
first identified offline using experimental data captured during a
wash process, and the covariance matrices are then optimized
offline using PSO for use in the real-time filter.

In Section 2, the experimental procedures that were used to
generate the data and subsequently used to inform the chlorine/
cross-contamination dynamic model and identify the system pro-
cess noise are described. In Section 3, the HEKF and the noise sta-
tistics optimization framework are presented, along with the PSO
algorithm for noise statistics optimization for the HEKF. The pro-
posed approach uses the fact that in an optimal linear Kalman filter,
the measurement innovations is zero-mean white noise with a
known covariance; the noise model can thus be tuned to achieve
theoretically desired HEKF behavior. In Section 4, simulation results
are presented which show that the system provides good estimation
of the states. Specifically, in Section 4.2 PSO reduces the estimation
cost function by 34% and drives the innovations as close as possible
to zero-mean white noise with the desired covariance. In Section 4.3,
the simulated state estimation results have an RMSE of 8.24 mg/L
for COD, 0.09 mg/L for FC concentration, 0.19 MPN/ml for PC in the
water wash, and 0.04 MPN/g for P on the lettuce. Sensitivity analysis
to examine the robustness of the state estimator is also presented in
Section 4. As discussed in Section 4.5, the greatest sensitivity is re-
flected in the estimated COD relative to the COD increase rate
parameter, which is 73; that is, an error of one unit in the modeled
COD increase rate results in a 73-fold increase in COD estimation
error. The lowest sensitivity is the that of the estimated lettuce P to
the natural decay rate of the FC, which is 0.26. Finally, in Section 5
concluding remarks and future work are discussed.

2. Dynamic model and system process noise
2.1. Experimental procedure

The experimental study (Luo et al., 2012) took place in a com-
mercial pilot plant (New Leaf Food Safety Solutions, LLC, in Salinas,
California). The setup consisted of a commercial double wash sys-
tem, each tank with approximately 3200 L capacity and equipped
with rotating screens to ensure produce submersion, and air pumps
to create turbulence in the wash water. Baby spinach leaves were
spray inoculated with E. coli 0157:H7 strain ATCC 700728 (average
level of 2 x 10° CFU/g of spinach) prior to washing. Before each test,
approximately 22.5 kg per tote of pre-cored iceberg lettuce heads
were shredded to 0.6 cm-thick shreds using an Urschel slicer
(Urschel Laboratories, Inc., Valparaiso, Indiana).

To simulate the cross-contamination process, inoculated baby
spinach leaves were continuously placed parallel to (but not
touching) shredded iceberg lettuce on a conveyor belt emptying
into the primary wash tank at a fixed rate. The spinach to lettuce
ratio was 0.2%. While the process water was continuously screened
and re-circulated, produce spent an average of 26 s in each tank.
The pH in the wash water was maintained at 6.5 using citric acid.
Each test run involved three consecutive 12-min segments, simu-
lating continuous processing with a periodic FC dosing scheme. At
the start of each segment, concentrated (12.5%) sodium hypochlo-
rite (BCS Chemicals, Redwood City, California) was added to the
primary wash tank to achieve a desired equilibrium level of FC (see
Figs. 1 and 3 in Luo et al.,, 2012).



Note that because preliminary experiments suggested that FC
levels in the secondary tank were relatively stable, sample collec-
tion only occurred in the primary tank. Water samples from the
upper water level of the primary tank and lettuce samples on the
conveyor belt were collected before each run and then water
samples and lettuce samples from the upper water level of the
primary tank (between the rotating screen and end of the tank)
were collected every 2 min during washing (see Fig. 1 in Luo et al.,
2012). FC was measured immediately based on a DPD method (N,
N-Diethyl-p-Phenylenediamine) using a chlorine photometer (CP-
25, HF Scientific Inc,, Ft. Myers, Florida) with an accuracy of
0.01 ppm for 0—6 ppm and 0.1 ppm for 6—10 ppm. pH and turbidity
were measured on-site using a digital pH meter and a digital
turbidity meter (Aquafast, Thermo Orion, Beverly, Massachusetts),
and COD was determined by using a reactor digestion method
10236 (Hach, 2002; Luo, 2007). The COD measurements are accu-
rate up to 2 ppm for 150—1500 ppm. As shredded lettuce contin-
uously entered the wash system (45 kg/min), COD increased
linearly from an initial value of 300 mg/1 to 1600 mg/1 at 36 min (see
Fig. 2 in Luo et al., 2012). Furthermore, the E. coli 0157:H7 levels on
the lettuce and in water samples were determined using a modified
MPN method as described in (Luo et al., 2011, 2012; Nou and Luo,
2010). Accuracy for measured pathogen levels was 0.038 MPN/g
on lettuce and 0.38 MPN/ml in the water.

2.2. Chlorine/cross-contamination dynamic model

A dynamic model for the commercial double wash system is
illustrated in Fig. 1 (Luo et al, 2012; Munther et al, 2015). As
mentioned in Subsection 2.1, since preliminary experiments indi-
cated that FC levels in the secondary tank were relatively stable,
sample collection occurred only in the primary tank (Luo et al,
2012). The chlorine and cross-contamination dynamics of the pri-
mary tank can be modeled as follows (Munther et al., 2015):

X = f+ gu+ ws(t)
r Ko

—YcXo — Bex1X2

Too= Bws — Biw (é)’% — 0X2X3 T

o O = O

BwX3 — axaxq — Cixg
Yk = Xok + Vs,

In the vector f, the first two equations represent the water
chemistry dynamics in the wash tank, and the last two equations
represent the pathogen contamination dynamics in the wash water
and on produce in the tank. x=[x; X3 X3 x4]T =
[0 C Xw X;|" denotes the states of the system; O (mg/L) is COD
in the water wash; C (mg/L) represents FC concentration;
Xw (MPN/ml) is the PC in the water wash; X; (MPN/g) represents

# Shredded lettuce + Inoculated baby spinach

Secondary tank Primary tank

Water CSH

Measurements CSH

Fig. 1. Commercial double wash system.
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Fig. 2. FC dosing strategy. The magnitude of the FC doses ry, , i = 1, 2, 3 are calculated
in (Munther et al., 2015) with a least-squares fit to the model of Eq. (1). The dosing
width 79 and the FC dosing period 7 are from (Luo et al., 2012).
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Fig. 3. Prior and posterior estimates and covariances.

the P on the lettuce; u (mg/l min) represents the FC injection rate to
the wash tank (see Fig. 2); y, represents the discrete-time mea-
surement, which is FC concentration; ws(t) represents the four-
element continuous-time white process noise vector of the system
with n x n covariance Qs; vs, represents the scalar discrete-time
white measurement noise with m x m covariance R;,; and n and m
are the number of states and measurements respectively.

When fresh-cut produce enters the wash system, the abrupt in-
crease in organic matter from exudates results in a linear increase in
COD (Fig. 2 in Luo et al., 2012). The increase of COD is quantified by
Ky (mg/l-min). In terms of FC decay, vy.(1/min) indicates the natural
decay rate of FC in water, and §. (I/mg-min) represents a type of
second order rate constant quantifying depletion due to organics in
the water (Deborde and Von Gunten, 2008; Munther et al., 2015). To
compensate for the decrease in hypochlorous acid, the experimental
procedure outlined in Section 2.1 is followed (Luo et al.,, 2012) and a
periodic FC dosing scheme with fixed period 7 = 12 minutes is used.
Three doses are used with a fixed dosing width (duration) 79 = 2
minutes, and the FC rate for each dose is denoted as 1y, , i=1, 2, 3
(Luo et al., 2011, 2012; Munther et al., 2015).

Fig. 2 illustrates the FC dosing strategy over the 36 min duration
of the entire experiment. Water was recirculated during the
experiment (Luo et al., 2012); however, to simplify the model, and
also because of the lack of data for FC returning to the tank, this
dynamic is not included in the chlorine equation. Also, while the
equation for the FC dynamics does not explicitly account for chlo-
rine breakpoint phenomena, the organic load/FC relationship in
this context is implicitly captured in terms of the FC dose rates ry,
and duration. That is, only experimental data during the dosing
time can be relied on to quantify these dose rates (Luo et al., 2012).
Future work will consider both experimentation and modeling in
the context of continuous chlorine dosing to explicitly quantify the
breakpoint dynamics.

2.3. Covariance matrix of the system's process noise

The measurement noise variance Rs, =1 is used in the state
estimator; this is because it is only the ratio of Qs to Ry, (not their
absolute values) that determines estimation performance. K, and



B. in Equation (1) are positive constants and 1/C; denotes the
average dwell time for the lettuce in the wash tank. In the next
section, an HEKF is presented to estimate the system states using
the measurements and the system model. The system parameters
are summarized in Table 1. Before implementing the HEKEF, this
section shows how experimental data is used to derive the discrete-
time process noise covariance Qs, which corresponds to the
continuous-time covariance Qs. Equation (1) shows that the
equivalent discrete-time process noise can be approximated as

Xexpm.1 — Xexpn — (f(xexpm) +gum)At

ws, = Y (2)
where ws, represents a four-element discrete-time process noise
vector for m =1, ..., Mpg, where that mpg is the number of
experimental data points; Xexp,, is the m-th experimental data point
captured during the washing process (measurement At = 2 min);
f(Xexp,,) is the system dynamics in (1) evaluated at Xexp,,; and up, is
the FC dosing strategy shown in Fig. 1 at sample index m. The
covariance Qs, is estimated as

Mgy 2

Qsd:ZJ (3)

Mmax
m=1
The continuous-time process noise covariance Qs can then be
obtained as follows (Simon, 2006, Chapter 8):

_q,
Q=5 (4)

Nineteen measured experimental samples of chlorine are used
during the wash process, so mmgx =19 in Eq. (3). The 4 x 4

covariance matrix of the system's process noise Qs is calculated
from the experimental data using Eqs. (2)—(4) as

Qs = diag(468 0.64 1.77 1.34)

3. Hybrid extended Kalman filter and noise statistics
optimization

In this section, an HEKF is designed to estimate the system states
of Eq. (1), and then PSO is used to optimize the noise statistics so
that the HEKF is approximately optimal.

3.1. Hybrid extended Kalman filter

Consider a general continuous-time system with discrete time
measurements (Simon, 2006):

X = f(x,u,ws,t)

Yk = hk (Xk’vsk)

wi(t) ~ (0,Qs) (5)
Vs ~ (O?Rsk)

f() and hy(.) represent the nonlinear system and measurement

equations; and yy, X, and u are the system measurement, state, and
input, respectively. The filter is initialized as follows:

X = Elxo]

P —E|(x0- %) (xo - %5) | ©

where E(.) denotes the expected value operation, and P} is the
covariance of the initial estimate. For each time index k, the state
estimate and its covariance are integrated from time (k—1)" to
time k~ as follows (Simon, 2006):

2=f(§,u,0,t) (7)
P=AP+PAT + LQfL"

where A and L denote the partial derivatives of f(x,u, ws,t) with
respect to x and ws respectively, both evaluated at X; and Qy denotes
the continuous-time process noise covariance used in the HEKF
algorithm. Note that Qf is, in general, different from Qs because Qs is
unknown in practice. Although Qs was identified in Section 2, it was
identified only for one specific experiment. In general, Qs is un-
known and so the HEKF needs to be implemented apart from any
knowledge of Qs.

Eq. (7) is integrated starting from time index k—1 with X = Xj;_,
and P = P/ ; and ending at the next time index k with X = X and
P =P, where X, and P, are the prior estimate and covariance
respectively. Fig. 3 provides a conceptual diagram of the prior and
posterior estimates and covariances (Simon, 2006). The measure-
ment Y, is incorporated into the state estimate and estimation
covariance at time k as follows:

-1
Ki = P HY (HiPyc H + MR MY )
Xp =X + K (J’k — hy (?12 0, fk)) (8)
P = (I — KyHy)Pe (I - KeH)T + KM R, MK}

where H, and M, denote the partial derivative of hy(x, vg) with
respect to x;, and vy, respectively, both evaluated at X, ; K is the
Kalman filter gain; y, denotes the measurement at time k; and Ry,
denotes the discrete-time measurement noise covariance.

3.2. Noise statistics optimization

Now that the HEKF algorithm has been outlined, a method is
proposed to optimize the noise statistics of the covariances that are
used in the HEKF. Both measurement and process noise statistics
are unknown, but the performance of the HEKF strongly depends
on accurate noise models, so a noise model optimization method is
derived using PSO. The process and measurement noises are
assumed to be uncorrelated with diagonal covariance matrices.

The dynamics in Eq. (1) has four states, and FC concentration is
the only measurement (n =4, m = 1), so the problem here is to
tune the four diagonal elements of Q; and the single element of Ry, .

Table 1

System parameters used in Eq. (1); see (Munther et al., 2015) for details.
Parameter Description Value (Units)
Ko COD increase rate 32.3 (mg/(L min))
Ye Natural decay rate of FC 1.7 x 10~3(1/min)
B FC consumption rate 5.38 x 10~%(L/mg min)
Buws Increase rate of the pathogen in the water 1.95 (MPN/(ml min))
Biw Pathogen binding rate (water to produce) 0.38 (ml/(g min))
L Amount of lettuce in the tank 19526 (g)
v Volume of the tank 3.2 x 10%(ml)
(@] Reciprocal of average wash time 2.3 (1/min)

« Interaction rate of the pathogen via FC

0.5 (1/(mg min))




The innovations are used for optimization, and are defined as

e = Vi — Xy, (9)

The innovations represent that part of the measurement that
contains new information about the state. PSO is used to optimize
the diagonal elements of Q and Ry, so that the proposed HEKF is
approximately optimal, which means the innovations satisfy three
different conditions (Simon, 2006): (1) white noise, (2) zero mean,
and (3) covariance equal to HkP,:HZ + Rs,. Fig. 4 depicts the struc-
ture of the HEKF/noise statistics optimization system.

3.2.1. Particle swarm optimization

In this section, PSO is used to optimize the process noise sta-
tistics for the HEKF; that is, the diagonal elements of the covariance
matrix Qf and the single element Ry, are tuned so that the in-
novations are approximately white noise and zero mean with a
covariance of HkPk*HE + Rs,. For the first condition, the whiteness of
the innovations, the lower and upper bounds of a 99% statistical
confidence interval for the whiteness of the innovations are
calculated. If the sample autocorrelation values are within the 99%
confidence bounds, it is concluded that the innovations are white.
The RMSE difference between the measured and estimated chlo-
rine is also incorporated in the cost function as a heuristic to ensure
reasonable estimation performance. Therefore, four individual cost
function components are combined with weighting coefficients to
obtain the overall PSO cost function:

1 Emax
Costy = —— R
osh gmax;| g|

1 N
Costy = > i
k=1 (10)

Costy S J - (MiPiH )
=1

3
Costr = {.Coste + {4RMSEy

e=1 N-g = =
where Rg = NL_g w is the normalized autocorrelation
of innovation samples (N is the number of FC measurement sam-
ples); 7 and ¢? denote the sample mean and variance of the in-
novations; g=1,...,gmax denotes the time lag index of the
autocorrelation sample values, where gmax < N is the maximum lag;
RMSE, denotes the root mean square error between the measured
and estimated chlorine data; and ¢, (e = 1, 2, 3, 4) are weighting
coefficients that indicate the relative importance of each individual

cost function component. PSO uses Eq. (10) to adjust the diagonal

Tk
HEKF Algorithm

PSO Algorithm

|'nnovations Check:

® 7. : White Noise

® 7y : Zero Mean

* Cov(r,) = Hy P H + R,

Oyr» Ry,

Fig. 4. Proposed structure for the HEKF and noise identification.

elements of Qf and Ry, so that the innovations satisfy their theo-
retically desired properties.

3.2.2. Overview of PSO

PSO is a population-based optimization algorithm that is moti-
vated by the social behavior of animals (Kennedy and Eberhart,
1995; Eberhart and Kennedy, 1995). PSO shares information be-
tween candidate solutions to find an optimal solution using a blend
of deterministic and random operations. Compared to other
evolutionary computation techniques, PSO is easy to implement,
has only a few tuning parameters, and is computationally efficient.
PSO is also attractive due to its ability to find the global solution to
optimization problems.

These features motivate us to use PSO to find the optimal indi-
vidual in the population of candidate solutions and to minimize the
cost function in Eq. (10). PSO begins by initializing a population
(swarm) of individuals that are assigned random initial positions and
zero velocities; the position of each individual represents a candidate
solution, which includes diagonal elements of the process noise
covariance. Their velocities represent the directions that they move
through the search space. Each individual's velocity is updated using
the difference between its best position in the past and its current
position, and the difference between the best position of its neigh-
bors and its current position. The positions of the individuals are
then updated using their velocities. A maximum number of itera-
tions (that is, generations) is defined as the stopping criteria. The
velocity update equation is presented as follows (Simon, 2013):

vi(k+1) =Yv;(k) + C1 (bi(k) — 2 (k) +Ca (5i(K) —zi(k)) , i=1,...,]
Y=KYy, Ci =K, C;=Kb,
(11)

Eq. (11) is a D-element vector operation, where D is the
dimension of the optimization problem; «x =1, ..., kmqx Where kg is
the maximum number of generations; i=1, ...,| where [ is the
number of particles (individuals); z;(k), v;(k), and b;(x) are the po-
sition, velocity, and prior best position of the i particle at the k"
generation; s;(x) is the best position of the i neighborhood at the
k™ generation; »;(k+1) is the velocity of the i particle at the
(k+1)% generation; #; and 6, are the cognition learning rate and
the social learning rate respectively, which are random numbers
uniformly distributed in [0, 61 gy and [0, 65 qx] Tespectively each
generation, where 01 ;;,qx and 0 gy are tuning parameters; Y is the
inertia weight, which decreases from 0.9 in the first generation to
0.1 in the last one; Y, is the damping ratio of ¥; and C; and C, are
velocity update coefficients. K is the constriction coefficient and can
be set as follows to ensure stability (Simon, 2013):

2

K< >
Hlmax + 02,max -2+ \/(‘91,max + 027max) - 4(017max + 02,max)
(12)

Velocity limiting is applied to the i particle as follows:
vii(k +1) o i+ 1)) gl/}mx
i 1)« 13

vtk 1) {Vfaxsgn(uij(x+l)) s ik 1) > (13)

where j=1, ...,.D, and V]’.”“" is the maximum velocity, which is
defined as

X — gz Znin) (14)

where z"®* and z™" are the minimum and maximum values of the
j™ dimension of the search domain; and o is a scale factor. After the



velocity update of Egs. (11)—(15), the position update and limiting
are performed as follows:

zi(k + 1) = vi(k + 1) + (k)
zj(k+1) < mm(z,](K +1), zmax> (15)
zjk+1) < max(zij("+ D, mem>

where Eq. (15) is a D-element vector operation, and z;(k + 1) is the
position of the i particle at the (x + 1) generation.

4. Simulation results
4.1. Initialization

PSO is used to identify the process and measurement noise
statistics for the HEKF so the innovations form a zero-mean white
noise process with covariance HyP; HE + Rs,. The initial state of the
system (Luo et al, 2012) is xJ =[300 0 O 0], and the wash
period is 36 min. The initial covariance of the estimation error
Py = 10 I4,4, and the maximum number of time lags gmax = 5,
which were manually chosen to provide good performance.

Table 2 presents the parameters that are used in the PSO algo-
rithm and the cost function of Eq. (10). The PSO parameters in
Table 2 are chosen to provide good performance and fast conver-
gence. Note that a larger number of iterations kg and a larger
population size | could be considered to possibly obtain better
performance, but better performance would come at the expense of
more computational time. The cost function coefficients {, were
chosen to make the weighted values of the components Costq,
Costy, Costs, and RMSE, of the same order of magnitude.

4.2. Process and measurement noises of HEKF algorithm

The continuous-time process noise covariance Qs was computed
in Section 2. The standard deviation of the simulation process noise
is  the square  root of the covariance matrix
SDgs = v/Qs = diag(21.65 0.79 133 1.15) and the standard
deviation of the measurement noise is SDg, = /Rs, = 1. The PSO
search domain of the standard deviation of the HEKF process and
measurement noises needs to be bounded. The search domains are
set to comfortably include the standard deviations of the simula-
tion noise, which are the square roots of the system simulation
noise covariance matrices Qs and Rs,. The search domains are
chosen as

sq11€[0, 40], sqp [0, 2], sq33€[0, 3], squa [0, 3]
SDg, €[0.1, 2]
Table 2
PSO parameters.
Parameter Description Value
D Optimization problem dimension 5
Kmax Number of iterations 20
1 Population size 20
01 max Maximum rate for cognition learning 2.05
02 max Maximum rate for social learning 2.05
Yy Damping ratio for inertia rate 0.9
T Scale factor 0.1
G Cost; coefficient 100
&) Cost; coefficient 1
[&) Costs coefficient 1
[ RMSE, coefficient 1
8max Maximum number of lag 5
N Number of innovations samples 3601

Best Cost
N

0 5 10 15 20
Iteration

Fig. 5. PSO performance for identifying the process and measurement noise
covariances.

PSO decreases Costr of Eq. (10) from 4.73 at the initial generation
to 3.08 at the 20th generation, which means that the total cost
improves by 34%. Fig. 5 shows the best cost values of the PSO
population over 20 generations. The best solution found by PSO is
SDgs = diag(28.32 0.28 1.40 1.41) and SDR = 1.33. The in-
dividual cost functions values from Eq. (7) for this solution are
Cost; = 0.008, Cost; = 0.79, Cost; = 1.38, and RMSE, = 0.98.

4.3. Verification of state estimation and noise statistics optimization

Fig. 6 compares the states of the produce wash system with the
estimated HEKF states for two situations: zero initial state esti-
mation error (56 =[300 0 O O0]), and non-zero initial state
estimation error (;cg =[350 10 5 0.5]).Fig. 6 shows that with
zero initial state estimation error the HEKF can accurately estimate
the states with an RMSE of 8.24 mg/L for COD, 0.09 mg/L for FC,
0.19 MPN/ml for Xy, and 0.04 MPN/g for X;. In the case of non-zero
initial state estimation error the HEKF estimates the states with an
RMSE of 18.29 mg/L for COD, 0.12 mg/L for FC, 0.63 MPN/ml for Xy,
and 0.1 MPN/g for X;. It is seen that the HEKF demonstrates good
robustness against initial state estimation errors.

Fig. 7 shows the Kalman gains. The Kalman gain of the second
state (FC concentration) converges to zero. This implies that suffi-
cient knowledge from the measurements is eventually obtained so
that additional ones do not provide any new information, so
additional measurements are eventually ignored with respect to FC
estimation updates. On the other hand, the Kalman gains of the
first, third, and fourth states do not converge to zero, so the esti-
mates of those states are more responsive to measurements. Note
that the magnitude of the first Kalman gain is heuristically limited
to 0.5 to obtain robust state estimation for COD.

Fig. 8 demonstrates the innovations of Eq. (9). Recall that the
PSO algorithm optimizes the HEKF process and measurement
noises so that the innovations are zero-mean white noise with
covariance HkP,;HE +Rs,. The figure shows that the innovations
appear to be approximately zero mean, and they also appear to be
white, although the covariance cannot be easily identified from the
figure.

Fig. 9 shows that the sample autocorrelation values of the in-
novations are bounded within the 99% confidence interval, except
at zero time lag. It can be concluded that the innovations are
approximately white.

4.4. Monte Carlo simulation

Monte Carlo simulation provides an additional tool to provide
confidence in the state estimator. The sample standard deviation of
the state estimation error S, is measured over multiple Monte Carlo
simulations. The average standard deviation of the estimation error
for the jth state is calculated over N, Monte Carlo simulations:
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where x;; and Xj; (j = 1, ..., 4) denote the state and its estimate at the

ith time ‘step.

Fig. 10 shows the average standard deviation of the estimation
error for each state over 100 Monte Carlo simulations, each with a
36 min simulation time. The standard deviations are bounded
within reasonable ranges: 5 mg/L for COD, 0.1 mg/L for FC, 0.1
MPN/ml for PC, and 0.025 MPN/g for P on the lettuce. The state
estimates are clustered around the true states and the HEKF pro-
vides accurate estimates of the states.
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Fig. 8. Innovations of Eq. (9), which is used to update the state estimate in Eq. (8). Note
that the innovations appear to be white and zero-mean, which implies the optimality
of the filter.
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Fig. 9. White noise test of the innovations: autocorrelation of the innovations (red
solid circle), and 99% confidence bounds (blue dashed lines).

4.5. Sensitivity analysis

Robustness is a basic requirement for a state estimator. The
question addressed here is whether the HEKF and the noise opti-
mization algorithm provide robustness to system parameter de-
viations (that is, modeling errors) and are thus reliable as a practical
method for real-world plant wash systems. A robustness test is
performed by varying all of the system parameters, one at a time,
and calculating the sensitivity of each state estimation error rela-
tive to each perturbed system model parameter. The following
equations are proposed to quantify the effect of system model pa-
rameters on state estimation errors:

(17)
SP'*‘}JS; <P
2 J

P

Djr — §{)’0 x 100 (18)
J
P DPI

[

SE (3/0 (19)

SP o (i ) represents the standard deviation of the estimation error of
the j™ state at the i time step, averaged over Npc Monte Carlo
simulations, when the estimator's model of the I™ system param-
eter has an error of ¢% relative to its true value while the other
system parameters are modeled correctly. SP % denotes the mean of

SP " over N time steps. pP mdlcates the RMSE percentage change of
the estimation error of the j state due to a modeling error in the /7"
system parameter. SE denotes the sensitivity of the estimation
error of the ji state relative to an error in the I" system model
parameter, where a positive sensitivity means that the estimation
error of the j™ state increases, and a negative sensitivity means that
the estimation error of the j state decreases.

Fig. 11 shows the sensitivity of the error of each state estimate to
the error of each system model parameter, which were calculated
with a value of 6 = 10 in Eqgs. (19)—(21). The largest sensitivity is
that of the COD (O) estimation error relative to the COD increase
rate (Kp); this is because the derivative of the COD state is exactly
equal to Ky, as seen in Eq. (1). The smallest sensitivity is that of the P
on the lettuce (X;) estimation error relative to the decay rate of FC
(vc), which is about 0; although v, appears in the derivative of the
FC concentration in Eq. (1) and chlorine measurements are used to
update the state estimates, the cross-contamination dynamics, and
in turn Xj, are not directly dependent on v..

As seen from Fig. 11, the estimate of COD is also highly sensitive
to the FC consumption rate (.. This is because the first element of
the covariance Qs (shown at the end of Section 2), which corre-
sponds to COD process noise, is very large relative to the other el-
ements of Qs. This indicates that there is a significant difference
between the experimental data and the COD model dynamics of Eq.
(1). Conversely, the second element of the covariance matrix is very
small, indicating a close match between the experimental data and
the FC model dynamics of Eq. (1). These two observations lead to
the conclusion that when (. is modeled incorrectly the Kalman
filter adjusts its estimate of COD (x;), but not FC (x;), to maintain a
close match between the experimental data and the (§.x1x; term in
the second dynamic equation of Eq. (1).

Similarly, Fig. 11 shows that COD estimation errors have a rela-
tively high sensitivity to almost all of the model parameters. Again,
this is because the first element of the covariance matrix, which
corresponds to COD process noise, is very large relative to its other
elements. This, in turn, allows the Kalman filter to significantly
adjust its estimate of COD to compensate for modeling errors.

Fig. 11 shows that the estimated FC concentration (C) is not very
sensitive to modeling errors. Its greatest sensitivity is to the
modeled value of FC consumption rate (§.). This is because (. ap-
pears directly in the derivative of the FC state in Eq. (1).

The estimated PC in the water (Xy/) is not very sensitive to
modeling errors. Its greatest sensitivity is to the interaction rate of
the pathogen via FC («). This is because of their direct relationship
in the system dynamics of Eq. (1). Note that the estimate of Xy, has
a negative sensitivity to several modeling parameters. This means
that the estimate actually improves in the presence of modeling
errors. This phenomenon is difficult to explain but is probably due
to the highly nonlinear nature of the system dynamics, a charac-
teristic which often precludes the analytical or intuitive explana-
tions of sensitivity relationships. The negative sensitivities indicate
that Xy can be accurately estimated even without a good knowl-
edge of the system model.

Finally, the estimated P on the lettuce (X} ) is not very sensitive to
modeling errors. Its greatest sensitivity is to the pathogen binding
rate (0, ). This is because of their direct relationship in the system
dynamics.

In summary, the proposed state estimator has good perfor-
mance even when the system parameters deviate from their
modeled values. This analysis indicates that the HEKF and noise
statistics optimization algorithm are robust to system parameter
deviations and could thus be reliable for real-world plant wash
systems.
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5. Conclusion and future work

An HEKF was designed to estimate the states of a continuous-
time wash system using discrete-time FC measurements. PSO was
used to optimize the HEKF process and measurement noise co-
variances so that the innovations satisfied theoretically desired
properties. Simulation results showed that PSO decreased the cost
function by 34%. RMS estimation errors were 8.24 mg/L for the
COD, 0.09 mg/L for the FC concentration, 0.19 MPN/ml for PC in the
water wash, and 0.04 MPN/g for the P on the lettuce in the tank. A
sensitivity analysis showed that, as expected, the highest sensitivity
was that of the COD estimation error to COD increase rate modeling
errors. In general, the estimation errors showed a low sensitivity to
modeling errors, confirming the robustness of the estimator.

For future work, a state-based controller for the produce wash
system will be designed to control FC concentration, the pathogen
concentration in the water wash, and the amount of pathogen on
the lettuce during the wash process, all while minimizing the FC
input.

The simulation results in this paper can be reproduced with the
Matlab source code that is available at http://embeddedlab.csuohio.
edu/plant-wash-estimation.
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